QUADRILATERALS - CHAPTER 10

EXERCISE 10A

Answer 1:

Given: Three angles of a quadrilateral are $75^{\circ}, 90^{\circ}$ and 75°.
Let the fourth angle be y.
Using angle sum property of quadrilateral, $75^{\circ}+90^{\circ}+75^{\circ}+y=360^{\circ}$
$\Rightarrow 240^{\circ}+\mathrm{y}=360^{\circ}$
$\Rightarrow y=360^{\circ}-240^{\circ}$
$\Rightarrow y=120^{\circ}$
So, the measure of the fourth angle is 120°

Answer 2:

Let $\angle \mathrm{A}=2 \mathrm{y}^{\circ}$.
Then $\angle \mathrm{B}=(4 \mathrm{y})^{\circ} ; \angle \mathrm{C}=(5 \mathrm{y})^{\circ}$ and $\angle \mathrm{D}=(7 \mathrm{y})^{\circ}$
Since the sum of the angles of a quadrilateral is 360°, as ,
$2 y+4 y+5 y+7 y=360^{\circ}$
$\Rightarrow 18 \mathrm{y}=360^{\circ}$
$\Rightarrow \mathrm{y}=20^{\circ}$
$\therefore \angle \mathrm{A}=40^{\circ} ; \angle \mathrm{B}=80^{\circ} ; \angle \mathrm{C}=100^{\circ} ; \angle \mathrm{D}=140^{\circ}$

Answer 3:

Given, $\mathrm{AB}|\mid \mathrm{DC}$. As we know that the interior angles on the same side of transversal line, then $\angle A=55^{\circ}$ and $\angle B=70^{\circ}$

$$
\begin{aligned}
& \angle A+\angle D=180^{\circ} \\
& \Rightarrow \angle D=180^{\circ}-\angle A=180^{\circ}-55^{\circ}=125^{\circ}
\end{aligned}
$$

Also, $\angle B+\angle C=180^{\circ}$
$\Rightarrow \angle \mathrm{C}=180^{\circ}-\angle \mathrm{B}=180^{\circ}-70^{\circ}=110^{\circ}$

Answer 4:

Given: ABCD is a square in which $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA} . \triangle \mathrm{EDC}$ is an equilateral triangle in which $\mathrm{ED}=\mathrm{EC}=\mathrm{DC}$ and $\angle \mathrm{EDC}=\angle \mathrm{DEC}=\angle \mathrm{DCE}=60^{\circ}$.
To prove: $\mathrm{AE}=\mathrm{BE}$ and $\angle \mathrm{DAE}=15^{\circ}$
Proof: In $\triangle \mathrm{ADE}$ and $\triangle \mathrm{BCE}$, as ,
$A D=B C \quad$ [Sides of a square]
$\mathrm{DE}=\mathrm{EC} \quad$ [Sides of an equilateral triangle]
$\angle A D E=\angle B C E=90^{\circ}+60^{\circ}=150^{\circ}$
$\therefore \triangle \mathrm{ADE} \cong \triangle \mathrm{BCE}$
i.e., $\mathrm{AE}=\mathrm{BE}$

Now, $\angle \mathrm{ADE}=150^{\circ}$
$\mathrm{DA}=\mathrm{DC} \quad$ [Sides of a square]
$\mathrm{DC}=\mathrm{DE} \quad$ [Sides of an equilateral triangle]
So, DA = DE
$\triangle \mathrm{ADE}$ and $\triangle \mathrm{BCE}$ are isosceles triangles.
i.e., $\angle \mathrm{DAE}=\angle \mathrm{DEA}=\frac{1}{2}\left(180^{\circ}-150^{\circ}\right)=\frac{30}{2}=15^{\circ}$

Answer 5:

Given: by fig, both the diagonals intersect at 0 and $\mathrm{BM} \perp \mathrm{AC}$ then
Let the diagonals intersect each other at 0
Now, in $\triangle O N D$ and $\triangle O M B$,
$\angle O N D=\angle O M B$
(90° each)
$\angle D O N=\angle B O M \quad$ (Vertically opposite angles)

Also, DN = BM
(Given)
As we know that by parallelogram
$\triangle \mathrm{OND} \cong \triangle \mathrm{OMB}$
$\therefore O D=O B \quad$ HENCE PROVED
Hence, AC bisects BD.

Answer 6:

Given: ABCD is a quadrilateral in which $\mathrm{AB}=\mathrm{AD}$ and $\mathrm{BC}=\mathrm{DC}$
(i) To prove: AC bisects $\angle \mathrm{A}$ and $\angle \mathrm{C}$

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADC}$,
$A B=A D$
$\mathrm{BC}=\mathrm{DC}$
AC is common in both the traiangles.
i.e., $\triangle \mathrm{ABC} \cong \triangle \mathrm{ADC}$
(SSS congruence rule)
$\therefore \angle \mathrm{BAC}=\angle \mathrm{DAC}$ and $\angle \mathrm{BCA}=\angle \mathrm{DCA} \quad($ By CPCT $)$
Hence proved, $A C$ bisects both the angles, $\angle A$ and $\angle C$.
(ii) To prove $\mathrm{BE}=\mathrm{DE}$

In $\triangle \mathrm{ABE}$ and $\triangle \mathrm{ADE}$,
$\mathrm{AB}=\mathrm{AD}$
S $\angle \mathrm{BAE}=\angle \mathrm{DAE}$
AE is common.
$\therefore \triangle \mathrm{ABE} \cong \triangle \mathrm{ADE}$
(SAS congruence rule)
\Rightarrow hence proved $\mathrm{BE}=\mathrm{DE}$
(iii) To prove: $\angle \mathrm{ABC}=\angle \mathrm{ADC}$
$\triangle \mathrm{ABC} \cong \triangle \mathrm{ADC} \quad$ (Given)
Hence proved, $\angle \mathrm{ABC}=\angle \mathrm{ADC}$

Answer 7:

Given: ABCD is a square and $\angle \mathrm{PQR}=90^{\circ}$.

$$
\mathrm{PB}=\mathrm{QC}=\mathrm{DR}
$$

(i) To prove: $\mathrm{QB}=\mathrm{DR}$
$\therefore \mathrm{BC}=\mathrm{CD} \quad$ (Sides of square) and $\mathrm{CQ}=\mathrm{DR} \quad$ (Given)
so , by fig $B C=B Q+C Q$
$\Rightarrow \mathrm{CQ}=\mathrm{BC}-\mathrm{BQ}$
$\therefore \mathrm{DR}=\mathrm{BC}-\mathrm{BQ}$
Also, $\mathrm{CD}=\mathrm{RC}+\mathrm{DR}$
$\therefore \mathrm{DR}=\mathrm{CD}-\mathrm{RC}=\mathrm{BC}-\mathrm{RC}$
From (i) and (ii), we get
$B C-B Q=B C-R C$
$\therefore \mathrm{BQ}=\mathrm{RC}$
(ii) To prove, $\mathrm{PQ}=\mathrm{QR}$

In $\triangle R C Q$ and $\Delta Q B P$,
$\mathrm{PB}=\mathrm{QC}$ (Given)
$B Q=R C$ (Given)
$\angle \mathrm{RCQ}=\angle \mathrm{QBP}$ (90° each)
By parallelogram theorem
$\Delta \mathrm{RCQ} \cong \Delta \mathrm{QBP} \quad$ (SAS congruence rule)
$\therefore \mathrm{QR}=\mathrm{PQ} \quad$ hence proved
(iii) To prove, $\angle \mathrm{QPR}=45^{\circ}$
$\Delta \mathrm{RCQ} \cong \Delta \mathrm{QBP}$ and $\mathrm{QR}=\mathrm{PQ}$
\therefore In $\triangle \mathrm{RPQ}, \angle \mathrm{QPR}=\angle \mathrm{QRP}=\frac{1}{2}\left(180^{\circ}-90^{\circ}\right)=\frac{90}{2}=45^{\circ}$
Hence proved, $\angle Q P R=45^{\circ}$

Answer 8:

Let $A B C D$ be a quadrilateral with diagonals $A C$ and $B D$ and O is a point within the quadrilateral.

Suppose
In $\triangle \mathrm{AOC}, \mathrm{OA}+\mathrm{OC}>A C$ \qquad
And, in $\triangle \mathrm{BOD}, \mathrm{OB}+\mathrm{OD}>B D$
Adding these,
$(O A+O C)+(O B+O D)>(A C+B D)$
$\Rightarrow \mathrm{OA}+\mathrm{OB}+\mathrm{OC}+\mathrm{OD}>\mathrm{AC}+\mathrm{BD}$

Answer 9:

Given: ABCD is a quadrilateral and AC is its diagonal.
(i) As sum of any two sides of any triangle is greater than the third side.

In $\triangle \mathrm{ABC}, \mathrm{AB}+\mathrm{BC}>A C$
In $\triangle \mathrm{ACD}, \mathrm{CD}+\mathrm{DA}>A C$
Adding (1) and (2),
$\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}>2 \mathrm{AC}$....................hence proved
(ii) In $\triangle A B C$,

$$
\begin{equation*}
\mathrm{AB}+\mathrm{BC}>A C \tag{1}
\end{equation*}
$$

In $\triangle \mathrm{ACD}$,
$\mathrm{AC}>|\mathrm{DA}-\mathrm{CD}|$
From (1) and (2),

$$
\begin{aligned}
& \mathrm{AB}+\mathrm{BC}>|\mathrm{DA}-\mathrm{CD}| \\
& \Rightarrow \mathrm{AB}+\mathrm{BC}+\mathrm{CD}>\mathrm{DA} .
\end{aligned}
$$

\qquad hence proved
(iii) In $\triangle \mathrm{ABC}$, we know that $\mathrm{AB}+\mathrm{BC}>A C$

Same as, \quad In $\triangle A C D, C D+D A>A C$
And
In $\triangle \mathrm{BCD}$,
$\mathrm{BC}+\mathrm{CD}>\mathrm{BD}$
In $\triangle \mathrm{ABD}$,
$\mathrm{DA}+\mathrm{AB}>\mathrm{BD}$
Adding these ,
$2(\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA})>2(A C+B D)$
$\Rightarrow(\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA})>(A C+B D)$

Vedantu

Answer 10:

Let PQRS be a quadrilateral and $\angle 1, \angle 2, \angle 3$ and $\angle 4$ are its four angles .
Join $Q R$ which divides $P Q R S$ in two triangles, $\triangle P Q R$ and $\triangle Q R S$.
In $\triangle \mathrm{PQR}$,
$\angle 1+\angle 2+\angle P=180^{\circ}$
In $\triangle Q R S$,
$\angle 3+\angle 4+\angle R=180^{\circ}$
On adding (i) and (ii),
$(\angle 1+\angle 3)+\angle \mathrm{P}+\angle \mathrm{R}+(\angle 4+\angle 2)=360^{\circ}$
$\Rightarrow \angle \mathrm{P}+\angle \mathrm{R}+\angle \mathrm{Q}+\angle \mathrm{S}=360^{\circ} \quad \therefore \angle 1+\angle 3=\angle Q ; \angle 4+\angle 2=\angle S$
Hence proved
$\therefore \angle P+\angle R+\angle Q+\angle S=360^{\circ}$

EXERCISE 10B

Answer 1:

Given, ABCD is parallelogram and $\angle A=72^{\circ}$.
Then, as we know that opposite angles are equals.
$\therefore \angle A=\angle C$ and $\angle B=\angle D$
$\therefore \angle C=72^{\circ}$
$\angle \mathrm{A}$ and $\angle \mathrm{B}$ are the adjacent angles.
as, $\angle A+\angle B=180^{\circ}$
$\Rightarrow \angle B=180^{\circ}-\angle A=180^{\circ}-72^{\circ}=108^{\circ}$
As above, $\angle B=\angle D=108^{\circ}$
Hence, $\angle \mathrm{B}=\angle \mathrm{D}=108^{\circ}$ and $\angle \mathrm{C}=72^{\circ}$

Answer 2:

Given: ABCD is parallelogram and $\angle D A B=80^{\circ}$ and $\angle D B C=60^{\circ}$
To find: Measure of $\angle C D B$ and $\angle A D B$
In parallelogram $A B C D, A D| | B C$
$\therefore \angle D B C=\angle A D B=60^{\circ}$ (Alternate interior angles)
As $\angle \mathrm{DAB}$ and $\angle \mathrm{ADC}$ are the adjacent angles,
$\angle D A B+\angle A D C=180^{\circ}$
$\therefore \angle A D C=180^{\circ}-\angle D A B=180^{\circ}-80^{\circ}=100^{\circ}$
Also, $\angle A D C=\angle A D B+\angle C D B$
$\therefore \angle A D C=100^{\circ}$
Then,
$\Rightarrow \angle A D B+\angle C D B=100$
From (i) and (ii),
$60^{\circ}+\angle C D B=100^{\circ}$
$\Rightarrow \angle C D B=100^{\circ}-60^{\circ}=40$
Hence, $\angle \mathrm{CDB}=40^{\circ}$ and $\angle \mathrm{ADB}=60^{\circ}$

Answer 3:

Given: parallelogram $A B C D, M$ is the midpoint of side $B C$ and $\angle B A M=\angle D A M$.
To prove: $\mathrm{AD}=2 \mathrm{CD}$
Proof:
Since, $\mathrm{AD} \| \mathrm{BC}$ and AM is the transversal.
So, $\angle D A M=\angle A M B \quad$ (Alternate interior angles)
But, $\angle D A M=\angle B A M$ (Given)
Thus, $\angle A M B=\angle B A M$
$\Rightarrow A B=B M$
As we know angles opposite to equals sides are equal and opposite sides of parallelogram are equal
Now, $A B=C D$
$\Rightarrow 2 A B=2 C D$

So, $\Rightarrow(A B+A B)=2 C D$
$\Rightarrow B M+M C=2 C D \quad(\mathrm{AB}=\mathrm{BM}$ and $\mathrm{MC}=\mathrm{BM})$
$\Rightarrow B C=2 C D$
$\therefore A D=2 C D \quad(\mathrm{AD}=\mathrm{BC})$ hence proved

Answer 4:

ABCD is a parallelogram.
$\therefore \angle \mathrm{A}=\angle \mathrm{C}$ and $\angle \mathrm{B}=\angle \mathrm{D}$ (Opposite angles)
And $\angle \mathrm{A}+\angle \mathrm{B}=180^{\circ} \quad$ (Adjacent angles are supplementary)
$\therefore \angle B=180^{\circ}-\angle A$
$\Rightarrow 180^{\circ}-60^{\circ}=120^{\circ} \quad\left(\angle A=60^{\circ}\right)$
$\therefore \angle \mathrm{A}=\angle \mathrm{C}=60^{\circ}$ and $\angle \mathrm{B}=\angle \mathrm{D}=120^{\circ}$
(i) In $\triangle \mathrm{APB}, \angle \mathrm{PAB}=\frac{60}{2}=30^{\circ}$
and $\angle \mathrm{PBA}=\frac{120}{2}=60^{\circ}$

$$
\therefore \angle \mathrm{APB}=180^{\circ}-\left(30^{\circ}+60^{\circ}\right)=90^{\circ}
$$

(ii) In $\triangle \mathrm{ADP}, \angle \mathrm{PAD}=30^{\circ}$ and $\angle \mathrm{ADP}=120^{\circ}$
$\therefore \angle \mathrm{APB}=180^{\circ}-\left(30^{\circ}+120^{\circ}\right)=30^{\circ}$
Thus, $\angle \mathrm{PAD}=\angle \mathrm{APB}=30^{\circ}$
Hence, $\triangle \mathrm{ADP}$ is an isosceles triangle and $\mathrm{AD}=\mathrm{DP}$.
In $\triangle \mathrm{PBC}, \angle \mathrm{PBC}=60^{\circ}, \angle \mathrm{BPC}=180^{\circ}-\left(90^{\circ}+30^{\circ}\right)=60^{\circ}$ and $\angle \mathrm{BCP}=60^{\circ}$
(Opposite angle of $\angle \mathrm{A}$)
$\therefore \angle \mathrm{PBC}=\angle \mathrm{BPC}=\angle \mathrm{BCP}$
Hence, $\triangle \mathrm{PBC}$ is an equilateral triangle and, therefore, $\mathrm{PB}=\mathrm{PC}=\mathrm{BC}$.
(iii) $\mathrm{DC}=\mathrm{DP}+\mathrm{PC}$

From (ii), as ,

$$
\begin{array}{ll}
\mathrm{DC}=\mathrm{AD}+\mathrm{BC} & {[\mathrm{AD}=\mathrm{BC}, \text { opposite sides of a parallelogram }]} \\
\Rightarrow \mathrm{DC}=\mathrm{AD}+\mathrm{AD} & \\
\Rightarrow \mathrm{DC}=2 \mathrm{AD} &
\end{array}
$$

Answer 5:

ABCD is a parallelogram.
$\therefore \mathrm{AB} \| \mathrm{DC}$ and $\mathrm{BC} \| \mathrm{AD}$
(i) In $\triangle \mathrm{AOB}, \angle B A O=35^{\circ}$,

As we know that, vertically opposite angles are equals
$\angle A O B=\angle C O D=105^{\circ}$
$\therefore \angle A B O=180^{\circ}-\left(35^{\circ}+105^{\circ}\right)=40^{\circ}$
(ii) As we know that these angles are $\angle \mathrm{ODC}$ and $\angle \mathrm{ABO}$ are alternate interior angles.
$\therefore \angle O D C=\angle A B O=40^{\circ}$
(iii) These are Alternate interior angles
$\angle A C B=\angle C A D=40^{\circ}$
(iv) In $\triangle A B C$, we get

$$
\begin{equation*}
\angle C B D=\angle A B C-\angle A B D \tag{i}
\end{equation*}
$$

$\angle A B C=180^{\circ}-\angle B A D$
(Adjacent angles are supplementary)
$\Rightarrow \angle A B C=180^{\circ}-75^{\circ}=105^{\circ}$
In $\triangle \mathrm{CBD}$, we have
Then, $\angle \mathrm{CBD}=\angle \mathrm{ABC}-\angle \mathrm{ABD}$

$$
\begin{aligned}
& \Rightarrow \angle C B D=105^{\circ}-\angle A B D \\
& \Rightarrow \angle C B D=105^{\circ}-40^{\circ}=65^{\circ} \quad(\angle \mathrm{ABD}=\angle \mathrm{ABO})
\end{aligned}
$$

Answer 6:

ABCD is a parallelogram.
i.e., $\angle \mathrm{A}=\angle \mathrm{C}$ and $\angle \mathrm{B}=\angle \mathrm{D}$
(Opposite angles)
Also, $\angle A+\angle B=180^{\circ}$
(Adjacent angles are supplementary)
$\therefore(2 x+25)^{\circ}+(3 x-5)^{\circ}=180^{\circ}$
$\Rightarrow 5 x+20=180^{\circ}$
$\Rightarrow 5 x=180-20$
$\Rightarrow 5 x=160^{\circ}$
$\Rightarrow x=\frac{160}{2}=32^{\circ}$
$\therefore \angle A=2 \times 32+25=89^{\circ}$ and $\angle B=3 \times 32-5=91^{\circ}$
Hence, $\mathrm{x}=32^{\circ}, \angle \mathrm{A}=\angle \mathrm{C}=89^{\circ}$ and $\angle \mathrm{B}=\angle \mathrm{D}=91^{\circ}$

Answer 7:

Let PQRS be a parallelogram.
$\therefore \angle \mathrm{P}=\angle \mathrm{R}$ and $\angle \mathrm{Q}=\angle \mathrm{S}$
Let $\angle \mathrm{P}=\mathrm{y}^{0}$ and $\angle \mathrm{B}=\left(\frac{4 y}{5}\right)$ 。
Now, $\angle \mathrm{P}+\angle \mathrm{Q}=180^{\circ}$

$$
\Rightarrow y+\left(\frac{4 y}{5}\right) \circ=180^{\circ} \Rightarrow\left(\frac{9 y}{5}\right) \circ=180^{\circ} \Rightarrow y=100^{\circ}
$$

Now, $\angle \mathrm{P}=100^{\circ}$ and $\angle \mathrm{B}=\left(\frac{4}{5}\right) \times 100^{\circ}=80^{\circ}$
Hence, $\angle \mathrm{P}=\angle \mathrm{R}=100^{\circ} ; \angle \mathrm{B}=\angle \mathrm{S}=80^{\circ}$

Answer 8:

Let PQRS be a parallelogram.
$\therefore \angle \mathrm{P}=\angle \mathrm{R}$ and $\angle \mathrm{Q}=\angle \mathrm{S} \quad$ (Opposite angles)
Let $\angle \mathrm{P}$ be the smallest angle whose measure is y^{0}.
$\therefore \angle Q=(2 y-30)^{\circ}$
Now, $\angle P+\angle Q=180^{\circ} \quad$ (Adjacent angles are supplementry)
$\Rightarrow y+2 y-30^{\circ}=180^{\circ}$
$\Rightarrow 3 y=210^{\circ}$
$\Rightarrow y=\frac{210}{3}=70$
$\Rightarrow y=70^{\circ}$
$\therefore \angle Q=2 \times 70^{\circ}-30^{\circ}=110^{\circ}$
Hence, $\angle \mathrm{P}=\angle \mathrm{R}=70^{\circ} ; \angle \mathrm{Q}=\angle \mathrm{S}=110^{\circ}$

Answer 9:

$A B C D$ is a parallelogram.
The opposite sides of a parallelogram are parallel and equal.
$\therefore \mathrm{AB}=\mathrm{DC}=9.5 \mathrm{~cm}$
Let $\mathrm{BC}=\mathrm{AD}=\mathrm{y}$
\therefore Perimeter of $\mathrm{ABCD}=A B+B C+C D+D A=30 \mathrm{~cm}$
$\Rightarrow 9.5+y+9.5+y=30$
$\Rightarrow 19+2 y=30$
$\Rightarrow 2 y=11$
$\Rightarrow y=\frac{11}{2}=5.5 \mathrm{~cm}$
Hence, $\mathrm{AB}=\mathrm{DC}=9.5 \mathrm{~cm}$ and $\mathrm{BC}=\mathrm{DA}=5.5 \mathrm{~cm}$

Answer 10:

(i)

(ii)

(iii)

ABCD is a rhombus and a rhombus is also a parallelogram. A rhombus has four equal sides.
(i) In $\triangle A B C$,

$$
\angle \mathrm{BAC}=\angle \mathrm{BCA}=\frac{1}{2}(180-110)^{\circ}=35^{\circ}
$$

i.e., $x=35^{\circ}$

Now by Adjacent angles are supplementary we get,

$$
\angle B+\angle C=180^{\circ}
$$

As, $\angle C=x+y=70^{\circ}$
$\Rightarrow y=70^{\circ}-x$
$\Rightarrow y=70^{\circ}-35^{\circ}=35^{\circ}$
Hence, $x=35^{\circ} ; y=35^{\circ}$
(ii) The diagonals of a rhombus are perpendicular bisectors of each other.

So, in $\triangle \mathrm{AOB}, \angle \mathrm{OAB}=40^{\circ}, \angle \mathrm{AOB}=90^{\circ}$ and
$\angle \mathrm{ABO}+\angle \mathrm{BOA}+\angle \mathrm{OAB}=180$
$\angle A B O=180^{\circ}-\left(40^{\circ}+90^{\circ}\right)=50^{\circ}$
$\therefore \mathrm{x}=50^{\circ}$
In $\triangle \mathrm{ABD}, \mathrm{AB}=\mathrm{AD}$
So, $\angle A B D=\angle A D B=50^{\circ}$
Hence, $\mathrm{x}=50^{\circ} ; \mathrm{y}=50^{\circ}$
(iii) $\angle \mathrm{BAC}=\angle \mathrm{DCA} \quad$ (Alternate interior angles)

$$
\text { i.e., } x=62^{\circ}
$$

In $\triangle \mathrm{BOC}, \angle \mathrm{BCO}=62^{\circ}$
Also, $\angle \mathrm{BOC}=90^{\circ}$
$\angle \mathrm{BCO}+\angle \mathrm{BOC}+\angle O B C=180$
$\therefore \angle O B C=180^{\circ}-\left(90^{\circ}+62^{\circ}\right)=28^{\circ}$
Hence, $x=62^{\circ} ; y=28^{\circ}$

Answer 11:

Let PQRS be a rhombus.
$\therefore \mathrm{PQ}=\mathrm{QR}=\mathrm{RS}=\mathrm{SP}$
Here, $P R$ and $Q S$ are the diagonals of $P Q R S$, where $P R=24 \mathrm{~cm}$ and $Q S=18$ cm.

Let the diagonals intersect each other at M .
$\therefore \triangle \mathrm{PMQ}$ is a right angle triangle in which $\mathrm{MP}=\frac{A C}{2}=\frac{24}{2}=12 \mathrm{~cm}$ and $\mathrm{MQ}=$ $\frac{Q S}{2}=\frac{18}{2}=9 \mathrm{~cm}$.
Now, $\mathrm{PQ}^{2}=\mathrm{MP}^{2}+\mathrm{MQ}^{2} \quad$ [Pythagoras theorem]
$\Rightarrow P Q^{2}=(12)^{2}+(9)^{2}$
$\Rightarrow \mathrm{PQ}^{2}=144+81=225$
$\Rightarrow P Q=15 \mathrm{~cm}$
Hence, the side of the rhombus is 15 cm .

Answer 12:

Let PQRS be a rhombus.
$\therefore \mathrm{PQ}=\mathrm{QR}=\mathrm{RS}=\mathrm{SP}=10 \mathrm{~cm}$
Let $P R$ and $Q S$ are the diagonals of $P Q R S$. Let $P R=y$ and $Q S=16 \mathrm{~cm}$ and M be the intersection point of the diagonals.
$\therefore \triangle \mathrm{PMQ}$ is a right angle triangle, in which
$\mathrm{MP}=\frac{P R}{2}=\frac{y}{2}$ and $\mathrm{MQ}=\frac{Q S}{2}=\frac{16}{2}=8 \mathrm{~cm}$.
Now, $\mathrm{PQ}^{2}=\mathrm{MP}^{2}+\mathrm{MQ}^{2} \quad$ [Pythagoras theorem]
$\Rightarrow 10^{2}=\left(\frac{y}{2}\right)^{2}+8^{2} \Rightarrow 100-64=\frac{y 2}{4} \Rightarrow 36 \times 4=y^{2}$
$\Rightarrow y^{2}=144$
$\therefore \mathrm{y}=12 \mathrm{~cm}$
Hence, the other diagonal of the rhombus is 12 cm .
\therefore Area of the rhombus $=12 \times(12 \times 16)=96 \mathrm{~cm}^{2}$

Answer 13:

(i)

(ii)
(i) ABCD is a rectangle.

The diagonals of a rectangle are congruent and bisect each other. Therefore, in \triangle AOB, as ,
$\mathrm{OA}=\mathrm{OB}$
$\therefore \angle O A B=\angle O B A=35^{\circ}$
$\therefore \mathrm{x}=90^{\circ}-35^{\circ}=55^{\circ}$
In $\triangle \mathrm{AOB}$
$\angle O A B+\angle O B A+\angle A O B=180 \circ$
And $\angle \mathrm{AOB}=180^{\circ}-\left(35^{\circ}+35^{\circ}\right)=110^{\circ}$
$\therefore \mathrm{y}=\angle \mathrm{AOB}=110^{\circ} \quad$ [Vertically opposite angles]
Hence, $x=55^{\circ}$ and $y=110^{\circ}$
(ii) In $\triangle A O B$, as,

Given, $\angle \mathrm{AOB}=100^{\circ}$

$$
\mathrm{OA}=\mathrm{OB}
$$

As, $\angle O A B=\angle O B A$
Then, $\angle \mathrm{AOB}+\angle \mathrm{OBA}+\angle \mathrm{OAB}=180$
$\Rightarrow 2 \angle A O B=180-\angle A O B$ \qquad $(\angle \mathrm{OAB}=\angle \mathrm{OBA})$
$\Rightarrow 2 \angle A O B=180-110=70^{\circ}$
$\Rightarrow \angle A O B=\frac{1}{2} \times 70=35^{\circ}$
so, $\therefore \mathrm{y}=\angle \mathrm{BAC}=35^{\circ} \quad$ [Interior alternate angles]
Here at $\angle \mathrm{C}$ is at right angle Δ by fig,
$\Rightarrow 90^{\circ}=x+y$
$\Rightarrow \mathrm{x}=90^{\circ}-\mathrm{y}$
$\Rightarrow \mathrm{x}=90^{\circ}-35^{\circ}=55^{\circ}$
Thus, $x=55^{\circ}$ and $y=35^{\circ}$

Answer 14:

Given: ABCD is a rhombus, DF is altitude which bisects AB i.e. $\mathrm{AF}=\mathrm{FB}$ In $\triangle \mathrm{AFD}$ and $\triangle \mathrm{BFD}$,
DF=DF
(Common side)
$\angle \mathrm{DFA}=\angle \mathrm{DFB}=90^{\circ}$ (Given)
$\mathrm{AF}=\mathrm{FB}$
(Given)
$\therefore \triangle \mathrm{AFD} \cong \triangle \mathrm{BFD}$
(By SAS congruence Criteria)
$\Rightarrow A D=B D$
Also, $\mathrm{AD}=\mathrm{AB}$
(Sides of rhombus are equal)
$\Rightarrow A D=A B=B D$
Thus, $\triangle \mathrm{ABD}$ is an equilateral triangle.
Therefore, $\angle A=60^{\circ}$
$\Rightarrow \angle C=\angle A=60^{\circ} \quad$ (Opposite angles of rhombus are equal)
And, $\angle \mathrm{ABC}+\angle \mathrm{BCD}=180^{\circ}$
(Adjacent angles of rhombus are
supplementary.)
$\Rightarrow \angle \mathrm{ABC}+60^{\circ}=180^{\circ} \Rightarrow \angle \mathrm{ABC}=180^{\circ}-60^{\circ} \Rightarrow \angle \mathrm{ABC}=120^{\circ} \Rightarrow \angle \mathrm{ADC}=\angle \mathrm{ABC}=120^{\circ}$
Hence, the angles of rhombus are $60^{\circ}, 120^{\circ}, 60^{\circ}$ and 120°

Answer 15:

The angles of a square are bisected by the diagonals.
$\angle \mathrm{OBX}=\frac{1}{2} \times \angle C B A=\frac{1}{2} \times 90=45^{\circ}$
$\therefore \angle O B X=45^{\circ}$
Given, $\angle \mathrm{COD}=80^{\circ}$
And $\angle B O X=\angle C O D=80^{\circ} \quad$ [Vertically opposite angles]
\therefore In $\triangle \mathrm{BOX}$, as we know that exterior angle is sum of both interior angles.
$\angle A X O=\angle O B X+\angle B O X$
$\Rightarrow \angle A X O=45^{\circ}+80^{\circ}=125^{\circ}$
$\therefore x=125^{\circ}$

Answer 16:

Given: A rhombus ABCD.
To prove: Diagonal AC bisects $\angle \mathrm{A}$ as well as $\angle \mathrm{C}$ and diagonal BD bisects $\angle \mathrm{B}$ as well as $\angle \mathrm{D}$.
Proof:

In $\triangle \mathrm{ABC}$,
$A B=B C \quad$ (Sides of rhombus are equal.)
$\angle A C B=\angle C A B \quad$ (Angles opposite to equal sides are equal.)
$\mathrm{AD} \| \mathrm{BC} \quad$ (Opposite sides of rhombus are parallel.)
AC is transversal.
$\angle D A C=\angle A C B \quad$ (Alternate interior angles)
From (1) and (2),
$\angle D A C=\angle C A B$
Thus, AC bisects $\angle A$.
$A s, A B \| D C$ and $A C$ is transversal.
$\angle C A B=\angle D C A \quad$ (Alternate interior angles)
From (1) and (3),
$\angle A C B=\angle D C A$
Thus, AC bisects $\angle \mathrm{C}$.
Thus, AC bisects $\angle \mathrm{C}$ and $\angle \mathrm{A}$
In $\triangle D A B$,
$A D=A B \quad$ (Sides of rhombus are equal.)
$\angle A D B=\angle A B D \quad$ (Angles opposite to equal sides are equal.)
Also,
$\mathrm{DC} \| \mathrm{AB} \quad$ (Opposite sides of rhombus are parallel.)
BD is transversal.
$\angle C D B=\angle D B A \quad$ (Alternate interior angles)
From (4) and (5),
$\angle A D B=\angle C D B$
Therefore, DB bisects $\angle \mathrm{D}$.
As, $A D \| B C$ and $B D$ is transversal.
$\angle \mathrm{CBD}=\angle \mathrm{ADB} \quad$ (Alternate interior angles)
From (4) and (6)
$\angle C B D=\angle A B D$
Therefore, BD bisects $\angle \mathrm{B}$.
Thus, BD bisects $\angle \mathrm{D}$ and $\angle \mathrm{B}$.

Answer 17:

Given: In a parallelogram $\mathrm{ABCD}, \mathrm{AM}=\mathrm{CN}$.
To prove: AC and MN bisect each other.
Construction: Join AN and MC.
Proof:
As, ABCD is a parallelogram.
$\Rightarrow A B\|D C \Rightarrow A M\| N C$
And, $A M=C N \quad$ (Given)
Therefore, AMCN is a parallelogram.
As, the diagonals of a parallelogram bisect each other.
Thus, AC and MN also bisect each other.

Answer 18:

As , per by given fig,

Given, $\mathrm{AP}=\frac{1}{3} \mathrm{AD}$ and $\mathrm{CQ}=\frac{1}{3} \mathrm{BC}$

So, we get
$\therefore A P=C Q \quad[\mathrm{AD}=\mathrm{BC}]$

In $\triangle \mathrm{DPC}$ and $\triangle \mathrm{BQA}$,
$A B=C D, \angle B=\angle D$ and $D P=Q B$
$\left[\mathrm{DP}=\frac{2}{3} \mathrm{AD}\right.$ and $\left.\mathrm{QB}=\frac{2}{3} \mathrm{BC}\right]$
i.e., $\triangle D P C \cong \triangle B Q A$
$\therefore P C=Q A$
Thus, in quadrilateral AQCP,

$$
\begin{align*}
A P & =C Q \tag{i}\\
P C & =Q A \tag{ii}
\end{align*}
$$

$\therefore \mathrm{AQCP}$ is a parallelogram.

Answer 19:

Given, ABCD is a parallelogram whose diagonals intersect each other at O . A line segment EOF is drawn to meet AB at E and DC at F .

So in $\triangle O D F$ and $\triangle O B E$,
$O D=O B$
$\angle D O F=\angle B O E$
$\angle F D O=\angle O B E$
(Diagonals bisects each other)
(Vertically opposite angles)
(Alternate interior angles)

By parallelogram theorem
$\triangle O D F \cong \triangle O B E$
$\therefore O F=O E$
Hence, proved.

Answer 20:

M

Given: : parallelogram WXYZ, $\mathrm{ZM} \perp \mathrm{WX}, \mathrm{WN} \perp \mathrm{XY}$ and $\angle \mathrm{MZN}=60^{\circ}$ In quadrilateral ZMXN , by angle sum property,

$$
\angle M Z N+\angle Z M X+\angle X+\angle X N Z=360^{\circ}
$$

$\Rightarrow 60^{\circ}+90^{\circ}+\angle X+90^{\circ}=360^{\circ}$
$\Rightarrow \angle X=360^{\circ}-240^{\circ} \Rightarrow \angle X=120^{\circ} \Rightarrow \angle X=120^{\circ}$
Also,
$\angle X=\angle Z=120^{\circ} \quad$ (Opposite angles of a parallelogram are equal.)
$\angle W+\angle X=180^{\circ} \quad$ (Adjacent angles of a parallelogram are
supplementary.)
$\Rightarrow \angle W+120^{\circ}=180^{\circ} \Rightarrow \angle W=180^{\circ}-120^{\circ} \Rightarrow \angle W=60^{\circ}$
Also,
$\angle W=\angle Y=60^{\circ} \quad$ (Opposite angles of a parallelogram are equal.)
Thus, the angles of a parallelogram are $60^{\circ}, 120^{\circ}, 60^{\circ}$ and 120°.

Answer 21:

Given: In
rectangle ABCD , AC bisects $\angle \mathrm{A}$, i.e. $\angle \mathrm{DAC}=\angle \mathrm{CAB}$ and AC bisects $\angle \mathrm{C}$, i.e. $\angle \mathrm{D}$ $C A=\angle A C B$.
To prove:
(i) ABCD is a square,
(ii) diagonal BD bisects $\angle \mathrm{B}$ as well as $\angle \mathrm{D}$.

Proof:
(i) Since, $A D \| B C$
(Opposite sides of a rectangle are parallel.)
So, $\angle \mathrm{DAC}=\angle \mathrm{ACB}$ (Alternate interior angles)
But, $\angle D A C=\angle C A B$ (Given)

So, $\angle \mathrm{CAB}=\angle \mathrm{ACB}$
In $\triangle \mathrm{ABC}$,
Since, $\angle C A B=\angle A C B$
So, $B C=A B$
(Sides opposite to equal angles are equal.)
But these are adjacent sides of the rectangle ABCD.
Hence, ABCD is a square.
(ii) Since, the diagonals of a square bisects its angles.

So, diagonals BD bisects $\angle \mathrm{B}$ as well as $\angle \mathrm{D}$.

Answer 22:

Given, ABCD is parallelogram in which AB is produced to E .
$\mathrm{BE}=\mathrm{AB}$ (given)
So in $\triangle O D C$ and $\triangle O E B$, as ,
$D C=B E$
$(\mathrm{DC}=\mathrm{AB})$
$\angle O C D=\angle O B E \quad$ (Alternate interior angles)
$\angle C O D=\angle B O E \quad$ (Vertically opposite angles)
by parallelogram theorem we get,
$\therefore \triangle O D C \cong \triangle O E B$
$\Rightarrow O C=O B$
Hence , ED bisects BC.

Answer 23:

Given: ABCD is a parallelogram.
$B E=C E$
$D E$ and $A B$ when produced meet at F.
To prove: $\mathrm{AF}=2 \mathrm{AB}$
Proof: In parallelogram ABCD, as ,

$$
A B \| D C
$$

$\angle D C E=\angle E B F \quad$ (Alternate interior angles)
In $\triangle \mathrm{DCE}$ and $\triangle \mathrm{BFE}$,
$\angle D C E=\angle E B F \quad$ (Proved above)
$\angle D E C=\angle B E F \quad$ (Vertically opposite angles)
And, $B E=C E$ (Given)
By parallelogram theorem
$\therefore \triangle D C E \cong \triangle B F E$
hence $\therefore D C=B F$
But $D C=A B$, as $A B C D$ is a parallelogram.
$\therefore D C=A B=B F$
can also be written as, $A F=A B+B F$
$A F=A B+A B=2 A B$ \qquad from(i)
Hence, proved. $\mathrm{AF}=2 \mathrm{AB}$.

Answer 24:

Given: $1 \| \mathrm{m}$ and the bisectors of interior angles intersect at X and Y .
To prove: PQRS is a rectangle.
Proof:
Since, 1 || m
(Given)
So, $\angle X P R=\angle P R Y \quad$ (Alternate interior angles)
$\Rightarrow \frac{1}{2} \angle \mathrm{XPR}=\frac{1}{2} \angle \mathrm{PRY}$
$\Rightarrow \angle Q P R=\angle P R S$ but, these are a pair of alternate interior angles for PQ and RS.
$\Rightarrow \mathrm{PQ} \|$ SR
Similarly, PR\|QS
So, $P Q R S$ is a parallelogram.
Also,'
$\angle X P R+\angle R P Z=180^{\circ} \quad$ (Linear pair)
$\Rightarrow \frac{1}{2} \angle \mathrm{XPR}+\frac{1}{2} \angle \mathrm{PRY}=90^{\circ} \Rightarrow \angle \mathrm{QPR}+\angle \mathrm{RPS}=90^{\circ} \Rightarrow \angle \mathrm{QPS}=90^{\circ}$
But, this an angle of the parallelogram $P Q R S$
Hence, PQRS is a rectangle.

Answer 25:

Given: In square $\mathrm{ABCD}, \mathrm{AK}=\mathrm{BL}=\mathrm{CM}=\mathrm{DN}$.
To prove: KLMN is a square.
Proof:
In square $A B C D$,
$A B=B C=C D=D A \quad$ (All sides of a square are equal.)
And, $A K=B L=C M=D N$ (Given)
So, $A B-A K=B C-B L=C D-C M=D A-D N$
$\Rightarrow K B=C L=D M=A N$
In \triangle NAK and $\triangle K B L$,
$\angle N A K=\angle K B L=90^{\circ} \quad$ (Each angle of a square is a right angle.)
$A K=B L$
(Given)
$A N=K B$
[From (1)]
So, by parallelogram theorem ,
$\triangle N A K \cong \triangle K B L$
$\Rightarrow N K=K L \quad(\mathrm{CPCT})$
Similarly,
$\triangle M D N \cong \triangle N A K \triangle D N M \cong C M L \Delta M C L \cong L B K$
$\Rightarrow M N=N K$ and $\angle D N M=\angle K N A \quad$ (СРСТ)
$M N=J M$ and $\angle D N M=\angle C M L$
(СРСТ)
$M L=L K$ and $\angle C M L=\angle B L K$
(CPCT)
From (2), (3), (4) and (5),
$N K=K L=M N=M L$
And, $\angle D N M=\angle A K N=\angle K L B=L M C$
Now,
In $\triangle \mathrm{NAK}$,
$\angle N A K=90^{\circ}$
Let $\angle A K N=y^{\circ}$
So, $\angle D N K=90^{\circ}+y^{\circ}$
$\Rightarrow \angle D N M+\angle M N K=90^{\circ}+y^{\circ} \Rightarrow y^{\circ}+\angle M N K=90^{\circ}+y^{\circ} \Rightarrow \angle M N K=90^{\circ}$
Similarly,
$\angle N K L=\angle K L M=\angle L M N=90^{\circ}$
Using (6) and (7),
All sides of quadrilateral KLMN are equal and all angles are 90°
So, KLMN is a square.

Answer 26:

$\Delta \mathrm{ABC}$, if lines are drawn through A, B, C parallel respectively to the sides BC, $C A$ and $A B$. So, we get, $B C \| Q A$ and $C A \| Q B$
i.e., BCQA is a parallelogram.
$\therefore B C=Q A$
Similarly, $B C|\mid A R$ and $A B| \mid C R$.
i.e., BCRA is a parallelogram.
$\therefore B C=A R$
As $Q R=Q A+A R$
From (i) and (ii),
$Q R=B C+B C$
$\Rightarrow Q R=2 B C$
$\therefore \mathrm{BC}=\frac{1}{2} \mathrm{QR}$

Answer 27:

In $\triangle \mathrm{ABC} \mathrm{A}, \mathrm{B}, \mathrm{C}$ lines drawn, parallel respectively to BC, CA and AB intersecting at P, Q and R. Acc to question,

Perimeter of $\triangle A B C=A B+B C+C A$
Perimeter of $\triangle P Q R=P Q+Q R+P R$
By given figure,

BC || QA and CA || QB
i.e., $B C Q A$ is a parallelogram.
$\therefore B C=Q A$
Similarly, $B C|\mid A R$ and $A B| \mid C R$
i.e., BCRA is a parallelogram.
$\therefore B C=A R$
But, $Q R=Q A+A R$
From (iii) and (iv),
$\Rightarrow Q R=B C+B C$
$\Rightarrow Q R=2 B C$
$\therefore \mathrm{BC}=\frac{1}{2} \mathrm{QR}$
Similarly, $C A=\frac{1}{2} P Q$ and $A B=\frac{1}{2} P R$
From (i) and (ii),
Perimeter of $\triangle A B C=\frac{1}{2} Q R+\frac{1}{2} P Q+\frac{1}{2} P R$

$$
=\frac{1}{2}(P R+Q R+P Q)
$$

i.e., Perimeter of $\triangle \mathrm{ABC}=\frac{1}{2}($ Perimeter of $\triangle \mathrm{PQR})$
\therefore Perimeter of $\triangle P Q R=2 \times$ Perimeter of $\triangle A B C$

EXERCISE - 10C

Answer 1:

Given: In
quadrilateral $\mathrm{ABCD}, \mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S are respectively the midpoints of the sides A $B, B C, C D$ and $D A$.
To prove:
(i) $P Q \| A C$ and $P Q=\frac{1}{2} A C$
(ii) $P Q \| S R$
(iii) PQRS is a parallelogram.

Proof:

(i) In $\triangle A B C$,

Since, P and Q are the mid points of sides $A B$ and $B C$, respectively. (Given) $\Rightarrow \mathrm{AC} \| \mathrm{PQ}$ and $\mathrm{PQ}=\frac{1}{2} \mathrm{AC} \quad$ (Using mid-point theorem.)
(ii) In $\triangle \mathrm{ADC}$,

Since, S and R are the mid-points of $A D$ and $D C$, respectively. (Given)
$\Rightarrow S R \| A C$ and $S R=\frac{1}{2} A C \quad$ (Using mid-point theorem.)
From (i) and (1), we get
$P Q \| S R$
(iii) From (i) and (ii), we get
$\mathrm{PQ}=\mathrm{SR}=\frac{1}{2} \mathrm{AC}$
So, $P Q$ and $S R$ are parallel and equal.
Hence, PQRS is a parallelogram.

Answer 2:

Given: In an isosceles right $\triangle \mathrm{XYZ}, \mathrm{ZEFG}$ is a square.
To prove: F bisects the hypotenuse XY i.e., $\mathrm{XF}=\mathrm{FY}$.
Proof:
In square ZEFG,
$\therefore \mathrm{ZE}=\mathrm{EF}=\mathrm{FG}=\mathrm{ZG} \quad$ (All sides are equal.)
Also, $\Delta \mathrm{XYZ}$ is an isosceles with $\mathrm{XZ}=\mathrm{YZ}$.
$\Rightarrow \mathrm{XG}+\mathrm{GZ}=\mathrm{ZE}+\mathrm{EY}$
$\Rightarrow \mathrm{XG}=\mathrm{EY} \quad(\mathrm{ZG}=\mathrm{ZE})$
Now,
In $\triangle \mathrm{XGF}$ and $\triangle \mathrm{FEY}$,
$\mathrm{XG}=\mathrm{EY} \quad$ [From (i)]
$\angle \mathrm{XGP}=\angle \mathrm{FEY}=90^{\circ}$
$\mathrm{FG}=\mathrm{FE} \quad$ (Sides of square CEFG)
\therefore By SAS congruence criteria,
$\Delta \mathrm{XGF} \cong \triangle \mathrm{YEF}$
Hence, $\mathrm{XF}=\mathrm{FY} \quad($ By CPCT $)$

Answer 3:

In parallelogram PQRS,
PS || QR and PQ || RS
$P S=Q R$ and $P Q=S R$
$P Q=P E+Q E$ and $R S=S F+F R$
$\therefore P E=Q E=S F=F R$
Now, $S F=P E$ and $S F \| P E$.
i.e., PEFS is a parallelogram.
$\therefore \mathrm{PS}|\mid \mathrm{EF}$
Similarly, QEFR is also a parallelogram.
$\therefore \mathrm{EF} \| \mathrm{QR}$
$\therefore P S\|E F\| Q R$
Thus, PS, EF and QR are three parallel lines cut by the transversal line SR at S, F and R, such that $S F=F R$.
These lines PS, EF and QR are also cut by the transversal PQ at P, E and Q, such that $P E=Q E$.
Similarly, they also cut by GH.
$\therefore \mathrm{GO}=\mathrm{OH} \quad$ (By intercept theorem)

Answer 4:

Given: A parallelogram ABCD
To prove: MN is bisected at 0
Proof:
In $\triangle O A M$ and $\triangle O C N$, we get by fig,
$O A=O C \quad$ (Diagonals of parallelogram bisect each other)
$\angle A O M=\angle C O N \quad$ (Vertically opposite angles)
$\angle M A O=\angle O C N \quad$ (Alternate interior angles)
\therefore By ASA congruence criteria, and parallelogram theorem
$\triangle O A M \cong \triangle O C N$
$\Rightarrow O M=O N$
Hence proved, MN is bisected at 0 .

Answer 5:

Given: In trapezium PQRS, $\mathrm{PQ} \| \mathrm{SR}, \mathrm{M}$ is the midpoint of PS and $\mathrm{MN}|\mid \mathrm{PQ}$. To prove: N is the midpoint of QR .
Construction: Join QS.
Proof:
In $\triangle \mathrm{SPQ}$, we get
M is the mid-point of $S P$ and $M W \| P Q$.
Therefore, W is the mid-point of SQ. (By Mid-point theorem)
Also, in $\triangle S R Q$,
As, W is mid-point of $S Q$ and $W N$ || SR
Therefore, N is the mid-point of QR . (By Mid-point theorem)
Answer 6:

Given: In parallelogram PQRS, $\mathrm{PQ}=12 \mathrm{~cm}$ and $\mathrm{PS}=9 \mathrm{~cm}$. The bisector of $\angle S P Q$ meets SR at M.

Let $\angle \mathrm{SPQ}=2 \mathrm{y}$.
$\Rightarrow \angle \mathrm{SRQ}=2 \mathrm{y}$ and $\angle \mathrm{TPQ}=\mathrm{y}$.
Also, PQ | | SR
$\Rightarrow \angle \mathrm{TMR}=\angle \mathrm{TPQ}=\mathrm{y}$.
In $\angle \mathrm{TMR}, \angle \mathrm{SRQ}$ is an exterior angle.
$\Rightarrow \angle \mathrm{SRQ}=\angle \mathrm{TMR}+\angle \mathrm{MTR}$
$\Rightarrow 2 \mathrm{y}=\mathrm{y}+\angle \mathrm{MTR}$
$\Rightarrow \angle \mathrm{MTR}=\mathrm{y}$
$\Rightarrow \angle \mathrm{TPQ}$ is an isosceles triangle.
$\Rightarrow \mathrm{TQ}=\mathrm{PQ}=12 \mathrm{~cm}$
Now,
$R T=T Q-Q R$
$=\mathrm{TQ}-\mathrm{PS}$
$=12-9$
$=3 \mathrm{~cm}$

Answer 7:

Given: $\mathrm{AB}|\mid \mathrm{DC}, \mathrm{AP}=\mathrm{PD}$ and $\mathrm{BQ}=\mathrm{CQ}$
(i) In $\triangle Q C D$ and $\triangle Q B E$, $\angle D Q C=\angle B Q E$ (Vertically opposite angles)
$\angle D C Q=\angle E B Q \quad$ (Alternate angles, as AE || DC)
$B Q=C Q \quad$ (P is the midpoints)
By parallelogram theorem
$\therefore \triangle Q C D \cong \triangle Q B E$
hence $\therefore, D Q=Q E$
(ii) Now, in $\triangle A D E, P$ and Q are the midpoints of $A D$ and $D E$, respectively.
$\therefore \mathrm{PQ} \| \mathrm{AE}$ from above
From fig we get,
$\Rightarrow \mathrm{PQ} \| \mathrm{AB}| | \mathrm{DC}$
R is intersect point on $A C$ and $P Q$ then,
$\Rightarrow \mathrm{AB}||\mathrm{PR}|| \mathrm{DC}$
(iii) PQ, AB and DC are the three lines cut by transversal AD at P such that

$$
\mathrm{AP}=\mathrm{PD} .
$$

These lines $P Q, A B, D C$ are also cut by transversal $B C$ at Q such that
$B Q=Q C$.
Also, lines PQ, AB and DC are also cut by AC at R .
$\therefore A R=R C$

Answer 8:

$A D$ is a median of $\triangle A B C$.
D is the mid point $B C$
$\therefore B D=D C$
It is clear that the line drawn through the midpoint of one side of triangle and parallel to another side bisects the third side.
Then DE bisects AC.
$\therefore \mathrm{AE}=\mathrm{EC}$
$\therefore \mathrm{E}$ is midpoint of AC .
$\Rightarrow \mathrm{BE}$ is median in $\triangle \mathrm{ABC}$.

Answer 9:

In $\triangle A B C$, by fig, we get
$A C=A E+E C$
E is point of $A C$, then
$A E=E C$
Can also be written as
$\therefore A C=2 E C$
In $\triangle \mathrm{BEC}, \mathrm{DF}| | \mathrm{BE}$.
F is mid point of EC
$\therefore E F=C F$
As, $E C=E F+C F$
$\Rightarrow E C=2 \times C F$
From (iii) and (iv),
$A C=2 \times(2 \times C F)$
$A C=4 \times C F$
$\therefore \mathrm{CF}=\frac{1}{4} \mathrm{AC}$

Answer 10

L
$\Delta \mathrm{XYZ}$ is given. L, M and N are the midpoints of sides XY, YZ and ZX , respectively.
As, L and M are the mid points of sides $X Y$, and $Y Z$ of $\Delta X Y Z$.
$\therefore \mathrm{LM} \| \mathrm{XZ}$ (By midpoint theorem)
Similarly, LN || YZ and MN ||XY.
Therefore, XLMN, YLNM and LNZM are all parallelograms.
Now, LM is the diagonal of the parallelogram YLNM.
$\therefore \Delta \mathrm{YLM} \cong \Delta \mathrm{NML}$
Similarly, LN is the diagonal of the parallelogram XLMN.
$\therefore \Delta \mathrm{LXN} \cong \triangle \mathrm{NML}$
And, MN is the diagonal of the parallelogram LNZM.
$\therefore \triangle \mathrm{MNZ} \cong \triangle \mathrm{NML}$
So, all the four triangles are congruent.

Answer 11:

D, E and F are the midpoints of sides BC, CA and AB , respectively.
$A s F$ and E are the mid points of sides $A B$ and $A C$ of $\triangle A B C$.
$\therefore \mathrm{FE}|\mid \mathrm{BC}$ (By mid point theorem)
Similarly, DE || FB and FD ||AC.
Therefore, AFDE, BDEF and DCEF are all parallelograms.
In parallelogram AFDE, as ,
$\angle A=\angle E D F \quad$ (Opposite angles are equal)
In parallelogram BDEF , as ,
$\angle \mathrm{B}=\angle \mathrm{DEF} \quad$ (Opposite angles are equal)
In parallelogram DCEF, as ,
$\angle \mathrm{C}=\angle \mathrm{DFE} \quad$ (Opposite angles are equal)

Answer 12:

Let LMNO be the rectangle and $\mathrm{E}, \mathrm{F}, \mathrm{G}$ and H be the midpoints of $\mathrm{LM}, \mathrm{MN}, \mathrm{NO}$ and OL, respectively.
Join LN, a diagonal of the rectangle.
In \triangle LMN, as ,
$\therefore \mathrm{EF} \| \mathrm{LN}$ and $\mathrm{EF}=\frac{1}{2} \mathrm{LN} \quad$ [By midpoint theorem]
Again, in \triangle OLN, the points G and H are the mid points of LO and ON , respectively.
$\therefore \mathrm{GH} \| \mathrm{LN}$ and $\mathrm{GH}=\frac{1}{2} \mathrm{LN} \quad$ [By midpoint theorem]
Now, EF || LN and GH | | LN
$\Rightarrow \mathrm{EF}|\mid \mathrm{GH}$
Also, $\mathrm{EF}=\mathrm{GH} \quad$ [Each equal to $\frac{1}{2} \mathrm{LN}$]
So, EF GH is a parallelogram.
Now, in $\triangle H L E$ and $\triangle \mathrm{FME}$, as ,
$\mathrm{LH}=\mathrm{MF}$
$\angle \mathrm{L}=\angle \mathrm{M}=90^{\circ}$
$\mathrm{LE}=\mathrm{ME}$
i.e., $\triangle \mathrm{HLE} \cong \triangle \mathrm{FME}$
$\therefore \mathrm{EH}=\mathrm{EF}$
Similarly, $\triangle H O G \cong \triangle$ FNG
$\therefore \mathrm{HG}=\mathrm{GF}$
From (i), (ii) and (iii), as ,
$E F=E F=H G=H G$
Hence, EFGH is a rhombus.

Answer 13:
0

Let LMNO be the rectangle and $\mathrm{E}, \mathrm{F}, \mathrm{G}$ and H be the midpoints of $\mathrm{LM}, \mathrm{MN}, \mathrm{NO}$ and OL.
Join the diagonals, LN and MO.
In Δ LMN,
$\therefore \mathrm{EF} \| \mathrm{LN}$ and $\mathrm{EF}=\frac{1}{2} \mathrm{LN} \quad$ [By midpoint theorem]
Now, in \triangle OLN, the points G and H are mid points of LO and ON .
$\therefore \mathrm{GH} \| \mathrm{LN}$ and $\mathrm{GH}=\frac{1}{2} \mathrm{LN} \quad$ [By midpoint theorem]
As, $E F|\mid L N$ and $G H| \mid L N$
$\Rightarrow E F \| G H$
Also, $\mathrm{EF}=\mathrm{GH}$
\therefore, EF GH is a parallelogram.
$\therefore \angle Y K X=90^{\circ}$
Now, $X G|\mid K M$
$\Rightarrow G Y \| F K$
Also, $H G|\mid L N$
$\Rightarrow X G|\mid K Y$
\therefore KYGX is a parallelogram.
$\therefore, \angle X G Y=\angle Y K X=90^{\circ}$
Thus, EFGH is a parallelogram with $\angle \mathrm{G}=90^{\circ}$.
\therefore EFGH is a rectangle.

Answer 14:
G

E
Let LMNO be the rectangle and $\mathrm{E}, \mathrm{F}, \mathrm{G}$ and H be the midpoints of $\mathrm{LM}, \mathrm{MN}, \mathrm{NO}$ and OL, respectively.
Join the diagonals LN and MO. Let OM cut HG at X and LN cut FG at Y . Let K be the intersection point of LN and OM.
In $\triangle \mathrm{LMN}$, as,
$\therefore \mathrm{EF} \| \mathrm{LN}$ and $\mathrm{EF}=\frac{1}{2} \mathrm{LN} \quad$ [By midpoint theorem]
Again, in \triangle OLN, the points G and H are the mid points of LO and ON respectively.
$\therefore \mathrm{GH} \| \mathrm{LN}$ and $\mathrm{GH}=\frac{1}{2} \mathrm{LN} \quad$ [By midpoint theorem]
Now, EF || LN and GH | | LN
$\Rightarrow \mathrm{EF} \| \mathrm{GH}$
Also, $\mathrm{EF}=\mathrm{GH} \quad$ [Each equal to $\left.\frac{1}{2} \mathrm{LN}\right]$
So, EF GH is a parallelogram.
Now, in \triangle HLE and $\triangle \mathrm{FME}$, as,
$\mathrm{LH}=\mathrm{MF}$
$\angle \mathrm{L}=\angle \mathrm{M}=90^{\circ}$
$\mathrm{LE}=\mathrm{ME}$
i.e., \triangle HLE $\cong \triangle$ FME
$\therefore \mathrm{EH}=\mathrm{EF}$
Similarly, \triangle SDR $\cong \Delta R C Q$
$\therefore \mathrm{HG}=\mathrm{FG}$
From (i), (ii) and (iii), as ,
$E F=E F=H G=H G$...(iv)
We know that the diagonals of a square bisect each other at right angles.
$\therefore \angle \mathrm{XOY}=90^{\circ}$

Now, GQ || ON
$\Rightarrow \mathrm{GX} \| \mathrm{YO}$
Also, HG || LN
$\Rightarrow \mathrm{YG}|\mid \mathrm{KX}$
\therefore KXRY is a parallelogram.
So, $\angle \mathrm{YRX}=\angle \mathrm{XKY}=90^{\circ} \quad$ (Opposite angles are equal)
Thus, EFGH is a parallelogram with $\angle \mathrm{G}=90^{\circ}$ and $\mathrm{EF}=\mathrm{EF}=\mathrm{HG}=\mathrm{HG}$.
\therefore EFGH is a square.

Answer 15:

Let LMNO be the rectangle and $\mathrm{E}, \mathrm{F}, \mathrm{G}$ and H be the midpoints of $\mathrm{LM}, \mathrm{MN}, \mathrm{NO}$ and OL, respectively.
Join EF, FG, GH, HE and NO. NO is a diagonal of LMNO.
In $\triangle \mathrm{LMN}$, as,
$\therefore \mathrm{EF}\left|\mid \mathrm{LN}\right.$ and $\mathrm{EF}=\frac{1}{2} \mathrm{LN} \quad$ (i) (By midpoint theorem)
Similarly in \triangle MNO, as ,
$\therefore \mathrm{GH} \| \mathrm{LN}$ and $\mathrm{GH}=\frac{1}{2} \mathrm{MO} \quad$ (ii) (By midpoint theorem)
From equations (i) and (ii), we get:
$\mathrm{HE}\|\mathrm{MO}\| \mathrm{FG} \therefore \mathrm{HE} \| \mathrm{FG}$ and $\mathrm{HE}=\mathrm{FG} \quad$ [Each equal to $\frac{1}{2} \mathrm{MO}$]
In quadrilateral HEFG, one pair of the opposite sides is equal and parallel to each other.
\therefore HEFG is a parallelogram.
We know that the diagonals of a parallelogram bisect each other.
$\therefore \mathrm{EG}$ and FH bisect each other.

Answer 16

Given: In quadrilateral $\mathrm{ABCD}, \mathrm{BD}=\mathrm{AC}$ and $\mathrm{E}, \mathrm{F}, \mathrm{G}$ and H are the mid-points of $A D, C D, B C$ and $A B$, respectively.
To prove: EFGH is a rhombus.
Proof:
In $\triangle \mathrm{ADC}$,

Since, E and F are the mid-points of sides AD and CD , respectively.
So, $\mathrm{EF} \| \mathrm{AC}$ and $\mathrm{EF}=\frac{1}{2} \mathrm{AC}$
Similarly, in $\triangle A B C$,
Since, G and H are the mid-points of sides $B C$ and $A B$, respectively.
So, $\mathrm{GH} \| \mathrm{AC}$ and $\mathrm{GH}=\frac{1}{2} \mathrm{AC}$
From (1) and (2), we get
$\mathrm{EF}=\mathrm{GH}$ and $\mathrm{EF} \| \mathrm{GH}$
But this a pair of opposite sides of the quadrilateral EFGH.
So, EFGH is a parallelogram.
Now, in $\triangle A B D$,
Since, F and G are the mid-points of sides $A D$ and $A B$, respectively.
So, $F G \| B D$ and $F G=\frac{1}{2} B D$
But $\mathrm{BD}=\mathrm{AC} \quad$ (Given)
$\Rightarrow \frac{1}{2} \mathrm{BD}=\frac{1}{2} \mathrm{AC}$
$\Rightarrow \mathrm{FG}=\mathrm{GH} \quad[$ From (2) and (3)]
But these are a pair of adjacent sides of the parallelogram EFGH.
Hence, EFGH is a rhombus.

Answer 17:

Given: In quadrilateral $\mathrm{ABCD}, \mathrm{AC} \perp \mathrm{BD} . \mathrm{E}, \mathrm{F}, \mathrm{G}$ and H are the mid-points of AB , $B C, C D$ and $A D$, respectively.
To prove: EFGH is a rectangle.
Proof:
In $\triangle A B C, E$ and F are mid-points of $A B$ and $B C$, respectively.
$\therefore \mathrm{EF} \| \mathrm{AC}$ and $\mathrm{EF}=\frac{1}{2} \mathrm{AC} \quad$ (Mid-point theorem)
Similarly, in $\triangle A C D$,
So, G and H are mid-points of sides CD and AD , respectively.
$\therefore \mathrm{GH} \| \mathrm{AC}$ and $\mathrm{GH}=\frac{1}{2} \mathrm{AC} \quad$ (Mid-point theorem)
From (1) and (2), we get
$\mathrm{EF}|\mid \mathrm{GH}$ and $\mathrm{EF}=\mathrm{GH}$
But this is a pair of opposite sides of the quadrilateral EFGH,
So, EFGH is parallelogram.
Now, in $\triangle B C D, F$ and G are mid-points of $B C$ and $C D$, respectively.
$\therefore \mathrm{FG} \| \mathrm{BD}$ and $\mathrm{FG}=\frac{1}{2} \mathrm{BD} \quad$ (Mid-point theorem)
From (2) and (3), we get

GH || AC and FG || BD
But, $\mathrm{AC} \perp \mathrm{BD}$ (Given)
$\therefore \mathrm{GH} \perp \mathrm{FG}$
Hence, EFGH is a rectangle.

Answer 18:

Given: In quadrilateral $\mathrm{ABCD}, \mathrm{AC}=\mathrm{BD}$ and $\mathrm{AC} \perp \mathrm{BD} . \mathrm{E}, \mathrm{F}, \mathrm{G}$ and H are the midpoints of $A B, B C, C D$ and $A D$, respectively.
To prove: EFGH is a square.
Construction: Join AC and BD.
Proof: In $\triangle \mathrm{ABC}$,
$\because E$ and F are mid-points of $A B$ and $B C$, respectively.
$\therefore \mathrm{EF} \| \mathrm{AC}$ and $\mathrm{EF}=\frac{1}{2} \mathrm{AC} \quad$ (Mid-point theorem)
Similarly, in $\triangle A C D$,
$\because G$ and H are mid-points of sides CD and AD, respectively.
$\therefore \mathrm{GH} \| \mathrm{AC}$ and $\mathrm{GH}=\frac{1}{2} \mathrm{AC} \quad$ (Mid-point theorem)
From (1) and (2), we get
$\mathrm{EF} \| \mathrm{GH}$ and $\mathrm{EF}=\mathrm{GH}$
But this a pair of opposite sides of the quadrilateral EFGH.
So, EFGH is parallelogram.
Now, in $\triangle B C D$,
$\because \mathrm{F}$ and G are mid-points of sides BC and CD , respectively.
$\therefore \mathrm{FG} \| \mathrm{BD}$ and $\mathrm{FG}=\frac{1}{2} \mathrm{BD} \quad$ (Mid-point theorem)
From (2) and (3), we get
$\mathrm{GH}|\mid \mathrm{AC}$ and FG$| \mid \mathrm{BD}$
But, $\mathrm{AC} \perp \mathrm{BD}$
(Given)
$\therefore \mathrm{FG} \perp \mathrm{FG}$
But this a pair of adjacent sides of the parallelogram EFGH.
So, EFGH is a rectangle.
Again, $\mathrm{AC}=\mathrm{BD}$
(Given)
$\Rightarrow \frac{1}{2} \mathrm{AC}=\frac{1}{2} \mathrm{BD}$
$\Rightarrow \mathrm{GH}=\mathrm{FG} \quad[$ From (2) and (3)]
But this a pair of adjacent sides of the rectangle EFGH.
Hence, EFGH is a square.

MULTIPLE CHOICE QUESTIONS

Answer 1:

(b) 73°

Let the measure of the fourth angle be y^{0}.
Since the sum of the angles of a quadrilateral is 360°, as ,
$80^{\circ}+95^{\circ}+112^{\circ}+y=360^{\circ}$
$\Rightarrow 287^{\circ}+\mathrm{y}=360^{\circ}$
$\Rightarrow y=73^{\circ}$
Hence, the measure of the fourth angle is 73°.

Answer 2:

(b) 60°

Let $\angle A=3 y, \angle B=4 y, \angle C=5 y$ and $\angle D=6 y$.
Since the sum of the angles of a quadrilateral is 360°, as ,
$3 y+4 y+5 y+6 y=360^{\circ}$
$\Rightarrow 18 \mathrm{y}=360^{\circ}$
$\Rightarrow \mathrm{y}=20^{\circ}$
$\therefore \angle \mathrm{A}=60^{\circ}, \angle \mathrm{B}=80^{\circ}, \angle \mathrm{C}=100^{\circ}$ and $\angle \mathrm{D}=120^{\circ}$

Answer 3:

(c) 45°

Given, $\angle \mathrm{BAD}=75^{\circ}$ and $\angle \mathrm{CBD}=60^{\circ}$
$\Rightarrow \angle B=180^{\circ}-\angle A 180^{\circ}-75^{\circ}=105^{\circ}$
Thus, $\angle B=\angle A B D+\angle C B D$
$\Rightarrow 105^{\circ}=\angle A B D+60^{\circ}$
$\Rightarrow \angle A B D=105^{\circ}-60^{\circ}=45^{\circ}$
$\Rightarrow \angle A B D=\angle B D C=45^{\circ}$

Answer 4:

Given, $\angle A C B=50^{\circ}$ and $\angle A=90^{\circ}$ as it is rhombus \triangle
In \triangle BOC,
$90^{\circ}+50^{\circ}+\angle O B C=180^{\circ}$
$\Rightarrow \angle O B C=180^{\circ}-(90+50)=180-140^{\circ}$
$\Rightarrow \angle O B C=40^{\circ}$
As $\angle O B C=\angle A D B$
Thus, $\angle A D B=40^{\circ}$
Hence, (a) is the correct answer.

Answer 5:

(d) Rectangle.
rectangle has diagonals of equal length.

Answer 6:

(d) rhombus
rhombus diagonals bisect each other at right angles.

Answer 7:

(a) 10 cm

Let PQRS be the rhombus.
$\therefore \mathrm{PQ}=\mathrm{QR}=\mathrm{RS}=\mathrm{SP}$
Here, $P R$ and $Q S$ are the diagonals of $P Q R S$, where $P R=16 \mathrm{~cm}$ and $Q S=12$ cm.

Let the diagonals intersect each other at M .
We know that the diagonals of a rhombus are perpendicular bisectors of each
other.
$\therefore \triangle \mathrm{PMQ}$ is a right angle triangle, in which $\mathrm{MP}=\frac{1}{2} \mathrm{PR}=\frac{16}{2}=8 \mathrm{~cm}$ and $\mathrm{MQ}=$
$\frac{1}{2} \mathrm{QS}=\frac{12}{2}=6 \mathrm{~cm}$.
Now, $\mathrm{PQ}^{2}=\mathrm{MP}^{2}+\mathrm{MQ}^{2} \quad$ [Pythagoras theorem]
$\Rightarrow \mathrm{PQ}^{2}=(8)^{2}+(6)^{2}$
$\Rightarrow \mathrm{PQ}^{2}=64+36=100$
$\Rightarrow P Q=10 \mathrm{~cm}$
Hence, the side of the rhombus is 10 cm .

Answer 8:

(b) 12 cm

Let PQRS be the rhombus.
$\therefore \mathrm{PQ}=\mathrm{QR}=\mathrm{RS}=\mathrm{SP}=10 \mathrm{~cm}$
Let $P R$ and $Q S$ be the diagonals of the rhombus.
Let PR be y and QS be 16 cm and M be the intersection point of the diagonals.
We know that the diagonals of a rhombus are perpendicular bisectors of each other.
$\therefore \triangle \mathrm{AOB}$ is a right angle triangle in $\mathrm{MP}=\frac{1}{2} \mathrm{PR}=\frac{y}{2}$ and $\mathrm{MQ}=\frac{1}{2} \mathrm{QS}=\frac{16}{2}=8$ cm.

Now, $\mathrm{PQ}^{2}=\mathrm{MP}^{2}+\mathrm{MQ}^{2} \quad$ [Pythagoras theorem]
$\Rightarrow 10^{2}=\left(\frac{y}{2}\right)^{2}+8^{2} \Rightarrow\left(\frac{y}{2}\right)^{2}=36=6^{2} \Rightarrow y=2 \times 6=12 \mathrm{~cm}$

Answer 9:

Given: In rectangle $\mathrm{PQRS}, \angle \mathrm{MPD}=35^{\circ}$.
Since, $\angle \mathrm{QPS}=90^{\circ}$
$\Rightarrow \angle \mathrm{MPQ}=90^{\circ}-35^{\circ}=55^{\circ}$
In $\triangle \mathrm{MPQ}$,
Since, MP $=\mathrm{MQ} \quad$ (Diagonals of a rectangle are equal and bisect each other)
$\Rightarrow \angle \mathrm{MPQ}=\angle \mathrm{MQP}=55^{\circ} \quad$ (Angles opposite to equal sides are equal)
Now, in \triangle MSP,
$55^{\circ}+55^{\circ}+\angle S M P=180^{\circ} \quad$ (Angle sum property of a triangle)
$\Rightarrow \angle \mathrm{SMP}=180^{\circ}-110^{\circ}$
$\Rightarrow \angle S M P=70^{\circ}$
Thus, the acute angle between the diagonals is 70°.
Hence, the correct option is (b).

Answer 10:

(c) Rectangle

ABCD is parallelogram with two adjacent side
$\angle A=\angle B$ \qquad (given)
Then $\angle A+\angle B=180^{\circ}$
$\Rightarrow 2 \angle A=180^{\circ}$
$\Rightarrow \angle A=90^{\circ}$
Others angles are equal to each others
$\Rightarrow \angle A=\angle B=\angle C=\angle D=90^{\circ}$
\therefore The parallelogram is rectangle.

Answer 11:

(b) 50°
in quadrilateral $\mathrm{ABCD}, \mathrm{AO}$ and BO are the bisectors of $\angle \mathrm{C}=70^{\circ}$ and $\angle \mathrm{D}=30^{\circ}$ $\angle A+\angle B+\angle C+\angle D=360^{\circ}$
$\angle A+\angle B=360^{\circ}-(70+30)^{\circ}=260^{\circ}$
$\therefore \frac{1}{2}(\angle \mathrm{~A}+\angle \mathrm{B})=\frac{1}{2}(260)^{\circ}=130^{\circ}$
In $\triangle \mathrm{AOB}$,
$\angle \mathrm{AOB}=180^{\circ}-\left[\frac{1}{2}(\angle \mathrm{~A}+\angle \mathrm{B})\right]$
$\Rightarrow \angle A O B=180^{\circ}-130^{\circ}=50^{\circ}$

Answer 12:
(d) 90°

Sum of any two adjacent angles of a rectangle is 180°
\therefore, sum of angle bisectors of two adjacent angles $=\frac{1}{2} \times 180^{\circ}=90^{\circ}$
\therefore Intersection angle of bisectors of two adjacent angles $=180^{\circ}-90^{\circ}=90^{\circ}$

Answer 13:

(c) Rectangle
parallelograms angle bisectors enclose a rectangle

Answer 14:

Given: In quadrilateral $\mathrm{ABCD}, \mathrm{AS}, \mathrm{BQ}, \mathrm{CQ}$ and DS are angle bisectors of angles A, B, C and D.
$\angle Q P S=\angle A P B$
In $\triangle \mathrm{APB}$,

$$
\begin{align*}
\angle A P B+\angle P A B & +\angle A B P=180^{\circ} \tag{1}\\
& \Rightarrow \angle \mathrm{APB}=180^{\circ}-\angle P A B-\angle A B P \\
& \Rightarrow \angle A P B=180-\frac{1}{2} \angle A-\frac{1}{2} \angle B \\
& \Rightarrow \angle \mathrm{APB}=180^{\circ}-\frac{1}{2}(\angle \mathrm{~A}+\angle \mathrm{B}) \tag{2}
\end{align*}
$$

From (1) and (2),
$\angle \mathrm{QPS}=180^{\circ}-\frac{1}{2}(\angle \mathrm{~A}+\angle \mathrm{B})$
Also, $\angle \mathrm{QRS}=180^{\circ}-\frac{1}{2}(\angle \mathrm{C}+\angle \mathrm{D})$
From (3) and (4), we get

$$
\begin{aligned}
\angle \mathrm{QPS}+\angle \mathrm{QRS} & =360^{\circ}-\frac{1}{2}(\angle \mathrm{~A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}) \\
& =360^{\circ}-\frac{1}{2}\left(360^{\circ}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =360^{\circ}-180^{\circ} \\
& =180^{\circ}
\end{aligned}
$$

Thus, $P Q R S$ is a quadrilateral whose opposite angles are supplementary. Hence, (d) is the correct option.

Answer 15:

(d) parallelogram
parallelogram is formed after joining the mid points of the adjacent sides of a quadrilateral.

Answer 16:

(b) Square

Square is formed after joining the mid points of the adjacent sides of a square of the sides.

Answer 17:

(d) parallelogram.
parallelogram is formed after joining the mid points of the adjacent sides of a parallelogram i

Answer 18:

(a) rhombus

Rhombus is formed after joining the mid points of the adjacent sides of a rectangle

Answer 19:

(c) Rectangle

Rectangle quadrilateral formed after joining the mid points of the adjacent sides of a rhombus.

Answer 20: (d) C

A
ABCD is always parallelogram
By midpoint theorem,
$D A \| Q S$ and $A B \| P R$
$\Rightarrow \mathrm{LA} \| \mathrm{OM}$ and $\mathrm{OM} \| \mathrm{LA} \Rightarrow \mathrm{LMOA}$ is a parallelogram.
$\Rightarrow \angle \mathrm{LAM}=\angle \mathrm{LOM}=90^{\circ} \quad[\mathrm{PR} \perp \mathrm{SQ}$ (given) $]$
Now, ABCD is parallelogram with one angle $\angle \mathrm{A}=90^{\circ}$
$\therefore \mathrm{ABCD}$ is rectangle if $\mathrm{PR} \perp \mathrm{SQ}$

Answer 21:

Given:
The quadrilateral $P Q R S$ is a rhombus.
Thus, the sides PQ, QR, RS and SP are equal.
In $\triangle \mathrm{LMO}$,
$\mathrm{RS}=\frac{1}{2} \mathrm{MN}$
Also, in \triangle LON,
$\mathrm{QR}=\frac{1}{2} \mathrm{LN}$
And, $Q R=R S$
$\Rightarrow \frac{1}{2} \mathrm{MO}=\frac{1}{2} \mathrm{LN}$
[From (1) and (2)]
$\therefore, M O=L N$
Thus, the diagonals of LMNO are equal.
Hence, (c) is the correct option.

Answer 22: (d)

Square the quadrilateral formed after joining the mid points of the quadrilateral with diagonals perpendicular and equal to each other Hence, (d) is the correct option.

Answer 23:

(c) 72°

Let $P Q R S$ is a parallelogram.
$\therefore \angle \mathrm{P}=\angle \mathrm{R}$ and $\angle \mathrm{Q}=\angle \mathrm{S}$
(Opposite angles)
Let $\angle \mathrm{P}=\mathrm{y}$ and $\angle \mathrm{Q}=\frac{2}{3} \mathrm{y}$
$\therefore \angle P+\angle Q=180^{\circ}$
$\Rightarrow y+\frac{2}{3} y=180^{\circ}$
$\Rightarrow \frac{5}{3} \mathrm{y}=180^{\circ}$
$\Rightarrow y=108^{\circ}$
$\therefore \angle \mathrm{Q}=\frac{2}{3} \times\left(108^{\circ}\right)=72^{\circ}$
Hence, $\angle \mathrm{P}=\angle \mathrm{R}=108^{\circ}$ and $\angle \mathrm{Q}=\angle \mathrm{S}=72^{\circ}$

Answer 24:

(c) 112°

Let $P Q R S$ is a parallelogram.
$\therefore \angle \mathrm{P}=\angle \mathrm{R}$ and $\angle \mathrm{Q}=\angle \mathrm{S}$
Let $\angle \mathrm{P}=\mathrm{y}$
$\therefore \angle Q=(2 y-24)^{\circ}$
Now, $\angle P+\angle Q=180^{\circ}$
$\Rightarrow y+2 y-24^{\circ}=180^{\circ}$
$\Rightarrow 3 y=204^{\circ}$
$\Rightarrow y=68^{\circ}$
$\therefore \angle Q=2 \times 68^{\circ}-24^{\circ}=112^{\circ}$
Hence, $\angle \mathrm{P}=\angle \mathrm{R}=68^{\circ}$ and $\angle \mathrm{Q}=\angle \mathrm{S}=112^{\circ}$

Answer 25:

(c) Trapezium

Let the angles be (3y), (7y), (6y) and (4y).
Now $3 y+7 y+6 y+4 y=360^{\circ}$
$\therefore y=18^{\circ}$
Thus, angles will be
$3 \times 18^{\circ}=54^{\circ}$
$7 \times 18^{\circ}=126^{\circ}$,
$6 \times 18^{\circ}=108^{\circ}$,
$4 \times 18^{\circ}=72 o^{\circ}$
As, $54^{\circ}+126^{\circ}=180^{\circ}$ and $72^{\circ}+108^{\circ}=180^{\circ}$
$\therefore \mathrm{ABCD}$ is a trapezium.
Answer 26:
(c) The opposite angles in a parallelogram are bisected by the diagonals.

Answer 27:
(c) Rectangle

It is obvious that the bisectors will enclose a rectangle.
If $A M B$ and $C N D$ are two parallel lines, then the bisectors of $\angle A M N, \angle B M N$, $\angle N M P$ and $\angle N M D$ enclose a rectangle.

Answer 28:

(c) 60°
$\angle \mathrm{ABD}=\angle \mathrm{CDB}=45^{\circ}$ \qquad .alternative interior angles $\angle B A D=\angle B C D=75^{\circ}$
In $\triangle \mathrm{BCD}, \angle C=75^{\circ}$
$\Rightarrow \angle \mathrm{CBD}+\angle \mathrm{BCD}+\angle \mathrm{BDC}=180^{\circ}$
$\therefore \angle C B D=180^{\circ}-\left(75^{\circ}+45^{\circ}\right)=60^{\circ}$

Answer 29:

(c) $A<B$

Let us assume that x be height of the parallelogram.
Now clearly, $\mathrm{x}<\mathrm{b}$
$\therefore A=a \times x<a \times b=B$
$\therefore A<B$.

Answer 30:

(b) $\mathrm{AF}=2 \mathrm{AB}$

In parallelogram $A B C D$,
$A B|\mid D C$
$\angle D C E=\angle E B F$
In \triangle DCE and $\triangle B F E$,
$\angle D C E=\angle E B F \quad$ (Proved above)
$\angle D E C=\angle B E F$
$B E=C E \quad$ (Given)
By parallelogram theorem
$\therefore, \triangle D C E \cong \triangle B F E$
$\therefore D C=B F$
Now $\mathrm{DC}=\mathrm{AB}$, since ABCD is a parallelogram.
$\therefore D C=A B=B F$
Now, $A F=A B+B F$
From (i),
$\therefore A F=A B+A B=2 A B$

Answer 31:

Given: In $\triangle A B C, R, S, D$ and E are the mid-points of $B P, C P, A B$ and $A C$ In $\triangle \mathrm{ABP}$,
$\therefore \mathrm{BR}=\frac{1}{2} \mathrm{AP}$ and $\mathrm{BR} \| \mathrm{AP}$
In $\triangle \mathrm{ACP}$,
$\therefore \mathrm{ES}=\frac{1}{2} \mathrm{AP}$ and $\mathrm{ES} \| \mathrm{AP}$
From (i) and (ii)
$B R=E S$ and $B R|\mid E S$
As BR and ES are opposite sides of the quadrilateral, thus it is a parallelogram. Thus, (b) is the correct answer.

Answer 32:

(b) $\frac{1}{2}(a+b)$

Suppose PQRS is a trapezium.
Draw YZ parallel to PQ.
Join QS to cut $Y Z$ at X.
Now, in $\triangle \mathrm{SPQ}, \mathrm{Y}$ is the midpoint of PS and $\mathrm{YX} \| \mathrm{PQ}$.
$\therefore \mathrm{M}$ is the mid point of QS and $\mathrm{YX}=\frac{1}{2}$ (a)
Similarly, M is the mid point of $Q S$ and $X Z|\mid D C$.
i.e., Z is the midpoint of QR and $\mathrm{XZ}=\frac{1}{2}(\mathrm{~b})$
$\therefore \mathrm{YZ}=\mathrm{YX}+\mathrm{XZ}=\frac{1}{2}(\mathrm{a}+\mathrm{b})$

Answer 33:
(d) $\frac{1}{2}(A B-C D)$

Join CF and produce it to cut AB at M .
Then $\triangle \mathrm{CDF} \cong \triangle \mathrm{MBF}$
$[\mathrm{DF}=\mathrm{BF}, \angle \mathrm{DCF}=\angle \mathrm{BMF}$ and $\angle \mathrm{CDF}=\angle \mathrm{MBF}]$
$\therefore C D=M B$
Thus, in $\triangle C A M$, the points E and F are the mid points of $A C$ and $C M$, respectively.
$\therefore \mathrm{EF}=\frac{1}{2}(\mathrm{AM})=\frac{1}{2}(\mathrm{AB}-\mathrm{MB})=\frac{1}{2}(\mathrm{AB}-\mathrm{CD})$

Answer 34:

(c) 90°
$\mathrm{B} \angle \mathrm{B}=\angle \mathrm{D}$
$\Rightarrow \frac{1}{2} \angle \mathrm{~B}=\frac{1}{2} \angle \mathrm{D}$
$\Rightarrow \angle \mathrm{ADB}=\angle \mathrm{ABD}$
$\therefore \triangle \mathrm{ABD}$ is an isosceles triangle and M is midpoint of BD .
$\therefore \mathrm{AM} \perp \mathrm{BD}$ thus, $\angle \mathrm{AMB}=90^{\circ}$

Answer 35:

(c) $\mathrm{AC}^{2}+\mathrm{BD}^{2}=4 \mathrm{AB}^{2}$

As diagonals of a rhombus bisect each other at right angles.
$\Rightarrow \mathrm{OA}=\frac{1}{2} \mathrm{AC}$
$\mathrm{OB}=\frac{1}{2} \mathrm{BD}$ and $\angle \mathrm{AOB}=90^{\circ}$
By Pythagoras theorem , \triangle AOB
Now, $(A B)^{2}=(O A)^{2}+(O B)^{2}$
$\Rightarrow \frac{1}{4}(\mathrm{AC})^{2}+\frac{1}{4}(\mathrm{BD})^{2}$
$\therefore 4 \mathrm{AB}^{2}=\left(\mathrm{AC}^{2}+\mathrm{BD}^{2}\right)$

Answer 36:
(c) $\mathrm{BC}^{2}+\mathrm{AD}^{2}+2 \mathrm{AB.CD}$

Draw perpendicular from D and C on AB which meets AB at M and N , respectively.
\therefore DMNC is a parallelogram and $\mathrm{MN}=\mathrm{CD}$.
In $\triangle A B C, \angle B$ is acute.
$\therefore \mathrm{AC}^{2}=\mathrm{BC}^{2}+\mathrm{AB}^{2}-2 \mathrm{AB} \cdot \mathrm{AM}$
In $\triangle \mathrm{ABD}, \angle \mathrm{A}$ is acute.
$\therefore \mathrm{BD}^{2}=\mathrm{AD}^{2}+\mathrm{AB}^{2}-2 \mathrm{AB} \cdot \mathrm{AN}$
$\therefore \mathrm{AC}^{2}+\mathrm{BD}^{2}$
$=\left(\mathrm{BC}^{2}+\mathrm{AD}^{2}\right)+\left(\mathrm{AB}^{2}+\mathrm{AB}^{2}\right)-2 \mathrm{AB}(\mathrm{AM}+\mathrm{BN})$
$=\left(B C^{2}+A D^{2}\right)+2 A B(A B-A M-B N)[A B=A M+M N+N B$ and $A B-A M=B M]$
$=\left(\mathrm{BC}^{2}+\mathrm{AD}^{2}\right)+2 \mathrm{AB}(\mathrm{BM}-\mathrm{BN})$
$=\left(\mathrm{BC}^{2}+\mathrm{AD}^{2}\right)+2 \mathrm{AB} \cdot \mathrm{MN}$
$\therefore \mathrm{AC}^{2}+\mathrm{BD}^{2}=\left(\mathrm{BC}^{2}+\mathrm{AD}^{2}\right)+2 \mathrm{AB} . \mathrm{CD}$

Answer 37:

(d) $1: 1$

Area of a parallelogram $=$ base \times height
The height will be same for any pair of parallelograms with same base and same parallel lines.

Answer 38:

(b) $\frac{1}{3} A C$

Let X be the mid point of FC . Join DX .
In $\triangle B C F, D$ is the mid point of $B C$ and X is the mid point of $F C$.
$\therefore \mathrm{DX} \| \mathrm{BF}$
$\Rightarrow \mathrm{DX} \| \mathrm{EF}$
In $\triangle \mathrm{ADX}, \mathrm{E}$ is the mid point of AD and $\mathrm{EF} \| \mathrm{DX}$.
i.e., F is the mid point of $A X$.

Now, $\mathrm{AF}=\mathrm{FG}=\mathrm{GC}$
$\therefore \mathrm{AF}=\frac{1}{3} \mathrm{AC}$

Answer 39: (A)
Given, $\angle \mathrm{AOB}=70^{\circ}$
$\angle \mathrm{OAD}=\angle \mathrm{OCB}=30^{\circ} \quad$ (Alternate interior angles)
As we know that Linear pair of angles is 180°
$\angle A O B+\angle B O C=180^{\circ}$
$\therefore \angle \mathrm{BOC}=180^{\circ}-70^{\circ}=110^{\circ}$
In $\triangle B O C$,
$\angle O B C+\angle B O C+\angle O C B=180^{\circ}$
$\angle O B C=180^{\circ}-\angle B O C-\angle O C B$
$\angle \mathrm{OBC}=180^{\circ}-\left(110^{\circ}+30^{\circ}\right)=40^{\circ}$
$\therefore \angle \mathrm{DBC}=40^{\circ}$

Answer 40:

(c) I and II

The statement III false, any triangle that will be formed on joining midpoints of sides of an isosceles triangle will be an isosceles triangle.

Answer 41:

(b) II and III

The statement I is not true as diagonal of rectangle does not bisect $\angle \mathrm{A}$ and $\angle \mathrm{C}$.

SHORT ANSWER QUESTIONS

Answer 42:

Given, $\mathrm{SR}=2 \mathrm{~cm}$ and $\mathrm{PR}=5 \mathrm{~cm}$.
As, the opposite angles of quadrilateral are equal, so $P Q R S$ is a parallelogram. $\Rightarrow S R=P Q$
$\therefore \mathrm{SR}=\mathrm{PQ}=2 \mathrm{~cm}$

Answer 43:

The parallelogram diagonals bisect each other, thus the statement is not true.

Answer 44:

Given: $\angle \mathrm{P}+\angle \mathrm{S}=180^{\circ}$.
i.e. the sum of the adjacent angles is equal to 180°.
$P Q \| R S$ and also $\angle R+\angle S=180^{\circ}$
Hence $P Q R S$ is a parallelogram.

Answer 45:

Acute angles is less than 90°. It is clear if all angles are less than 90°, then sum all angles will be less than 360°, thus a quadrilateral cannot be formed.

Answer 46:

It mean all angles is 90°. As rectangle and square have all angles as right angles, thus the statement holds true.

Answer 47:

It means obtuse angles is greater than 90°. It is clear if all angles are greater than 90°, then sum all angles will be greater than 360°, thus a quadrilateral cannot be formed.

Answer 48:

As the sum of all the angles given is $70^{\circ}+115^{\circ}+60^{\circ}+120^{\circ}=365^{\circ}$ Thus, a quadrilateral with these angles cannot be formed.

Sum of all the angles should be exact 360°.

Answer 49:

As, the sum of all angles is equal to 360° in a quadrilateral. Let each angle of the quadrilateral be y .

$$
y+y+y+y=360^{\circ}
$$

$\Rightarrow 4 y=360^{\circ}$
$\Rightarrow \mathrm{y}=90^{\circ}$
\Rightarrow All the angles of the quadrilateral are 90°.
Thus, the given quadrilateral is a rectangle.

Answer 50:

Given, $\mathrm{AB}=7.2 \mathrm{~cm}, \mathrm{BC}=9.8 \mathrm{~cm}, \mathrm{AC}=3.6 \mathrm{~cm}$
In $\triangle \mathrm{ABC}$,
As, D and E are the mid-points of sides $A B$ and $B C$.
$\mathrm{DE}=\frac{1}{2}(\mathrm{AC})=\frac{1}{2}(3.6)$
$\Rightarrow \mathrm{DE}=1.8 \mathrm{~cm}$
Thus, DE is equal to 1.8 cm .

Answer 51:

As the diagonals of the quadrilateral bisect each other, thus PQRS is a parallelogram. And given, $\angle Q=56^{\circ}$

Angels at liner equations,
Thus, $\angle \mathrm{Q}+\angle \mathrm{R}=180^{\circ}$
$\Rightarrow 56^{\circ}+\angle \mathrm{R}=180^{\circ}$
$\Rightarrow \angle R=180^{\circ}-56^{\circ}$
$\Rightarrow \angle \mathrm{R}=124^{\circ}$

Answer 52:

Given: Parallelograms BDEF and AFDE.
F is mid point of $A B, A$
As, $\mathrm{BF}=\mathrm{DE}$
And, $\mathrm{AF}=\mathrm{DE}$
From (i) and (ii)
$\mathrm{AF}=\mathrm{FB}$

Answer 53:

As it is clear that when the diagonals of a quadrilateral bisects each other, then it is a parallelogram and when the diagonals of a quadrilateral are equal, then it is not necessarily a parallelogram .
\therefore I gives the answer and II does not give the answer.
Thus, (a) is the correct answer.

Answer 54:

It is clear that neither I alone nor II alone is sufficient to answer .
On the other hand, on considering both I and II together it will give the
answer.
\therefore, (c) is the correct answer.

Answer 55:

As it is clear that when the diagonals of a parallelogram are equal, and intersect each other at right angle then the parallelogram is a square. Thus, (c) is the correct answer.

Answer 56:

It is clear that when I or II holds true, the quadrilateral is a parallelogram. Thus, (b) is the correct answer.

Answer 57:

(a) Both Assertion and Reason are true and Reason is a correct explanation of Assertion.
Fourth angle $=360^{\circ}-\left(130^{\circ}+70^{\circ}+60^{\circ}\right)=100^{\circ}$
It is obvious that the assertion (A) and reason(R) is absolutely true.
On the same hand the reason (R) can be proved easily. Thus, (R) is true as well.

As, the reason (R) hold the assertion (A).
Thus, (a) is the correct answer .

Answer 58:

(a) Both Assertion and Reason are true and Reason is a correct explanation of Assertion.
It is obvious that the assertion (A) and reason(R) is absolutely true.

On the same hand the reason (R) can be proved easily. Thus, (R) is true as well.

As, the reason (R) hold the assertion (A).
Thus, (a) is the correct answer .

Answer 59:

(b) Both Assertion and Reason are true but Reason is not a correct explanation of Assertion.

It is obvious that the assertion (A) is absolutely true.
On the same hand the reason (R) can be proved easily. Thus, (R) is true as well.

As, the reason (R) does not hold the assertion (A).
Thus, (b) is the correct answer .

Answer 60:

(d) Assertion is false and Reason is true.

It is obvious that the assertion (A) is absolutely false.
On the same hand the reason (R) can be proved easily. Thus, (R) is true as well.

Thus, (d) is the correct answer.

Answer 61:

(b) Both Assertion and Reason are true but Reason is not a correct explanation of Assertion.
It is obvious that the assertion (A) is absolutely true.

On the same hand the reason (R) can be proved easily. Thus, (R) is true as well.

As, the reason (R) does not hold the assertion (A).
Thus, (b) is the correct answer .

Answer 62:

(a) will go with (q),
(b) will go with (r),
(c) will go with (s),
(d) will go with (p)

Answer 63:
(a) - (r), (b) - (s), (c) - (p), (d) - (q)
(a) $\mathrm{PQ}=\frac{1}{2}(\mathrm{AB}+\mathrm{CD})=\frac{1}{2}(17)=8.5 \mathrm{~cm}$
(b) $\mathrm{OR}=\frac{1}{2}(\mathrm{PR})=\frac{1}{2}(13)=6.5 \mathrm{~cm}$

