
Functions Usefulness Python Syntax

upper(),
lower(),

capitalize(),
strip(),

center(nb)

To shappe
of a
character
string.

>>> "chaine".upper() # contrary to
lower()
CHAINE
>>> "chaine".capitalize()
Chaine
>>> " character string ".strip
‘chaine de caractere’
>>> "chaine".center(30) # center the
string in 30 characters
' chaine '

format()

To call the
elements to
put them in
a character
string.

>>> var1 = value1
>>> var2 = value2
>>> print('"var1 is equal to {0} and
var2 to {1}.".format(var1,var2))
var1 is equal to value1 and var2 to
value2.
>>> adress = """ {num} {name}
… {postal_code} {city}
… """.format(num=5, name="rue des
lilas", postal_code=75003,
city="Paris")
...
>>> print(adress)
5 rue des lilas
75003 Paris

len()

To return the
length of a
string.

>>> len("Hello!")
6

exec()

To execute
a command
shape like a
character
string.

>>> exec("if 0==0: print(\"ok\")")
ok

Charactere Meaning/
Usefulness

Python Syntax

Allows to insert
comments.

>>> # This is a comments !

<, >,
<=, >=

Comparison
operators.

>>> a=10
>>> b=5
>>> if a<b:
... instruction1

Execute the instruction1
because the condition1 is
true.

=, +, -, *, /,
//(integer
division),

%(modulo),
**(power)

Calculation operators.

>>> 10 + 2
12
>>> 10/3
3.3333333
>>> 10//3
3
>>> 10%3 # remainder of the
division of ten by three.
1

==, !=

(différent)

Comparison
operators.

>>> a=10
>>> b=10
>>> if a==b:
... instruction1
/!\ "=" assigne a value
whereas "==" check an
equality.

\

(antislash)

Allows to begin a new
paragraph when an
instruction is too long.

\n

Allows to begin a new
paragraph in a
character string.

>>> print("This is\n a
comments !")
This is
a comments !

\t

Allows to insert
tabulations in a
character string.

\'

Allows to insert
apostrophes.

>>> 'It\'s very beautiful.'

 /!\ The code 'It’s very
beautiful' would send an
error.

\" Allows to insert

quotation marks.

", ', ''', """

Introduce a character
string.

Variables and types:

 The variables:

To define a variable in Python:
Syntax: >>> name_variable = value
Three topographic rules for the variable’s name:

1. Composed of letters, numbers or « _ », no accent
2. The first character is not a number
3. Case sensitive (ex: Age ≠ age ≠ AGE)

Manipulations of variables:
Python code

>>> my_age = 20
>>> my_age = my_age + 2 # “my_age += 2” give the same result.
>>> my_age
22

Instruction’s block:

Syntax: >>> instruction1

... instruction1.1

... instruction1.2

... instruction1.2.1

... instruction1.3

...
execution of the instruction’s block

/!\ The shaping is significant for the understanding of the instruction
block .

Operator’s form:

Operator Meaning/Usefulness Python Syntax

>>> if condition1:

 Structure in « if, else »:

>>> if a>0:
... print("a is upper than 0.")
... else: # if the first condition is not true:
... print("a is lower than 0.")
...
a is upper than 0.

 Complete structure in « if, elif, else »:

>>> if a>0:
... print("a is upper than 0.")
... elif a<0:
... print("a is lower than 0.")
... else:
... print("a equal to 0.")
...

Python Code

Python Code

>>> table(6)
1*6=6
2*6=12
3*6=18
4*6=24
5*6=30
6*6=36
7*6=42 # etc until 6*10=10

Use of the « lambda » command:

Syntax: >>> lambda arg1,arg2,…,argN: return
instruction

>>> f= lambda x: x*x # this function return x squared
>>> f(5)
25

Values defaults in a function:

Python Code

 The types:
Python code

Introduces a
if condition on a

... instruction1 a is upper than 0. When you define a function, you can initialize a parameter in setting:
param=values_in_absentia, thus, if no value is given by the user of

>>> a = 2 # The variable is an integer: ‘int’
>>> b = " Bonjour ! " # character string: ‘str’
>>> c = 2.3 # ‘float’
>>> d = complex(3,2) # ‘complex’
d=3+2j
There exist boolean type too: ‘bool’. There are only two values,

variable.

Proposes a different

>>> if condition1
... instruction1
... else:
... instruction2

The Loops:

 The « while » loop:

>>> nb=7

Python Code

the function, the parameter would have the default value.
Unknown numbers of parameters:

When you do not know how many parameter would composed your
function, all you have to do is to put a “ * ” in front of the parameter.

true or false.
The « Print » function:

else instruction if
condition1 is false.

>>> if condition1:

>>> i=0 # Initialization of the variable that will be used in the
loop
>>> while i<10: # the instruction is done while “i<10” is true
... print(i+1,"*",nb, "=",(i+1)*nb)
... i+=1 # when the instruction is done, we increment i

 Some usefull functions in Python:
For the 'str’ class:

Syntax: >>> print(name_variable)
>>> print("character string")
>>> print(3.5)

>>> print(a)
2

Python code

elif

Proposes several
instructions if
condition1 is false.

... instruction1

... elif condition2:

... instruction2

... elif condition3:

... instruction3

... else:

... instruction4

...
1*7=7
2*7=14
3*7=21
4*7=28
5*7=35
6*7=42

>>> print("Hello world !") # print(b) give the same result.
Hello world !
>>> print("I am {0} and I have {1} cats.".format(my_age,a))
I am 22 and I have 2 cats.
>>> print("a=", a)
a=2

while

Allows making a loop
while a condition is
true.

Allows making a loop

>>> while condition1:
... instruction1

>>> for element in set:
... instruction1

7*7=49
8*7=56
9*7=63
10*7=70

 The « for » loop:

Python Code

Characters form: for to skim a set.
This code do instruction1 for
each element in set.

>>> for letter in " Hello! ": # letter is a variable that stands for
each element of the character string “Hello !”
... print(letter)

in To point out a set.

Logical operator
which allows

>>> if condition1 and condition2:
... instruction1

instruction1 would be
executed if condition1 and
condition2 are true.

...
H
e
l
l
o
!

and, or checking one or
several conditions.

>>> if condition1 or condition2
... instruction1

instruction1 would be executed
if condition1 or condition2 are

Other example:

>>> for letter in "Hello!":
... if letter in "aeiouyAEIOUI": # if letter is a vowel
... print(letter)

Python Code

not

break

continue

Logical operator to
check the negation of
a condition.

Allows to stop a loop,
without going on
executing the code.

Allows to return to the
beginning of the loop,
without executing the
end of the instruction.

true.

>>> if condition1:
... instruction1
... else:
... break
The loop stops if condition1 is
false.
>>> while condition1:
... if condition1.1:
... instruction1.1
... continue
... if condition2:
If condition1.1 is true, we
execute instruction1.1 and we
return to the beginning of the
loop without executing the other
lines.

... else: # if letter is a consonant or an
other character
... print("*")
...
*
e
*
*
o
*

Main Notions: classes, methods and objects:

 Objects: data structures, can contain variables and functions
(which are called methods). To use the method of an object:
“object.method()”.

 The classes are data types, models which are used to build an
object: it is in a class that we define the methods peculiar to
the object.

For instance:
‘str’ is the character string class.
string="Hello !" is an object of the ‘str’ class.

For all the classes:

Functions Usefulness Syntax

type() Return the type of a
variable.

>>> type("hello")
<class 'str'>

int(), str(), float()

Change the type of a
variable. /!\ The conversion
have to be possible.

>>> chaine="34"
>>> int(chaine)
34

The exceptions

It allows pointing out the errors which you can meet. We use the
commands “try” and “except”:
Syntax: try:

The input() instruction:

Syntax: >>> message=input() # the user type an ordinary
variable which will be saved in the variable
« message ».

lower is a method of the ‘str’ class which can be applied
on all its objects.

The functions:

 The function creation:

error

>>> try:

block to execute
except:

block which will be executed in case of

Python Code

comments: this is not available in Flux

The conditional structures:
 Simple structure in « if »:

Use of the « def » command:

Syntax: >>> def function(param1, param2, …, paramN):
... instructions block

... 6/0

... except:

... print("error")

...
error

>>> a=5
>>> if a>0: # the «: » are compulsory
... print("a is higher than 0.")
... if a<0:
... print("a is lower than 0.")
...
a is upper than 0.

Python Code Python Code
>>> def table(nb): # nb stands for the number which the table will be
calculated
... i=0
... while i<10:
... print(i+1,"*",nb,"=",(i+1)*nb)
... i+=1
...

We can also point out on a special error:

>>> try:
... 6/0
... except ZeroDivisionError:
... print("Division by zero impossible.")
...
Division by zero impossible.

Python Code

Function Usefullness Syntax

append()
To add an object at
the end of a list.

>>> my_list=[5,3]
>>> my_list.append(4)
>>> print(my_list)
[5,3,4]

insert()

To insert an
element in a list.

>>> my_list.insert(2, 3) #
insertion of the interger 3 at the
rating 2.
>>> print(my_list)
[5,3,3,4]

extend()
To concatenate two
lists.

>>> list1=[6,7]
>>> list2=[2,3]
>>> list1.extend(list2)
>>> print(list1)
[6,7,2,3]
>>> list1 + list2
[6,7,2,3,2,3]

del

To delete an
element.

>>> del my_list[2] # delete the
second element of the list

remove()

>>> my_list.remove(2) # /!\ delete
the first element which is equal to

the list

pop()

To delete an
element and print it.

>>> my_list=[5,3,3,4]
>>> my_list.pop(1)
5

count()

To give the number
of element which is
equal to the
parameter.

>>> my_list.count(3)
2

index()

To return the
position of the
parameter in the
list.

>>> my_list.index(5)
1

reverse()

To return the
inverse of the
sequence.

>>> my_list.reverse()
>>> print(my_list)
[4,3,3,5]

sort()

To sort the list (by
alphabetical order
and by monotonic
order)

>>> my_list=[1,2,4,3]
>>> my_list.sort()
>>> my_list
[1,2,3,4]

The « return » instruction:

It allows returning directly a value:
Syntax: >>> def square(x)

... return x*x
This function gives x squared.

Programs creation:

Steps: 1. Open a basic text editor (ex: bloc note, /!\ Word and
WordPad do not work)

2. Header-block:
Python Code

-*-coding:CODING -* # CODING have to be replaced by:
Latin-1 with Windows
Utf-8 with Linux

It depends on the coding of your computer

import os # importe the module with the functions and the variables
of Python

3. Write the code as if you were in Python
4. Save the project with the extensions « .py »

Use of the program with Python:

 Program which interact with the user (use of the “input()”

instruction for instance):
Double clic on the file → opening of a Python Windows

 program with a function (as the function “table()” for

instance)):
1. Save the file in the same folder as Python.
2. Import the file:

Python Code
>>> import my_file

Import of a Python index:

The lists:

The lists are set of objects. They belong to the ‘list’ class and allow
manipulating several types of objects in the same time.
Comments: We count from 0.

 List creation:
Syntax: >>> my_list= [] # creation of an empty list

>>> my_list= list() # ditto
>>> my_list = [1, 2, ‘a’, []] # this list is

composed of two integers, a character string and an
other empty list
We can call a list element by the same method than for the character
strings: « my_list[i] » return the i element of the list.

 Methods of the list class:
Major comments: The methods of the list class are different from the
method seen previously. Indeed, those methods modify the list but post
no result whereas the other methods do not change the element but
return a result.

The tuples:

They are not modifiables lists.
Syntax: >>> empty_tuple = ()

>>> tuple = (1,) # /!\ To create a tuple
with one element, we have to put a comma after
because otherwise, Python would think that this is a
variable and remove the parenthesis.

The dictionary:

 Definition of a dictionary:
Dictonaries are like the lists and the tuples except that we define them
with brace “{ }”. Each element is defined as a key associated to a value:
Syntax: >>> my_dictionary = dict()

>>> my_dictionary = {} # same result: empty
dictionary

>>> dictionary1={key1:value1,key2:value2}
a dictionary can be defined directly like this too.

 Addition of elements in a dictionary:
Syntax: >>> my_dictionary[key]=value # add the couple
key/value to the dictionary

>>> my_dictionary
{ key: value }

Contrary to the lists, a dictionary is not ordinate. The values are
associated to the keys; hence, they do not have an index in the
dictionary.

Python Code
>>> cupboard = {}
>>> cupboard ["melon"]= 1
>>> cupboard ["manzana"]= 4
>>> cupboard ["pear"]= 3
>>> cupboard # The elements are not is the order that we have
define them
{‘manzana’:4, ‘melon’=1, ‘pear’=3}

 How to delete elements in a dictionary:

The “del” and “pop” methods:

MEMENTO

Basics of Python for

Tools for programming

Usefullness: Obtain functions usable in the Python commands.

>>> del cupboard["manzana"]

Python Code Before beginning to program in Python:

Syntax: >>> import index
>>> index.function1(param1, param2, ...,

paramN)
execution of fonction1

or: >>> from index import function1
>>> function1(param1, param2, …, paramN)

or: >>> from index import * # allows to

2 in >>> cupboard.pop("pear") # this method return the value associated
to the key “pear” in deleting it.
3

 How to point out the element of a dictionary:

With the “for .. in” loop:

The Keys:

To download Python and install it on your computer:

You have to go to the official Python website Python.org and
download the version that matches to your computer and
processor.

write “function1” without having to write the index
>>> function1(param1, param2, …, paramN)

Python Code

>>> import math # import the math index which contains mathematics
functions: cos, sin, etc.
>>> math.sqrt(16) # to use the functions of the index, we have to
put the name of the index in front of
4

The characters string:

 The concatenation of the strings:
Syntax: >>> a="string1"

>>> b="string2"
>>> c=a+b
>>> c
>>> string1string2

/!\ If we want to put a space between both strings, we have to write in
Python: >>> c=a+" "+b
/!\ If we want to add an integer or a float variable in the string, we have
to convert them with the function “str()”:

Python Code
>>> "I am"+" "+str(21)+" "+"years old."
I am 21 years old.

 How to point out on a character string:

Syntax: >>> string[0]
return the first character of the string
>>> chaine[-1]
return the last character of the string
>>> chaine[2:5]
return the string from the character

number 2 until the character number 5
>>> chaine[2:]
return the string from the character

number 2 until the end of the string

 The “range” function:
Syntax: >>> range(n)

Create a list from 0 to n-1, with n an integer.

Python Code
>>> for i in range(3):
. . . print i
. . .
0
1
2

 The list-string conversion:

Syntax: >>> my_string="Good Morning Everybody"
>>> my_string.split(" ") # the string is cut at

each space and the pieces are put in a list.
["Good", "Morning", "Everybody"]
Comments: The “split()” method gives a result but do not change the list.
Syntax: >>> my_list=["Good", "morning", "everybody"]

>>> " ".join(my_list) # this method joins the
elements of the list together to make a
sentence in separating them by a space.
"Good morning everybody"

Python Code
>>> for key in cupboard: # or « for key in cupboard.keys() »
... print(key)
...
manzana
melon
pear

The values:

Python Code
>>> for value in cupboard.values():
... print(value)
1
4
3

Reading and writing in a file:

If we have a text file file.txt in the Python folder:

We can read the file:
Syntax: >>> my_file=open("file.txt", "r")

>>> print(my_file.read()) # print the text
write in file.txt

>>> my_file.close()
We can write in the file:

/!\ This operation delete all the text that was written before in the text.
Syntax: >>> my_file=open("file.txt", "w")

>>> my_file.write("First test !")
12

>>> my_file.close()
We can add sentence in the file:

Syntax: >>> my_file=open("file.txt", "a")
>>> my_file.write("New test")
>>> my_file.close()

Comments: It is very important to close the file after using it because
the “write” method for instance, have a different usefulness depending
on if we are in the writing mode or in the adding mode.

The help function:

Syntax: >>> help(object)

Introduction to Python

Python is an interpreted programming language, that is different
from the compiled languages. It automatically compiles the different
lines of code each time the user click on “enter”.

Nevertheless, it is as well possible to create a python file which will
be read by Python and used to do special operations.

A first approach:

When you open Python:

« >>> » means that you can enter a command.

Help Python website: http://docs.python.org/tutorial

