Enrico Cancelli, Tommaso Campari, Luciano Serafini, Angel X. Chang, Lamberto Ballan
Accepted at ICCV 2023
Short version: [CVPR EAI workshop paper]
This repository contains the implementation and episode dataset from the paper.
Warning: It is still WIP. Feel free to open an issue if you encounter some problems or have some questions.
conda create -n socialnav python=3.6
conda activate socialnav
pip install cythonOur code is based on habitat-lab 0.1.7 (please refer to the original repo). Clone this repo and install it.
cd habitat-lab
pip install -e .(plus habitat-sim 0.2.1, see original repo for building options)
conda install habitat-sim=0.2.1 withbullet headless -c conda-forge -c aihabitatAlso install both habitat-lab and habitat-sim requirements
People's meshes are taken from the original challenge data. To get them, clone the original repository using the following script:
git clone https://github.com/StanfordVL/iGibsonChallenge2021.git
cd ../iGibsonChallenge2021
./download.sh
mkdir ../iGibson/gibson2/data
mv gibson_challenge_data_2021/* ../iGibson/gibson2/dataAfter download, substitute the PATH_TO_PEOPLE_MESHES variable in the habitat-lab/habitat/sims/igibson_challenge/social_nav.py
with the correct path (will be made a parameter in future).
The dataset is in the habitat-lab/data/dataset/pointnav/hm3d folder.
To use it add this parameter to your main config file:
BASE_TASK_CONFIG_PATH: configs/datasets/pointnav/hm3d.yaml
TODO: this section is work in progress. For now you can use the following command with the associated config for the baseline:
python habitat_baselines/run.py --exp-config ../baseline.yaml --run-type eval (or train) --name example
and this for te full model:
python habitat_baselines/run.py --exp-config ../full.yaml --run-type eval (or train) --name example
Please consult the original repository for details about the config system and habitat-lab and habitat_baselines parameters.