From 0a35cb25d9cc7d87c7f363bf7db950579dc470a7 Mon Sep 17 00:00:00 2001 From: VsevolodX <79542055+VsevolodX@users.noreply.github.com> Date: Thu, 26 Dec 2024 11:43:37 -0800 Subject: [PATCH 01/11] feat: add high-k tutorial (claude) --- ...heterostructure-high-k-metal-gate-stack.md | 163 ++++++++++++++++++ 1 file changed, 163 insertions(+) create mode 100644 lang/en/docs/tutorials/materials/specific/heterostructure-high-k-metal-gate-stack.md diff --git a/lang/en/docs/tutorials/materials/specific/heterostructure-high-k-metal-gate-stack.md b/lang/en/docs/tutorials/materials/specific/heterostructure-high-k-metal-gate-stack.md new file mode 100644 index 00000000..515b0d3a --- /dev/null +++ b/lang/en/docs/tutorials/materials/specific/heterostructure-high-k-metal-gate-stack.md @@ -0,0 +1,163 @@ +# Creating High-k Metal Gate Stack: Si/SiO2/HfO2/TiN + +## Introduction + +This tutorial demonstrates how to create a high-k metal gate stack heterostructure consisting of four materials: Si (substrate), SiO2 (gate oxide), HfO2 (high-k dielectric), and TiN (metal gate). We'll use a sequential approach combining Zero Strain Layer (ZSL) and simple interface builders. + +The process involves first creating a critical Si/SiO2 interface using strain matching, then adding subsequent layers using simple interface builder to maintain the established structure. + +!!!note "Process Overview" + 1. Create Si/SiO2 interface using ZSL matching (most critical interface) + 2. Add HfO2 layer using simple interface builder + 3. Add TiN layer using simple interface builder + +## 1. Set Up Materials + +First, navigate to Materials Designer and import the following materials from Standata: +- Silicon (Si) +- Silicon dioxide (SiO2) +- Hafnium dioxide (HfO2) +- Titanium nitride (TiN) + +![Materials Import](/images/tutorials/materials/interfaces/highk_metal_gate/materials-import.webp "Materials Import") + +## 2. Create Si/SiO2 Interface + +### 2.1. Launch First JupyterLite Session + +Select "Advanced > JupyterLite Transformation" and open the `create_interface_with_min_strain_zsl.ipynb` notebook. + +### 2.2. Configure ZSL Interface Parameters + +Modify the notebook parameters for the Si/SiO2 interface: + +```python +# Global parameters +MAX_AREA = 200 # Maximum area for strain matching +MAX_AREA_RATIO_TOL = 0.25 # Maximum area ratio tolerance +MAX_ANGLE_TOLERANCE = 0.15 # Maximum angle tolerance +MAX_LENGTH_TOLERANCE = 0.15 # Maximum length tolerance + +# Structure parameters +FILM_INDEX = 1 # SiO2 +FILM_MILLER_INDICES = (1, 0, 0) +FILM_THICKNESS = 3 +FILM_VACUUM = 0.0 +FILM_USE_ORTHOGONAL_Z = True + +SUBSTRATE_INDEX = 0 # Si +SUBSTRATE_MILLER_INDICES = (1, 0, 0) +SUBSTRATE_THICKNESS = 4 +SUBSTRATE_VACUUM = 5.0 +SUBSTRATE_USE_ORTHOGONAL_Z = True + +INTERFACE_DISTANCE = 2.5 # Angstroms +INTERFACE_VACUUM = 5.0 # Angstroms +``` + +### 2.3. Run ZSL Interface Creation + +Run the notebook to create the Si/SiO2 interface. The process will: +1. Generate possible interfaces with different strains +2. Plot strain vs. number of atoms +3. Select the optimal interface configuration + +![Strain Plot](/images/tutorials/materials/interfaces/highk_metal_gate/strain-plot.webp "Strain vs Atoms Plot") + +## 3. Add HfO2 Layer + +### 3.1. Launch Second JupyterLite Session + +Open the `create_interface_with_no_strain.ipynb` notebook for adding the HfO2 layer. + +### 3.2. Configure Simple Interface Parameters + +Set the parameters for adding HfO2: + +```python +# Enable scaling of film to match substrate +ENABLE_FILM_SCALING = True +CREATE_SLABS = False + +FILM_INDEX = 0 # HfO2 +FILM_MILLER_INDICES = (0, 0, 1) +FILM_THICKNESS = 4 +FILM_VACUUM = 0.5 +FILM_XY_SUPERCELL_MATRIX = [[1, 0], [0, 2]] + +SUBSTRATE_INDEX = 1 # Previous Si/SiO2 structure +SUBSTRATE_MILLER_INDICES = (0, 0, 1) +SUBSTRATE_THICKNESS = 1 # Use full previous structure +SUBSTRATE_VACUUM = 0.5 + +INTERFACE_DISTANCE = 2.5 # Angstroms +INTERFACE_VACUUM = 0.5 # Angstroms +``` + +### 3.3. Add HfO2 Layer + +Run the notebook to add the HfO2 layer. The simple interface builder will: +1. Scale the HfO2 layer to match the substrate +2. Position it at the specified distance +3. Create the three-layer structure + +## 4. Add TiN Layer + +### 4.1. Configure TiN Layer Parameters + +In the same notebook or a new instance, set parameters for adding TiN: + +```python +FILM_INDEX = 1 # TiN +FILM_MILLER_INDICES = (0, 0, 1) +FILM_THICKNESS = 3 +FILM_VACUUM = 10.0 # Final vacuum layer +FILM_USE_ORTHOGONAL_Z = True + +SUBSTRATE_INDEX = 0 # Previous Si/SiO2/HfO2 structure +SUBSTRATE_MILLER_INDICES = (0, 0, 1) +SUBSTRATE_THICKNESS = 1 +SUBSTRATE_VACUUM = 0.0 + +INTERFACE_DISTANCE = 2.5 # Angstroms +INTERFACE_VACUUM = 10.0 # Final vacuum spacing +``` + +### 4.2. Complete the Stack + +Run the notebook one final time to add the TiN layer and complete the stack. + +## 5. Final Structure + +The final high-k metal gate stack should show: +1. Crystalline Si substrate +2. Well-matched Si/SiO2 interface +3. HfO2 high-k dielectric layer +4. TiN metal gate layer +5. Appropriate vacuum spacing + +![Final Stack](/images/tutorials/materials/interfaces/highk_metal_gate/final-stack.webp "Complete High-k Metal Gate Stack") + +## Important Notes + +1. The Si/SiO2 interface is created using strain matching because it's the most critical interface for device performance +2. Subsequent layers use simple interface builder to maintain the established structure +3. Vacuum spacing is important between layers and at the top of the structure +4. Miller indices and thicknesses can be adjusted based on specific requirements +5. The final structure can be saved or exported for further analysis + +## References + +1. **D. A. Muller et al.** + "The electronic structure at the atomic scale of ultrathin gate oxides" + Nature 399, 758–761 (1999) + [DOI: 10.1038/21602](https://doi.org/10.1038/21602) + +2. **J. Robertson** + "High dielectric constant gate oxides for metal oxide Si transistors" + Reports on Progress in Physics 69, 327 (2006) + [DOI: 10.1088/0034-4885/69/2/R02](https://doi.org/10.1088/0034-4885/69/2/R02) + +## Tags + +`interfaces`, `high-k`, `metal-gate`, `semiconductor`, `heterostructure`, `strain-matching` \ No newline at end of file From 31eeadc6f4f8cdc597054b92a99ff470a8854837 Mon Sep 17 00:00:00 2001 From: VsevolodX <79542055+VsevolodX@users.noreply.github.com> Date: Thu, 26 Dec 2024 11:53:43 -0800 Subject: [PATCH 02/11] update: create slabs before (claude) --- ...heterostructure-high-k-metal-gate-stack.md | 167 +++++++++--------- 1 file changed, 88 insertions(+), 79 deletions(-) diff --git a/lang/en/docs/tutorials/materials/specific/heterostructure-high-k-metal-gate-stack.md b/lang/en/docs/tutorials/materials/specific/heterostructure-high-k-metal-gate-stack.md index 515b0d3a..823ce09c 100644 --- a/lang/en/docs/tutorials/materials/specific/heterostructure-high-k-metal-gate-stack.md +++ b/lang/en/docs/tutorials/materials/specific/heterostructure-high-k-metal-gate-stack.md @@ -2,41 +2,72 @@ ## Introduction -This tutorial demonstrates how to create a high-k metal gate stack heterostructure consisting of four materials: Si (substrate), SiO2 (gate oxide), HfO2 (high-k dielectric), and TiN (metal gate). We'll use a sequential approach combining Zero Strain Layer (ZSL) and simple interface builders. - -The process involves first creating a critical Si/SiO2 interface using strain matching, then adding subsequent layers using simple interface builder to maintain the established structure. - -!!!note "Process Overview" - 1. Create Si/SiO2 interface using ZSL matching (most critical interface) - 2. Add HfO2 layer using simple interface builder - 3. Add TiN layer using simple interface builder +This tutorial demonstrates how to create a high-k metal gate stack heterostructure consisting of four materials: Si (substrate), SiO2 (gate oxide), HfO2 (high-k dielectric), and TiN (metal gate). The process involves: +1. Creating individual slabs for HfO2 and TiN +2. Building the Si/SiO2 interface using strain matching +3. Adding the pre-created slabs sequentially using simple interface builder ## 1. Set Up Materials -First, navigate to Materials Designer and import the following materials from Standata: +First, navigate to Materials Designer and import from Standata: - Silicon (Si) - Silicon dioxide (SiO2) - Hafnium dioxide (HfO2) - Titanium nitride (TiN) -![Materials Import](/images/tutorials/materials/interfaces/highk_metal_gate/materials-import.webp "Materials Import") +## 2. Create HfO2 and TiN Slabs + +Before building the stack, we need to create properly terminated slabs for HfO2 and TiN. + +### 2.1. Create HfO2 Slab + +Open `create_slab_with_termination.ipynb` and set parameters: + +```python +# HfO2 slab parameters +MILLER_INDICES = (0, 0, 1) +THICKNESS = 4 # atomic layers +VACUUM = 0.5 # Angstroms +XY_SUPERCELL_MATRIX = [[1, 0], [0, 2]] +USE_ORTHOGONAL_Z = True +USE_CONVENTIONAL_CELL = True + +# Select termination (usually first one is fine) +TERMINATION_INDEX = 0 +``` + +Run the notebook to create and save the HfO2 slab. + +### 2.2. Create TiN Slab -## 2. Create Si/SiO2 Interface +Open another instance of `create_slab_with_termination.ipynb` for TiN: -### 2.1. Launch First JupyterLite Session +```python +# TiN slab parameters +MILLER_INDICES = (0, 0, 1) +THICKNESS = 3 # atomic layers +VACUUM = 10.0 # Angstroms - more vacuum for final layer +XY_SUPERCELL_MATRIX = [[1, 0], [0, 1]] +USE_ORTHOGONAL_Z = True +USE_CONVENTIONAL_CELL = True + +TERMINATION_INDEX = 0 +``` + +Run the notebook to create and save the TiN slab. -Select "Advanced > JupyterLite Transformation" and open the `create_interface_with_min_strain_zsl.ipynb` notebook. +## 3. Create Si/SiO2 Interface -### 2.2. Configure ZSL Interface Parameters +### 3.1. Launch ZSL Interface Builder -Modify the notebook parameters for the Si/SiO2 interface: +Open `create_interface_with_min_strain_zsl.ipynb` and configure: ```python # Global parameters MAX_AREA = 200 # Maximum area for strain matching -MAX_AREA_RATIO_TOL = 0.25 # Maximum area ratio tolerance -MAX_ANGLE_TOLERANCE = 0.15 # Maximum angle tolerance -MAX_LENGTH_TOLERANCE = 0.15 # Maximum length tolerance +MAX_AREA_RATIO_TOL = 0.25 +MAX_ANGLE_TOLERANCE = 0.15 +MAX_LENGTH_TOLERANCE = 0.15 # Structure parameters FILM_INDEX = 1 # SiO2 @@ -55,109 +86,87 @@ INTERFACE_DISTANCE = 2.5 # Angstroms INTERFACE_VACUUM = 5.0 # Angstroms ``` -### 2.3. Run ZSL Interface Creation - -Run the notebook to create the Si/SiO2 interface. The process will: -1. Generate possible interfaces with different strains -2. Plot strain vs. number of atoms -3. Select the optimal interface configuration - -![Strain Plot](/images/tutorials/materials/interfaces/highk_metal_gate/strain-plot.webp "Strain vs Atoms Plot") +### 3.2. Create Initial Interface -## 3. Add HfO2 Layer +Run the notebook to create the Si/SiO2 interface. This is the most critical interface, so we use strain matching to optimize it. -### 3.1. Launch Second JupyterLite Session +## 4. Add HfO2 Layer -Open the `create_interface_with_no_strain.ipynb` notebook for adding the HfO2 layer. +### 4.1. Configure Simple Interface Builder -### 3.2. Configure Simple Interface Parameters - -Set the parameters for adding HfO2: +Open `create_interface_with_no_strain.ipynb` and set: ```python -# Enable scaling of film to match substrate +# Important: Disable slab creation since we're using pre-created slab ENABLE_FILM_SCALING = True -CREATE_SLABS = False - -FILM_INDEX = 0 # HfO2 -FILM_MILLER_INDICES = (0, 0, 1) -FILM_THICKNESS = 4 -FILM_VACUUM = 0.5 -FILM_XY_SUPERCELL_MATRIX = [[1, 0], [0, 2]] +CREATE_SLABS = False # We already have our HfO2 slab -SUBSTRATE_INDEX = 1 # Previous Si/SiO2 structure -SUBSTRATE_MILLER_INDICES = (0, 0, 1) -SUBSTRATE_THICKNESS = 1 # Use full previous structure -SUBSTRATE_VACUUM = 0.5 +FILM_INDEX = 0 # Pre-created HfO2 slab +SUBSTRATE_INDEX = 1 # Si/SiO2 structure +# Interface parameters INTERFACE_DISTANCE = 2.5 # Angstroms INTERFACE_VACUUM = 0.5 # Angstroms ``` -### 3.3. Add HfO2 Layer +### 4.2. Add HfO2 -Run the notebook to add the HfO2 layer. The simple interface builder will: -1. Scale the HfO2 layer to match the substrate -2. Position it at the specified distance -3. Create the three-layer structure +Run the notebook to add the pre-created HfO2 slab to the Si/SiO2 structure. -## 4. Add TiN Layer +## 5. Add TiN Layer -### 4.1. Configure TiN Layer Parameters +### 5.1. Configure Final Layer Addition -In the same notebook or a new instance, set parameters for adding TiN: +Use `create_interface_with_no_strain.ipynb` again: ```python -FILM_INDEX = 1 # TiN -FILM_MILLER_INDICES = (0, 0, 1) -FILM_THICKNESS = 3 -FILM_VACUUM = 10.0 # Final vacuum layer -FILM_USE_ORTHOGONAL_Z = True +# Keep slabs disabled +ENABLE_FILM_SCALING = True +CREATE_SLABS = False # Using pre-created TiN slab -SUBSTRATE_INDEX = 0 # Previous Si/SiO2/HfO2 structure -SUBSTRATE_MILLER_INDICES = (0, 0, 1) -SUBSTRATE_THICKNESS = 1 -SUBSTRATE_VACUUM = 0.0 +FILM_INDEX = 1 # Pre-created TiN slab +SUBSTRATE_INDEX = 0 # Si/SiO2/HfO2 structure +# Final interface parameters INTERFACE_DISTANCE = 2.5 # Angstroms INTERFACE_VACUUM = 10.0 # Final vacuum spacing ``` -### 4.2. Complete the Stack +### 5.2. Complete the Stack -Run the notebook one final time to add the TiN layer and complete the stack. +Run the notebook to add the TiN layer and complete the stack. -## 5. Final Structure +## 6. Analysis and Verification -The final high-k metal gate stack should show: -1. Crystalline Si substrate -2. Well-matched Si/SiO2 interface -3. HfO2 high-k dielectric layer -4. TiN metal gate layer -5. Appropriate vacuum spacing +The final structure should show: +1. Well-matched Si/SiO2 interface (from ZSL matching) +2. Proper HfO2 slab orientation and termination +3. Correct TiN slab placement and vacuum spacing -![Final Stack](/images/tutorials/materials/interfaces/highk_metal_gate/final-stack.webp "Complete High-k Metal Gate Stack") +Key characteristics to verify: +- Interface distances between layers +- Layer thicknesses +- Surface terminations +- Vacuum spacing ## Important Notes -1. The Si/SiO2 interface is created using strain matching because it's the most critical interface for device performance -2. Subsequent layers use simple interface builder to maintain the established structure -3. Vacuum spacing is important between layers and at the top of the structure -4. Miller indices and thicknesses can be adjusted based on specific requirements -5. The final structure can be saved or exported for further analysis +1. Creating slabs separately ensures proper terminations and orientations +2. Setting `CREATE_SLABS = False` tells the interface builder to use pre-created slabs +3. The Si/SiO2 interface uses strain matching for optimal contact +4. Subsequent layers use simple interface builder to maintain structure +5. Vacuum spacing is critical, especially for the final TiN layer ## References 1. **D. A. Muller et al.** "The electronic structure at the atomic scale of ultrathin gate oxides" Nature 399, 758–761 (1999) - [DOI: 10.1038/21602](https://doi.org/10.1038/21602) 2. **J. Robertson** "High dielectric constant gate oxides for metal oxide Si transistors" Reports on Progress in Physics 69, 327 (2006) - [DOI: 10.1088/0034-4885/69/2/R02](https://doi.org/10.1088/0034-4885/69/2/R02) ## Tags -`interfaces`, `high-k`, `metal-gate`, `semiconductor`, `heterostructure`, `strain-matching` \ No newline at end of file +`slab-creation`, `interfaces`, `high-k`, `metal-gate`, `semiconductor`, `heterostructure`, `strain-matching` \ No newline at end of file From 62453962fd010dd1c1be0aebd6704503636e9fe3 Mon Sep 17 00:00:00 2001 From: VsevolodX <79542055+VsevolodX@users.noreply.github.com> Date: Thu, 26 Dec 2024 12:22:45 -0800 Subject: [PATCH 03/11] update: adjustments --- ...heterostructure-high-k-metal-gate-stack.md | 49 +++++++++---------- 1 file changed, 24 insertions(+), 25 deletions(-) diff --git a/lang/en/docs/tutorials/materials/specific/heterostructure-high-k-metal-gate-stack.md b/lang/en/docs/tutorials/materials/specific/heterostructure-high-k-metal-gate-stack.md index 823ce09c..97b88f3f 100644 --- a/lang/en/docs/tutorials/materials/specific/heterostructure-high-k-metal-gate-stack.md +++ b/lang/en/docs/tutorials/materials/specific/heterostructure-high-k-metal-gate-stack.md @@ -7,9 +7,11 @@ This tutorial demonstrates how to create a high-k metal gate stack heterostructu 2. Building the Si/SiO2 interface using strain matching 3. Adding the pre-created slabs sequentially using simple interface builder +We use the [Materials Designer](../../../materials-designer/overview.md) to create the high-k metal gate stack. + ## 1. Set Up Materials -First, navigate to Materials Designer and import from Standata: +First, navigate to Materials Designer and import from [Standata](../../../materials-designer/header-menu/input-output/standata-import.md) the following materials: - Silicon (Si) - Silicon dioxide (SiO2) - Hafnium dioxide (HfO2) @@ -36,7 +38,9 @@ USE_CONVENTIONAL_CELL = True TERMINATION_INDEX = 0 ``` -Run the notebook to create and save the HfO2 slab. +Run the notebook to create the HfO2 slab and pass it to Materials Designer. + +![HfO2 slab](/images/tutorials/materials/specific/heterostructure-high-k-metal-gate-stack/wave-result-hfo2-slab-wave.png "HfO2 slab") ### 2.2. Create TiN Slab @@ -54,7 +58,9 @@ USE_CONVENTIONAL_CELL = True TERMINATION_INDEX = 0 ``` -Run the notebook to create and save the TiN slab. +Run the notebook to create and pass the TiN slab to Materials Designer. + +![TiN slab](/images/tutorials/materials/specific/heterostructure-high-k-metal-gate-stack/wave-result-tin-slab.png "TiN slab") ## 3. Create Si/SiO2 Interface @@ -65,27 +71,34 @@ Open `create_interface_with_min_strain_zsl.ipynb` and configure: ```python # Global parameters MAX_AREA = 200 # Maximum area for strain matching -MAX_AREA_RATIO_TOL = 0.25 -MAX_ANGLE_TOLERANCE = 0.15 -MAX_LENGTH_TOLERANCE = 0.15 +MAX_AREA_RATIO_TOLERANCE = 0.25 # Maximum area ratio tolerance +MAX_ANGLE_TOLERANCE = 0.15 # Maximum angle tolerance +MAX_LENGTH_TOLERANCE = 0.15 # Maximum length tolerance # Structure parameters FILM_INDEX = 1 # SiO2 FILM_MILLER_INDICES = (1, 0, 0) FILM_THICKNESS = 3 +FILM_XY_SUPERCELL_MATRIX = [[1, 0], [0, 1]] FILM_VACUUM = 0.0 FILM_USE_ORTHOGONAL_Z = True SUBSTRATE_INDEX = 0 # Si SUBSTRATE_MILLER_INDICES = (1, 0, 0) SUBSTRATE_THICKNESS = 4 +SUBSTRATE_XY_SUPERCELL_MATRIX = [[1, 0], [0, 1]] SUBSTRATE_VACUUM = 5.0 SUBSTRATE_USE_ORTHOGONAL_Z = True INTERFACE_DISTANCE = 2.5 # Angstroms INTERFACE_VACUUM = 5.0 # Angstroms +TERMINATION_PAIR_INDEX = 0 ``` +We set a higher tolerances to achieve smaller cell with higher strain of the film (SiO2). + +![Interface Setup](/images/tutorials/materials/specific/heterostructure-high-k-metal-gate-stack/jl-setup-notebook-si-sio2.png "Interface Setup") + ### 3.2. Create Initial Interface Run the notebook to create the Si/SiO2 interface. This is the most critical interface, so we use strain matching to optimize it. @@ -113,6 +126,8 @@ INTERFACE_VACUUM = 0.5 # Angstroms Run the notebook to add the pre-created HfO2 slab to the Si/SiO2 structure. +![Si/SiO2/HfO2](/images/tutorials/materials/specific/heterostructure-high-k-metal-gate-stack/wave-result-si-sio2-hfo2.png "Si/SiO2/HfO2") + ## 5. Add TiN Layer ### 5.1. Configure Final Layer Addition @@ -136,36 +151,20 @@ INTERFACE_VACUUM = 10.0 # Final vacuum spacing Run the notebook to add the TiN layer and complete the stack. -## 6. Analysis and Verification - -The final structure should show: -1. Well-matched Si/SiO2 interface (from ZSL matching) -2. Proper HfO2 slab orientation and termination -3. Correct TiN slab placement and vacuum spacing - -Key characteristics to verify: -- Interface distances between layers -- Layer thicknesses -- Surface terminations -- Vacuum spacing - -## Important Notes +![Final Stack](/images/tutorials/materials/specific/heterostructure-high-k-metal-gate-stack/wave-result-si-sio2-hfo2-tin.png "Final Stack") -1. Creating slabs separately ensures proper terminations and orientations -2. Setting `CREATE_SLABS = False` tells the interface builder to use pre-created slabs -3. The Si/SiO2 interface uses strain matching for optimal contact -4. Subsequent layers use simple interface builder to maintain structure -5. Vacuum spacing is critical, especially for the final TiN layer ## References 1. **D. A. Muller et al.** "The electronic structure at the atomic scale of ultrathin gate oxides" Nature 399, 758–761 (1999) + [DOI: 10.1038/21602](https://doi.org/10.1038/21602) 2. **J. Robertson** "High dielectric constant gate oxides for metal oxide Si transistors" Reports on Progress in Physics 69, 327 (2006) + [DOI: 10.1088/0034-4885/69/2/R02](https://doi.org/10.1088/0034-4885/69/2/R02) ## Tags From 9ac7202f262c61c0b772ea73163575b40e5de180 Mon Sep 17 00:00:00 2001 From: VsevolodX <79542055+VsevolodX@users.noreply.github.com> Date: Thu, 26 Dec 2024 13:16:16 -0800 Subject: [PATCH 04/11] update: cleanup --- ...heterostructure-high-k-metal-gate-stack.md | 28 +++++++++++++------ mkdocs.yml | 1 + 2 files changed, 20 insertions(+), 9 deletions(-) diff --git a/lang/en/docs/tutorials/materials/specific/heterostructure-high-k-metal-gate-stack.md b/lang/en/docs/tutorials/materials/specific/heterostructure-high-k-metal-gate-stack.md index 97b88f3f..5db94c1a 100644 --- a/lang/en/docs/tutorials/materials/specific/heterostructure-high-k-metal-gate-stack.md +++ b/lang/en/docs/tutorials/materials/specific/heterostructure-high-k-metal-gate-stack.md @@ -17,12 +17,16 @@ First, navigate to Materials Designer and import from [Standata](../../../materi - Hafnium dioxide (HfO2) - Titanium nitride (TiN) +![Standata Import](/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/import-standata.png "Standata Import") + ## 2. Create HfO2 and TiN Slabs Before building the stack, we need to create properly terminated slabs for HfO2 and TiN. ### 2.1. Create HfO2 Slab +More detailed instructions on slab creation can be found in the [SrTiO3 Slab](slab-strontium-titanate.md) tutorial. + Open `create_slab_with_termination.ipynb` and set parameters: ```python @@ -40,7 +44,7 @@ TERMINATION_INDEX = 0 Run the notebook to create the HfO2 slab and pass it to Materials Designer. -![HfO2 slab](/images/tutorials/materials/specific/heterostructure-high-k-metal-gate-stack/wave-result-hfo2-slab-wave.png "HfO2 slab") +![HfO2 slab](/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-hfo2-slab-wave.png "HfO2 slab") ### 2.2. Create TiN Slab @@ -60,7 +64,7 @@ TERMINATION_INDEX = 0 Run the notebook to create and pass the TiN slab to Materials Designer. -![TiN slab](/images/tutorials/materials/specific/heterostructure-high-k-metal-gate-stack/wave-result-tin-slab.png "TiN slab") +![TiN slab](/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-tin-slab.png "TiN slab") ## 3. Create Si/SiO2 Interface @@ -69,13 +73,11 @@ Run the notebook to create and pass the TiN slab to Materials Designer. Open `create_interface_with_min_strain_zsl.ipynb` and configure: ```python -# Global parameters MAX_AREA = 200 # Maximum area for strain matching MAX_AREA_RATIO_TOLERANCE = 0.25 # Maximum area ratio tolerance MAX_ANGLE_TOLERANCE = 0.15 # Maximum angle tolerance MAX_LENGTH_TOLERANCE = 0.15 # Maximum length tolerance -# Structure parameters FILM_INDEX = 1 # SiO2 FILM_MILLER_INDICES = (1, 0, 0) FILM_THICKNESS = 3 @@ -97,7 +99,7 @@ TERMINATION_PAIR_INDEX = 0 We set a higher tolerances to achieve smaller cell with higher strain of the film (SiO2). -![Interface Setup](/images/tutorials/materials/specific/heterostructure-high-k-metal-gate-stack/jl-setup-notebook-si-sio2.png "Interface Setup") +![Interface Setup](/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/jl-setup-notebook-si-sio2.png "Interface Setup") ### 3.2. Create Initial Interface @@ -107,6 +109,8 @@ Run the notebook to create the Si/SiO2 interface. This is the most critical inte ### 4.1. Configure Simple Interface Builder +Open JupyterLite Session again and select the Si/SiO2 interface and HfO2 slab as input materials. + Open `create_interface_with_no_strain.ipynb` and set: ```python @@ -114,24 +118,30 @@ Open `create_interface_with_no_strain.ipynb` and set: ENABLE_FILM_SCALING = True CREATE_SLABS = False # We already have our HfO2 slab -FILM_INDEX = 0 # Pre-created HfO2 slab -SUBSTRATE_INDEX = 1 # Si/SiO2 structure +FILM_INDEX = 1 # Pre-created HfO2 slab +SUBSTRATE_INDEX = 0 # Si/SiO2 structure # Interface parameters INTERFACE_DISTANCE = 2.5 # Angstroms INTERFACE_VACUUM = 0.5 # Angstroms ``` +Film is the material that will be strained (scaled) to match the substrate. + +![HfO2 Interface Setup](/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/jl-setup-notebook-si-sio2-hfo2.png "HfO2 Interface Setup") + ### 4.2. Add HfO2 Run the notebook to add the pre-created HfO2 slab to the Si/SiO2 structure. -![Si/SiO2/HfO2](/images/tutorials/materials/specific/heterostructure-high-k-metal-gate-stack/wave-result-si-sio2-hfo2.png "Si/SiO2/HfO2") +![Si/SiO2/HfO2](/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-si-sio2-hfo2.png "Si/SiO2/HfO2") ## 5. Add TiN Layer ### 5.1. Configure Final Layer Addition +Similar to steps in Section 4, we add the TiN layer to the Si/SiO2/HfO2 stack. + Use `create_interface_with_no_strain.ipynb` again: ```python @@ -151,7 +161,7 @@ INTERFACE_VACUUM = 10.0 # Final vacuum spacing Run the notebook to add the TiN layer and complete the stack. -![Final Stack](/images/tutorials/materials/specific/heterostructure-high-k-metal-gate-stack/wave-result-si-sio2-hfo2-tin.png "Final Stack") +![Final Stack](/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-si-sio2-hfo2-tin.png "Final Stack") ## References diff --git a/mkdocs.yml b/mkdocs.yml index 0a00fdd7..cc6638f3 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -232,6 +232,7 @@ nav: - Interface between Graphene and hBN: tutorials/materials/specific/interface-2d-2d-graphene-boron-nitride.md - Interface between Copper and SiO2 (Cristobalite): tutorials/materials/specific/interface-3d-3d-copper-silicon-dioxide.md - Interface between Graphene and SiO2 (alpha-quartz): tutorials/materials/specific/interface-2d-3d-graphene-silicon-dioxide.md + - High-k Metal Gate Stack: tutorials/materials/specific/heterostructure-high-k-metal-gate-stack.md # COMMON UI COMPONENTS - Interface Components: From 8083f99ccd226730a0bf3cd758a897a4d723af11 Mon Sep 17 00:00:00 2001 From: VsevolodX <79542055+VsevolodX@users.noreply.github.com> Date: Thu, 26 Dec 2024 13:17:24 -0800 Subject: [PATCH 05/11] update: add images --- .../import-standata.webp | 3 +++ .../jl-setup-notebook-si-sio2-hfo2.webp | 3 +++ .../jl-setup-notebook-si-sio2.webp | 3 +++ .../wave-result-hfo2-slab-wave.webp | 3 +++ .../wave-result-si-sio2-hfo2-tin.webp | 3 +++ .../wave-result-si-sio2-hfo2.webp | 3 +++ .../wave-result-si-sio2.webp | 3 +++ .../wave-result-tin-slab.webp | 3 +++ .../heterostructure-high-k-metal-gate-stack.md | 14 +++++++------- 9 files changed, 31 insertions(+), 7 deletions(-) create mode 100644 images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/import-standata.webp create mode 100644 images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/jl-setup-notebook-si-sio2-hfo2.webp create mode 100644 images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/jl-setup-notebook-si-sio2.webp create mode 100644 images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-hfo2-slab-wave.webp create mode 100644 images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-si-sio2-hfo2-tin.webp create mode 100644 images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-si-sio2-hfo2.webp create mode 100644 images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-si-sio2.webp create mode 100644 images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-tin-slab.webp diff --git a/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/import-standata.webp b/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/import-standata.webp new file mode 100644 index 00000000..a298684f --- /dev/null +++ b/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/import-standata.webp @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:bb90a8f4943f6dd344ce96c4a8e54784baafd5f7610d97523e792eab57c7ff10 +size 16862 diff --git a/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/jl-setup-notebook-si-sio2-hfo2.webp b/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/jl-setup-notebook-si-sio2-hfo2.webp new file mode 100644 index 00000000..f7cc6d20 --- /dev/null +++ b/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/jl-setup-notebook-si-sio2-hfo2.webp @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:720eaa01f5784a0c82ec04e6efc1ab744e46a5ea2c8932321cc7a34cd8634ca8 +size 82860 diff --git a/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/jl-setup-notebook-si-sio2.webp b/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/jl-setup-notebook-si-sio2.webp new file mode 100644 index 00000000..1c0ee291 --- /dev/null +++ b/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/jl-setup-notebook-si-sio2.webp @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:008c906434c0d009def475af1b3a6b2ea4bafb1c6d5981350cec26c0ab46fd01 +size 82388 diff --git a/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-hfo2-slab-wave.webp b/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-hfo2-slab-wave.webp new file mode 100644 index 00000000..f951edea --- /dev/null +++ b/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-hfo2-slab-wave.webp @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3a063176f63f669de07943877fc3dc4611b57b3be1c82de977cc11e0b019e937 +size 64904 diff --git a/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-si-sio2-hfo2-tin.webp b/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-si-sio2-hfo2-tin.webp new file mode 100644 index 00000000..0f4dad93 --- /dev/null +++ b/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-si-sio2-hfo2-tin.webp @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4ba7f96e40b7c72ee7b87d0fcfeaacb8ef9b7513e2b7d54db7cdf2b36922d3da +size 21586 diff --git a/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-si-sio2-hfo2.webp b/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-si-sio2-hfo2.webp new file mode 100644 index 00000000..4693b6d4 --- /dev/null +++ b/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-si-sio2-hfo2.webp @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e803177653feab3cf31ecbd1a6dd97675cdbe05d8a4969462726a26458094fe6 +size 76972 diff --git a/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-si-sio2.webp b/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-si-sio2.webp new file mode 100644 index 00000000..0dd47dd7 --- /dev/null +++ b/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-si-sio2.webp @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9562aaa9ba42b4ebf798b7383a62cc8475525139f0a075f1c8c24f9de6f3b6af +size 75426 diff --git a/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-tin-slab.webp b/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-tin-slab.webp new file mode 100644 index 00000000..827760e8 --- /dev/null +++ b/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-tin-slab.webp @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:12ba1e82c2e3adda5ed90b7d667c133ac5bb2481f34515c241daf1b8ff49db62 +size 50316 diff --git a/lang/en/docs/tutorials/materials/specific/heterostructure-high-k-metal-gate-stack.md b/lang/en/docs/tutorials/materials/specific/heterostructure-high-k-metal-gate-stack.md index 5db94c1a..0be3233c 100644 --- a/lang/en/docs/tutorials/materials/specific/heterostructure-high-k-metal-gate-stack.md +++ b/lang/en/docs/tutorials/materials/specific/heterostructure-high-k-metal-gate-stack.md @@ -17,7 +17,7 @@ First, navigate to Materials Designer and import from [Standata](../../../materi - Hafnium dioxide (HfO2) - Titanium nitride (TiN) -![Standata Import](/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/import-standata.png "Standata Import") +![Standata Import](/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/import-standata.webp "Standata Import") ## 2. Create HfO2 and TiN Slabs @@ -44,7 +44,7 @@ TERMINATION_INDEX = 0 Run the notebook to create the HfO2 slab and pass it to Materials Designer. -![HfO2 slab](/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-hfo2-slab-wave.png "HfO2 slab") +![HfO2 slab](/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-hfo2-slab-wave.webp "HfO2 slab") ### 2.2. Create TiN Slab @@ -64,7 +64,7 @@ TERMINATION_INDEX = 0 Run the notebook to create and pass the TiN slab to Materials Designer. -![TiN slab](/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-tin-slab.png "TiN slab") +![TiN slab](/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-tin-slab.webp "TiN slab") ## 3. Create Si/SiO2 Interface @@ -99,7 +99,7 @@ TERMINATION_PAIR_INDEX = 0 We set a higher tolerances to achieve smaller cell with higher strain of the film (SiO2). -![Interface Setup](/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/jl-setup-notebook-si-sio2.png "Interface Setup") +![Interface Setup](/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/jl-setup-notebook-si-sio2.webp "Interface Setup") ### 3.2. Create Initial Interface @@ -128,13 +128,13 @@ INTERFACE_VACUUM = 0.5 # Angstroms Film is the material that will be strained (scaled) to match the substrate. -![HfO2 Interface Setup](/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/jl-setup-notebook-si-sio2-hfo2.png "HfO2 Interface Setup") +![HfO2 Interface Setup](/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/jl-setup-notebook-si-sio2-hfo2.webp "HfO2 Interface Setup") ### 4.2. Add HfO2 Run the notebook to add the pre-created HfO2 slab to the Si/SiO2 structure. -![Si/SiO2/HfO2](/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-si-sio2-hfo2.png "Si/SiO2/HfO2") +![Si/SiO2/HfO2](/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-si-sio2-hfo2.webp "Si/SiO2/HfO2") ## 5. Add TiN Layer @@ -161,7 +161,7 @@ INTERFACE_VACUUM = 10.0 # Final vacuum spacing Run the notebook to add the TiN layer and complete the stack. -![Final Stack](/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-si-sio2-hfo2-tin.png "Final Stack") +![Final Stack](/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-si-sio2-hfo2-tin.webp "Final Stack") ## References From 33623fafefec7a5ec0e1e9f81bd141c6432a60ab Mon Sep 17 00:00:00 2001 From: VsevolodX <79542055+VsevolodX@users.noreply.github.com> Date: Thu, 26 Dec 2024 13:20:16 -0800 Subject: [PATCH 06/11] update: add original image --- .../original-figure.webp | 3 +++ .../specific/heterostructure-high-k-metal-gate-stack.md | 4 +++- 2 files changed, 6 insertions(+), 1 deletion(-) create mode 100644 images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/original-figure.webp diff --git a/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/original-figure.webp b/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/original-figure.webp new file mode 100644 index 00000000..b14cb116 --- /dev/null +++ b/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/original-figure.webp @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:cfe23549c6b78fdde33983be0e800e3a107acacaf4dc958fba5a78e40d808625 +size 99962 diff --git a/lang/en/docs/tutorials/materials/specific/heterostructure-high-k-metal-gate-stack.md b/lang/en/docs/tutorials/materials/specific/heterostructure-high-k-metal-gate-stack.md index 0be3233c..9073d928 100644 --- a/lang/en/docs/tutorials/materials/specific/heterostructure-high-k-metal-gate-stack.md +++ b/lang/en/docs/tutorials/materials/specific/heterostructure-high-k-metal-gate-stack.md @@ -7,7 +7,9 @@ This tutorial demonstrates how to create a high-k metal gate stack heterostructu 2. Building the Si/SiO2 interface using strain matching 3. Adding the pre-created slabs sequentially using simple interface builder -We use the [Materials Designer](../../../materials-designer/overview.md) to create the high-k metal gate stack. +We use the [Materials Designer](../../../materials-designer/overview.md) to create the high-k metal gate stack as shown in the figure below. + +![High-k Metal Gate Stack](/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/original-figure.webp "High-k Metal Gate Stack") ## 1. Set Up Materials From a457c313e2b41a18c3623738f98f3c5ac881d451 Mon Sep 17 00:00:00 2001 From: VsevolodX <79542055+VsevolodX@users.noreply.github.com> Date: Thu, 26 Dec 2024 13:23:40 -0800 Subject: [PATCH 07/11] update: add interactive notebook --- .../heterostructure-high-k-metal-gate-stack.md | 13 +++++++++++++ 1 file changed, 13 insertions(+) diff --git a/lang/en/docs/tutorials/materials/specific/heterostructure-high-k-metal-gate-stack.md b/lang/en/docs/tutorials/materials/specific/heterostructure-high-k-metal-gate-stack.md index 9073d928..956b58e0 100644 --- a/lang/en/docs/tutorials/materials/specific/heterostructure-high-k-metal-gate-stack.md +++ b/lang/en/docs/tutorials/materials/specific/heterostructure-high-k-metal-gate-stack.md @@ -165,6 +165,19 @@ Run the notebook to add the TiN layer and complete the stack. ![Final Stack](/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-si-sio2-hfo2-tin.webp "Final Stack") +The user then can [save or download](../../../materials-designer/header-menu/input-output.md) the material in Material JSON format or POSCAR format. + +## Interactive JupyterLite Notebook + +The following JupyterLite notebook demonstrates the process of creating material with island. Select "Run" > "Run All Cells". + +{% with origin_url=config.extra.jupyterlite.origin_url %} +{% with notebooks_path_root=config.extra.jupyterlite.notebooks_path_root %} +{% with notebook_name='specific_examples/heterostructure_high_k_metal_gate_stack.ipynb' %} +{% include 'jupyterlite_embed.html' %} +{% endwith %} +{% endwith %} +{% endwith %} ## References From 630836ffdb113e78142ec0e18f7f198b7260289a Mon Sep 17 00:00:00 2001 From: VsevolodX <79542055+VsevolodX@users.noreply.github.com> Date: Fri, 27 Dec 2024 12:24:10 -0800 Subject: [PATCH 08/11] update: add material to name --- ...icon-dioxide-hafnium-dioxide-titanium-nitride.md} | 12 ++++++++++-- mkdocs.yml | 2 +- 2 files changed, 11 insertions(+), 3 deletions(-) rename lang/en/docs/tutorials/materials/specific/{heterostructure-high-k-metal-gate-stack.md => heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride.md} (97%) diff --git a/lang/en/docs/tutorials/materials/specific/heterostructure-high-k-metal-gate-stack.md b/lang/en/docs/tutorials/materials/specific/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride.md similarity index 97% rename from lang/en/docs/tutorials/materials/specific/heterostructure-high-k-metal-gate-stack.md rename to lang/en/docs/tutorials/materials/specific/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride.md index 956b58e0..99e0ff0f 100644 --- a/lang/en/docs/tutorials/materials/specific/heterostructure-high-k-metal-gate-stack.md +++ b/lang/en/docs/tutorials/materials/specific/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride.md @@ -1,3 +1,8 @@ +--- +# YAML header +render_macros: true +--- + # Creating High-k Metal Gate Stack: Si/SiO2/HfO2/TiN ## Introduction @@ -14,6 +19,7 @@ We use the [Materials Designer](../../../materials-designer/overview.md) to crea ## 1. Set Up Materials First, navigate to Materials Designer and import from [Standata](../../../materials-designer/header-menu/input-output/standata-import.md) the following materials: + - Silicon (Si) - Silicon dioxide (SiO2) - Hafnium dioxide (HfO2) @@ -181,12 +187,14 @@ The following JupyterLite notebook demonstrates the process of creating material ## References -1. **D. A. Muller et al.** +1. [QuantumATK tutorial](https://docs.quantumatk.com/tutorials/hkmg_builder/hkmg_builder.html) + +2. **D. A. Muller et al.** "The electronic structure at the atomic scale of ultrathin gate oxides" Nature 399, 758–761 (1999) [DOI: 10.1038/21602](https://doi.org/10.1038/21602) -2. **J. Robertson** +3. **J. Robertson** "High dielectric constant gate oxides for metal oxide Si transistors" Reports on Progress in Physics 69, 327 (2006) [DOI: 10.1088/0034-4885/69/2/R02](https://doi.org/10.1088/0034-4885/69/2/R02) diff --git a/mkdocs.yml b/mkdocs.yml index cc6638f3..5159fdeb 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -232,7 +232,7 @@ nav: - Interface between Graphene and hBN: tutorials/materials/specific/interface-2d-2d-graphene-boron-nitride.md - Interface between Copper and SiO2 (Cristobalite): tutorials/materials/specific/interface-3d-3d-copper-silicon-dioxide.md - Interface between Graphene and SiO2 (alpha-quartz): tutorials/materials/specific/interface-2d-3d-graphene-silicon-dioxide.md - - High-k Metal Gate Stack: tutorials/materials/specific/heterostructure-high-k-metal-gate-stack.md + - High-k Metal Gate Stack (Si/SiO2/HfO2/TiN): tutorials/materials/specific/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride.md # COMMON UI COMPONENTS - Interface Components: From fcb050102217d66580231a68eb1030f692cf7614 Mon Sep 17 00:00:00 2001 From: VsevolodX <79542055+VsevolodX@users.noreply.github.com> Date: Fri, 27 Dec 2024 12:28:56 -0800 Subject: [PATCH 09/11] update: address pr comments --- ...icon-silicon-dioxide-hafnium-dioxide-titanium-nitride.md | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/lang/en/docs/tutorials/materials/specific/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride.md b/lang/en/docs/tutorials/materials/specific/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride.md index 99e0ff0f..972380d9 100644 --- a/lang/en/docs/tutorials/materials/specific/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride.md +++ b/lang/en/docs/tutorials/materials/specific/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride.md @@ -8,6 +8,7 @@ render_macros: true ## Introduction This tutorial demonstrates how to create a high-k metal gate stack heterostructure consisting of four materials: Si (substrate), SiO2 (gate oxide), HfO2 (high-k dielectric), and TiN (metal gate). The process involves: + 1. Creating individual slabs for HfO2 and TiN 2. Building the Si/SiO2 interface using strain matching 3. Adding the pre-created slabs sequentially using simple interface builder @@ -175,7 +176,7 @@ The user then can [save or download](../../../materials-designer/header-menu/inp ## Interactive JupyterLite Notebook -The following JupyterLite notebook demonstrates the process of creating material with island. Select "Run" > "Run All Cells". +The following JupyterLite notebook demonstrates the process of creating target material. Select "Run" > "Run All Cells". {% with origin_url=config.extra.jupyterlite.origin_url %} {% with notebooks_path_root=config.extra.jupyterlite.notebooks_path_root %} @@ -201,4 +202,5 @@ The following JupyterLite notebook demonstrates the process of creating material ## Tags -`slab-creation`, `interfaces`, `high-k`, `metal-gate`, `semiconductor`, `heterostructure`, `strain-matching` \ No newline at end of file +`slab-creation`, `interfaces`, `high-k`, `metal-gate`, `semiconductor`, `heterostructure`, `strain-matching`, `Si`, `SiO2`, `HfO2`, `TiN` +``` \ No newline at end of file From 87c80b305f9462d37f127b32848f702fdf7b43e6 Mon Sep 17 00:00:00 2001 From: VsevolodX <79542055+VsevolodX@users.noreply.github.com> Date: Fri, 27 Dec 2024 12:47:57 -0800 Subject: [PATCH 10/11] update: rename --- .../import-standata.webp | 0 .../jl-setup-notebook-si-sio2-hfo2.webp | 0 .../jl-setup-notebook-si-sio2.webp | 0 .../original-figure.webp | 0 .../wave-result-hfo2-slab-wave.webp | 0 .../wave-result-si-sio2-hfo2-tin.webp | 0 .../wave-result-si-sio2-hfo2.webp | 0 .../wave-result-si-sio2.webp | 0 .../wave-result-tin-slab.webp | 0 ...n-dioxide-hafnium-dioxide-titanium-nitride.md | 16 ++++++++-------- 10 files changed, 8 insertions(+), 8 deletions(-) rename images/tutorials/materials/heterostructures/{heterostructure-high-k-metal-gate-stack => heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride}/import-standata.webp (100%) rename images/tutorials/materials/heterostructures/{heterostructure-high-k-metal-gate-stack => heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride}/jl-setup-notebook-si-sio2-hfo2.webp (100%) rename images/tutorials/materials/heterostructures/{heterostructure-high-k-metal-gate-stack => heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride}/jl-setup-notebook-si-sio2.webp (100%) rename images/tutorials/materials/heterostructures/{heterostructure-high-k-metal-gate-stack => heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride}/original-figure.webp (100%) rename images/tutorials/materials/heterostructures/{heterostructure-high-k-metal-gate-stack => heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride}/wave-result-hfo2-slab-wave.webp (100%) rename images/tutorials/materials/heterostructures/{heterostructure-high-k-metal-gate-stack => heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride}/wave-result-si-sio2-hfo2-tin.webp (100%) rename images/tutorials/materials/heterostructures/{heterostructure-high-k-metal-gate-stack => heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride}/wave-result-si-sio2-hfo2.webp (100%) rename images/tutorials/materials/heterostructures/{heterostructure-high-k-metal-gate-stack => heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride}/wave-result-si-sio2.webp (100%) rename images/tutorials/materials/heterostructures/{heterostructure-high-k-metal-gate-stack => heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride}/wave-result-tin-slab.webp (100%) diff --git a/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/import-standata.webp b/images/tutorials/materials/heterostructures/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride/import-standata.webp similarity index 100% rename from images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/import-standata.webp rename to images/tutorials/materials/heterostructures/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride/import-standata.webp diff --git a/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/jl-setup-notebook-si-sio2-hfo2.webp b/images/tutorials/materials/heterostructures/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride/jl-setup-notebook-si-sio2-hfo2.webp similarity index 100% rename from images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/jl-setup-notebook-si-sio2-hfo2.webp rename to images/tutorials/materials/heterostructures/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride/jl-setup-notebook-si-sio2-hfo2.webp diff --git a/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/jl-setup-notebook-si-sio2.webp b/images/tutorials/materials/heterostructures/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride/jl-setup-notebook-si-sio2.webp similarity index 100% rename from images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/jl-setup-notebook-si-sio2.webp rename to images/tutorials/materials/heterostructures/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride/jl-setup-notebook-si-sio2.webp diff --git a/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/original-figure.webp b/images/tutorials/materials/heterostructures/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride/original-figure.webp similarity index 100% rename from images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/original-figure.webp rename to images/tutorials/materials/heterostructures/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride/original-figure.webp diff --git a/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-hfo2-slab-wave.webp b/images/tutorials/materials/heterostructures/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride/wave-result-hfo2-slab-wave.webp similarity index 100% rename from images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-hfo2-slab-wave.webp rename to images/tutorials/materials/heterostructures/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride/wave-result-hfo2-slab-wave.webp diff --git a/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-si-sio2-hfo2-tin.webp b/images/tutorials/materials/heterostructures/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride/wave-result-si-sio2-hfo2-tin.webp similarity index 100% rename from images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-si-sio2-hfo2-tin.webp rename to images/tutorials/materials/heterostructures/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride/wave-result-si-sio2-hfo2-tin.webp diff --git a/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-si-sio2-hfo2.webp b/images/tutorials/materials/heterostructures/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride/wave-result-si-sio2-hfo2.webp similarity index 100% rename from images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-si-sio2-hfo2.webp rename to images/tutorials/materials/heterostructures/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride/wave-result-si-sio2-hfo2.webp diff --git a/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-si-sio2.webp b/images/tutorials/materials/heterostructures/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride/wave-result-si-sio2.webp similarity index 100% rename from images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-si-sio2.webp rename to images/tutorials/materials/heterostructures/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride/wave-result-si-sio2.webp diff --git a/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-tin-slab.webp b/images/tutorials/materials/heterostructures/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride/wave-result-tin-slab.webp similarity index 100% rename from images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-tin-slab.webp rename to images/tutorials/materials/heterostructures/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride/wave-result-tin-slab.webp diff --git a/lang/en/docs/tutorials/materials/specific/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride.md b/lang/en/docs/tutorials/materials/specific/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride.md index 972380d9..8df71b3b 100644 --- a/lang/en/docs/tutorials/materials/specific/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride.md +++ b/lang/en/docs/tutorials/materials/specific/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride.md @@ -15,7 +15,7 @@ This tutorial demonstrates how to create a high-k metal gate stack heterostructu We use the [Materials Designer](../../../materials-designer/overview.md) to create the high-k metal gate stack as shown in the figure below. -![High-k Metal Gate Stack](/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/original-figure.webp "High-k Metal Gate Stack") +![High-k Metal Gate Stack](/images/tutorials/materials/heterostructures/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride/original-figure.webp "High-k Metal Gate Stack") ## 1. Set Up Materials @@ -26,7 +26,7 @@ First, navigate to Materials Designer and import from [Standata](../../../materi - Hafnium dioxide (HfO2) - Titanium nitride (TiN) -![Standata Import](/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/import-standata.webp "Standata Import") +![Standata Import](/images/tutorials/materials/heterostructures/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride/import-standata.webp "Standata Import") ## 2. Create HfO2 and TiN Slabs @@ -53,7 +53,7 @@ TERMINATION_INDEX = 0 Run the notebook to create the HfO2 slab and pass it to Materials Designer. -![HfO2 slab](/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-hfo2-slab-wave.webp "HfO2 slab") +![HfO2 slab](/images/tutorials/materials/heterostructures/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride/wave-result-hfo2-slab-wave.webp "HfO2 slab") ### 2.2. Create TiN Slab @@ -73,7 +73,7 @@ TERMINATION_INDEX = 0 Run the notebook to create and pass the TiN slab to Materials Designer. -![TiN slab](/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-tin-slab.webp "TiN slab") +![TiN slab](/images/tutorials/materials/heterostructures/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride/wave-result-tin-slab.webp "TiN slab") ## 3. Create Si/SiO2 Interface @@ -108,7 +108,7 @@ TERMINATION_PAIR_INDEX = 0 We set a higher tolerances to achieve smaller cell with higher strain of the film (SiO2). -![Interface Setup](/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/jl-setup-notebook-si-sio2.webp "Interface Setup") +![Interface Setup](/images/tutorials/materials/heterostructures/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride/jl-setup-notebook-si-sio2.webp "Interface Setup") ### 3.2. Create Initial Interface @@ -137,13 +137,13 @@ INTERFACE_VACUUM = 0.5 # Angstroms Film is the material that will be strained (scaled) to match the substrate. -![HfO2 Interface Setup](/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/jl-setup-notebook-si-sio2-hfo2.webp "HfO2 Interface Setup") +![HfO2 Interface Setup](/images/tutorials/materials/heterostructures/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride/jl-setup-notebook-si-sio2-hfo2.webp "HfO2 Interface Setup") ### 4.2. Add HfO2 Run the notebook to add the pre-created HfO2 slab to the Si/SiO2 structure. -![Si/SiO2/HfO2](/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-si-sio2-hfo2.webp "Si/SiO2/HfO2") +![Si/SiO2/HfO2](/images/tutorials/materials/heterostructures/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride/wave-result-si-sio2-hfo2.webp "Si/SiO2/HfO2") ## 5. Add TiN Layer @@ -170,7 +170,7 @@ INTERFACE_VACUUM = 10.0 # Final vacuum spacing Run the notebook to add the TiN layer and complete the stack. -![Final Stack](/images/tutorials/materials/heterostructures/heterostructure-high-k-metal-gate-stack/wave-result-si-sio2-hfo2-tin.webp "Final Stack") +![Final Stack](/images/tutorials/materials/heterostructures/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride/wave-result-si-sio2-hfo2-tin.webp "Final Stack") The user then can [save or download](../../../materials-designer/header-menu/input-output.md) the material in Material JSON format or POSCAR format. From cb726aafae739d8ebe6f374908703007b07ab4ce Mon Sep 17 00:00:00 2001 From: VsevolodX <79542055+VsevolodX@users.noreply.github.com> Date: Fri, 27 Dec 2024 12:52:13 -0800 Subject: [PATCH 11/11] chore: cleanup: --- ...e-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride.md | 1 - 1 file changed, 1 deletion(-) diff --git a/lang/en/docs/tutorials/materials/specific/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride.md b/lang/en/docs/tutorials/materials/specific/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride.md index 8df71b3b..5c3c1e23 100644 --- a/lang/en/docs/tutorials/materials/specific/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride.md +++ b/lang/en/docs/tutorials/materials/specific/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride.md @@ -203,4 +203,3 @@ The following JupyterLite notebook demonstrates the process of creating target m ## Tags `slab-creation`, `interfaces`, `high-k`, `metal-gate`, `semiconductor`, `heterostructure`, `strain-matching`, `Si`, `SiO2`, `HfO2`, `TiN` -``` \ No newline at end of file