
 Git Good Practices
 If you’re reading this document, you’re probably looking for some guidance on how to use Git
 on your project. There are a lot of ways to use it, both good and bad. So, we want to help you
 wade through the different methods and help answer the question: “How do we actually do it
 here at Fearless”?

 This document outlines the foundational ways we expect everyone at Fearless to use Git.
 However, we recognize that not every project will be able to use Git in the way we’re asking.
 That’s why these are “good practices” and not “best practices” — these are methods we’ve
 tested that will produce good outcomes, but they aren’t strict standards. Use them when you
 can and use your best judgment when you can’t!

 At the end of this doc, you’ll also find a list of additional materials — resources, repos, tools,
 and playgrounds — where you can learn more about Git and play around with it a bit. We
 encourage you to poke around those links and let us know if anything should be added to the
 list!

 Our Git good practices

 Pull requests

 Pull requests should be reviewed in a timely manner. Once the branch is merged, it should
 be deleted.

 If changes are made to a pull request, the original reviews should be dismissed after it has
 been reviewed.

 Team members are highly encouraged to share WIP branches and create draft pull requests.
 A draft pull request should not be marked as “Ready to Review” until indicated work has been
 completed and the branch is ready for code review. Pull requests live in the repository forever.

 A good pull request should include the following:

 - One self-contained change
 - Ideally, no more than 250 lines of change
 - Self-explanatory title that describes what the pull request does
 - Description that details what was changed, why it was changed, and how it was

 changed
 - Link to ticket
 - Links to any related pull requests

 8 Market Place, Suite 200, Baltimore, MD 21202
 (410) 394-9600 / fax (410) 779-3706 / fearless.tech

 gitignore

 A project repository ’s gitignore file should be project specific. It should not include IDE- and
 OS-specific file information.

 Every developer should have a global gitignore file for their system. Because IDE- and
 OS-specific files are specific to the developer environment, they should be added to a global
 gitignore.

 Smaller commits

 Developers should be very intentional about their commits and avoid `git add *` `git add .`
 These commands have the possibility of bringing in unintended changes.

 Each commit should represent a finite change. If many different changes are made at once, a
 developer should leverage line-specific commits to maintain the integrity of the repository.
 Commits done this way make it easier for other developers to see and review the changes in
 context. They also create less potential for merge conflicts.

 Formatting changes and logic changes should be separate commits for the purpose of
 maintaining code. It’s easier to identify a bug in a finite logic change than to have to parse a
 large mixed-purpose commit.

 Commit messages should be clear about the change and why it was made. A well-written
 commit message helps with future maintainability of the code base.

 Git force-with-lease

 ̀ Git push -- force`forcibly overwrites the remote commit history with your own local history
 and should never be used without discussion with your team.

 If a regular push command is not effective, the developer should first pull any commits from
 the target branch that do not exist in the local branch with ̀ git fetch` before using the force
 command as it is normally reserved for extreme cases when something has gone wrong with
 the repository.

 If a force push is necessary, developers should use ̀ git push –force-with-lease` , which will
 only overwrite the remote branch if your local history is aware of all commits on the remote
 branch. Using ̀ git push –force-with-lease` safeguards the developer from destroying
 someone else’s changes to the codebase.

 8 Market Place, Suite 200, Baltimore, MD 21202
 (410) 394-9600 / fax (410) 779-3706 / fearless.tech

https://github.com/github/gitignore
https://docs.github.com/en/get-started/getting-started-with-git/ignoring-files#create-a-global-gitignore
https://www.freecodecamp.org/news/how-to-write-better-git-commit-messages/
https://www.git-tower.com/blog/force-push-in-git/

 Scenario git push
 git push
 --force-with-lease

 New commits on local branch works works

 New commit on remote
 branch added by another user

 FAILS FAILS

 Commit from remote branch
 is modified on local branch

 FAILS works

 Debugging

 Git can and should be used for debugging.

 ̀ Git blame`is useful for identifying and understanding a specific change; the commit
 message should provide enough valuable information for another developer to pick up
 where the original author left off. If the commit message is unclear, the developer can also
 ask the author for clarification.

 Branch structures

 Preferred: Trunk Based Development

 In Trunk Based Development, developers collaborate in a single branch called the trunk,
 typically named “main”. Following the pull request workflow, short lived feature branches are
 code reviewed and merged before integrating into the trunk.

 Branches

 1. Main
 2. Feature-X

 8 Market Place, Suite 200, Baltimore, MD 21202
 (410) 394-9600 / fax (410) 779-3706 / fearless.tech

 Process

 ● Main is releasable anytime
 ● Main is tagged to deploy to production
 ● Devs must branch off Main branch
 ● Pull requests for Feature-X branches are submitted and reviewed daily
 ● Feature-X branches are merged into Main branch

 Rationale

 ● Because Main is releasable anytime, the team has the agility to frequently deploy to
 production

 ● Requirement for continuous integration and continuous delivery
 ● Ensures teams release code quickly and consistently
 ● Code reviews are more efficient; small branches mean engineers can quickly see and

 review changes
 ● Limits long-lived branches, reducing the likelihood of merge conflicts and cognitive

 overload of large amounts of changes

 Potential pitfalls

 Specifically with GitHub, it's not possible to "protect" a tag. So anyone with maintainer access
 is allowed to tag and could trigger a push to production. Though some CI tools, such as
 CircleCI, could have further levels of protection.

 Feature flags are required to manage releases between production and non-production
 environments.

 Best suited for

 ● A mature engineering team
 ● A loosely coupled code base that can support feature abstractions

 Next best: Git Flow

 Sometimes teams or clients need an intermediate step between where they are and where
 they need to go in order to build the necessary comfort and positivity. In those cases, Git Flow
 may be the right choice.

 Branches

 1. Main

 8 Market Place, Suite 200, Baltimore, MD 21202
 (410) 394-9600 / fax (410) 779-3706 / fearless.tech

 2. Dev
 3. Feature-X

 Process

 ● Main is releasable anytime
 ● Main is tagged to deploy to production
 ● Developers must branch off Dev branch
 ● Dev is merged into Main on a “regular” basis
 ● Dev is rebased on Main when hotfixes are committed

 Rationale

 A Dev branch creates a perception of safety for the developers who are concerned about
 committing to main and possibly affecting deploys.

 Tags on main are used for deployment to give more control over when deployments to
 production occur.

 Potential pitfalls

 Merging Dev into Main consistently can be time consuming. One also must take care to
 rebase Dev on Main when hot fixes are produced, and this can create ripple effects on feature
 branches. Main and Dev branch split is redundant and impedes the establishment of
 continuous integration and continuous delivery.

 Best suited for

 ● Less experienced engineering team
 ● Open source projects
 ● Large projects compiling releases
 ● Projects that have scheduled release cycles

 Tips & Tricks

 Git Bisect

 In the scenario where a team does not know when a bug was introduced, they can leverage
 ̀ git bisect ̀ to do a binary search of the repository to narrow down the issue to a specific
 commit.

 8 Market Place, Suite 200, Baltimore, MD 21202
 (410) 394-9600 / fax (410) 779-3706 / fearless.tech

https://interrupt.memfault.com/blog/git-bisect#starting-with-git-bisect

 Additional materials

 Fearless repositories

 ● https://github.com/FearlessSolutions
 ● https://github.com/orgs/FearlessFarms

 Resources

 ● Git documentation
 ○ Git documentation straight from the source

 ● Basic Git commands
 ● Create a global gitignore

 ○ Instructions for setting up a global gitignore file
 ● Project gitignore templates
 ● Write better commit messages
 ● Writing a great pull request description
 ● Benefits of making small pull requests
 ● Merge vs Rebase
 ● Trunk based development
 ● Pre-commit hooks
 ● Never `git push force`

 Playgrounds

 ● Interactive git branching demo
 ○ Interactive git branching - no demo

 ● https://git-school.github.io/visualizing-git/

 Tools

 ● Command line
 ● GitHub Desktop
 ● GitX
 ● Trufflehog

 ○ Pre-commit hook to catch committed secrets

 8 Market Place, Suite 200, Baltimore, MD 21202
 (410) 394-9600 / fax (410) 779-3706 / fearless.tech

https://github.com/FearlessSolutions/
https://github.com/orgs/FearlessFarms
https://git-scm.com/doc
https://confluence.atlassian.com/bitbucketserver/basic-git-commands-776639767.html
https://docs.github.com/en/get-started/getting-started-with-git/ignoring-files#create-a-global-gitignore
https://github.com/github/gitignore
https://www.freecodecamp.org/news/how-to-write-better-git-commit-messages/
https://www.pullrequest.com/blog/writing-a-great-pull-request-description/
https://google.github.io/eng-practices/review/developer/small-cls.html
https://medium.com/mindorks/understanding-git-merge-git-rebase-88e2afd42671
https://trunkbaseddevelopment.com/
https://pre-commit.com/
https://salferrarello.com/never-git-push-force/
https://learngitbranching.js.org/
https://learngitbranching.js.org/?NODEMO
https://git-school.github.io/visualizing-git/
https://git-scm.com/book/en/v2/Getting-Started-The-Command-Line
https://desktop.github.com/
https://gitx.frim.nl/
https://github.com/trufflesecurity/truffleHog

