

IN-SPACE TRANSPORTATION

SOLVING THE LAST-MILE PROBLEM IN SPACE JOEL C. SERCEL, PHD CHIEF TECHNOLOGY OFFICER

PRESENTED AT THE FISO TELECON **12 DECEMBER 2018**

Confidential

MOMENTUS TEAM

LEV KHASIS, PHD in aerospace Chairman & Founder Former Senior VP of Walmart

TO BE ANNOUNCED Chief Engineer

PHILIP MAINWARING Head of Propulsion

YUQI WANG Aerospace Engineer Former Space-X engineer

CHRISTIAN SALLABERGER, PHD **Board Member** Chairman of International Space University

CHARLIE FENG Aerospace Engineer

ALIKI LOPER-LEDDY Project Manager JOEL SERCEL, PHD Chief Technology Officer Former Principle Engineer at JPL

NEGAR FEHER VP of Products and BD Former Head of BD in SS/L

MARK CRAWFORD Aerospace Engineer M.S. UCLA, B.S. Math/Physics UCSB

MIKE MICCI, PHD Advisor Professor in PenState, Inventor of MET

AARON MITCHELL, SPACE SYSTEMS ENGINEER Former JPL

MATT PARMAN Aerospace Engineer

Confidential

MIKHAIL KOKORICH

President & Founder

Founded two billion dollars companies Created 3 space companies, launched 10 satellites

• ,

INVESTING IN SPACE VS. GENERAL TECHNOLOGY

INVESTING IN SPACE VS. GENERAL TECHNOLOGY

CUMULATIVE SATELLITES LAUNCHED BY ORBIT

• GEO PROJECTED

DESTINATION

DIRECT FLIGHT

Confidential

DESTINATION

DEDICATED Launch

EARTH

Confidential

8₀

DEDICATED Launch

EARTH

Confidential

DEDICATED Launch

EARTH

Confidential

MOMENTUS

CUSTOM ORBIT

STANDARD ORBIT

Confidential

3. ARRIVAL AT **INITIAL ORBIT**

LAUNCH SEQUENCE

THE SOLUTION

STAN DARD OR BIT

STANDARD

ORBIT

PERFECT COMPLEMENTARY SERVICES

ARDORIDE 2021

VIGORIDE 2020

0-300KG

5,000-10,000KG

FERVORIDE

2022

MISSION

To provide the most effective and affordable in-space transportation services supplied by resources available in deep space.

- More efficient—3-4 times more than chemical rockets.
- More affordable—using water as a propellant radically reduces cost.
- Faster—3-4 times faster than ion.
- Safer—water less volatile than other propellants.

UNTIL NOW **SATELLITES** HAVE BEEN WORTH THEIR WEIGHT IN GOLD

	00 000	\$1
		μ
	510,000	AM, \$,0
	\$1,000	KILOGR
	\$100	COST PER
• CC	\$10	U
	\$1	

		C

HOW DID THIS HAPPEN?

THE TYRANNY OF SPACE TRANSPORTATION COSTS

¹8 19

INFREQUENT LAUNCHES

HOW DID THIS HAPPEN?

THE TYRANNY OF SPACE TRANSPORTATION COSTS

¹20

INFREQUENT LAUNCHES

NEED FOR EXTREME RELIABILITY

HOW DID THIS HAPPEN?

THE TYRANNY OF SPACE TRANSPORTATION COSTS

¹21

INFREQUENT LAUNCHES

NEED FOR EXTREME RELIABILITY

HIGHER LAUNCH COSTS

HOW DID THIS HAPPEN?

THE TYRANNY **OF SPACE** TRANSPORTATION **COSTS**

INFREQUENT LAUNCHES

NEED FOR EXTREME RELIABILITY

HIGHER LAUNCH COSTS

DEMAND FOR LONGER MISSION LIFE

HOW DID THIS HAPPEN?

THE TYRANNY **OF SPACE** TRANSPORTATION **COSTS**

INFREQUENT LAUNCHES

NEED FOR EXTREME RELIABILITY

HIGHER LAUNCH COSTS

HOW DID THIS HAPPEN?

THE TYRANNY **OF SPACE** TRANSPORTATION **COSTS**

DEMAND FOR LONGER MISSION LIFE

ADDITIONAL MISSION REQUIREMENTS

INFREQUENT LAUNCHES

NEED FOR EXTREME RELIABILITY

HIGHER LAUNCH COSTS

DEMAND FOR LONGER MISSION LIFE

HOW DID THIS HAPPEN?

THE TYRANNY **OF SPACE** TRANSPORTATION **COSTS**

ADDITIONAL MISSION REQUIREMENTS

> UNAFFORDABLE SYSTEMS

BUT WHAT DRIVES LAUNCH COST?

5

Energy? Hardware? Labor?

Rocket flight can be as cheap as air travel!

²27

BY 2028 SPACE LAUNCH COSTS WILL BE

BY 2050 SPACE LAUNCH COSTS WILL BE

Confidential

~ **\$500** /кс

~ **\$10**/kg

²1 28

WHY NOW?

AGILE METHODS PROVEN FOR AEROSPACE

HEALDHEAL

THE RISE OF THE BILLIONAIRE VISIONARY

Confidential

MANNON?

JEFF BEZOS, BLUE ORIGIN, APRIL 2017

BLUE ORIGIN

IF WE CAN MAKE ACCESS TO SPACE

REUSABLE SPACECRAFT PROVEN

MHY NOW?

PUBLIC-PRIVATE-PARTNERSHIP PROVEN

MHY NOW?

WATER FROM ASTEROIDS

1999 55992

Confidential

MHY NOVP

CHANGE IS HERE!

A VIRTUOUS CYCLE OF IMPROVEMENT

²86

FREQUENT LAUNCHES

CHANGE IS HERE!

A VIRTUOUS CYCLE OF IMPROVEMENT

²87

FREQUENT LAUNCHES

CHANGE IS HERE!

A VIRTUOUS CYCLE OF IMPROVEMENT

FREQUENT LAUNCHES

SHORTER MISSIONS

INEXPENSIVE SATELLITES

CHANGE IS HERE!

A VIRTUOUS CYCLE OF IMPROVEMENT

²39

FREQUENT LAUNCHES

SHORTER MISSIONS

INEXPENSIVE SATELLITES

CHANGE IS HERE!

A VIRTUOUS CYCLE OF IMPROVEMENT

CONSTANT UPDATE OF TECHNOLOGY

FREQUENT LAUNCHES

SHORTER MISSIONS

INEXPENSIVE SATELLITES

CHANGE IS HERE!

A VIRTUOUS CYCLE OF IMPROVEMENT

CONSTANT UPDATE OF TECHNOLOGY

ECONOMIES OF SCALE

FREQUENT LAUNCHES

SHORTER MISSIONS

INEXPENSIVE SATELLITES

CHANGE IS HERE!

A VIRTUOUS CYCLE OF IMPROVEMENT

CONSTANT UPDATE OF TECHNOLOGY

ECONOMIES OF SCALE

MASSIVE, AFFORDABLE SPACE INDUSTRIES

THE COMING DECADE AN EXPLOSION OF NEW INDUSTRIES IN SPACE

Confidential

ROADMAP

VIGORIDE EXT AVAILABLE

- 100-300 kg
- 500W solar panels
- Single payload ESPA adapter

ARDORIDE **AVAILABLE**

- 500-1000 kg
- 2-3kW solar panels
- ESPA ring.

FERVORIDE AVAILABLE

- 5-10 Tons
- 5-10kW solar panels
- Reusable Platforms

³44

MX-I MISSION OVERVIEW

- Mission Objective: Flight Demonstration of the Momentus Designed Vigor RF Water Plasma Thruster
- Mission Success: 100 Individual Burns of 1 Minute or More
- Platform: Astro Digital Corvus-16
- Development: 4 Month Development Program
- Duration: 6 Months on Orbit
- Program Format: Mission as a Service

OUR FIRST MISSION

- Title: Momentus X1 (MX-1)
- In-space technology demonstration less than one year from company formation
- First flight demo of microwave electrothermal water plasma powered thrusters in space
- Launch: Q1 2019 on Soyuz

FLIGHT PROPULSION SYSTEM DELIVERED *NOV 22, 2018*

INTRODUCING VIGORIDE

- Up to 1 km/sec ΔV for spacecraft in LEO enables
- Significantly expanded mission life for CubeSats and small satellite missions
- More complex mission architectures, including orbit plane spacing for constellations
- Vastly expanded orbits and planes reachable from ISS, PSLV, and small satellite launch vehicles

AS SAFE AS IT GETS

- - Propellant Toxicity: De-ionized water, completely non-toxic
 - Maximum Pressure: 1 atm baseline (alternate concepts up to 3 atm)
 - Highest Voltage: 28 V (alternate concepts at 48 V)
 - Maximum Battery Capacity: 100 Whr (Li-ion)

VIGORIDE HAS NO SIGNIFICANT HAZARDOUS MATERIAL OR COMPONENTS

2020

0-300KG

~**1** KM/SEC

99 cm (39 in)

\$1.2 M

APPLICATIONS

Micro-satellites boosting Nano-satellites clusters boosting Platform for deorbiting services Platform for in-orbit maintenance Small deep space missions In-space booster stage for small rockets

PAYLOAD VOLUME ENVELOPE

ESPA VOLUME ENVELOPE

ESPA GRANDE VOLUME ENVELOPE

VIGORIDE COMPATIBLE WITH ALL STANDARD SMALLSAT PAYLOAD ADAPTER INTERFACES (ESPA, BISHOP, PSLV, ELECTRON, ETC)

BISHOP AIRLOCK VOLUME ENVELOPE

VIGORIDE IN LAUNCHER ONE FAIRING WITH 24X 3U CUBESATS

VIGORIDE IN LAUNCHER ONE FAIRING WITH MAXIMUM PAYLOAD VOLUME

VIGORIDE MISSION PARAMETERS

PARAMETER

IN-SPACE DRY MASS

MAXIMUM WET MASS WITH PAYLOAD

TOTAL IMPULSE CAPABILITY

ΔV CAPABILITY FOR 100 KG PAYLOAD

ΔV CAPABILITY FOR 250 KG PAYLOAD

PAYLOAD PERFORMANCE FROM ISS (4) KM

All mission cases assume de-orbiting to 200 km periapsis

	VALUE
	35 KG
	315 KG
	100,000 N-S
	689 M/S
	343 M/S
00 KM) TO 1000	142 KG, 62 DAYS

VIGORIDE CAN PROVIDE 1 KM/S FOR 50 KG PAYLOADS OR 500 M/S FOR 150 KG PAYLOADS

VIGORIDE ALTITUDE PERFORMANCE

HIGH LEO AND MEO ACCESS FOR A WIDE VARIETY OF PAYLOADS

IF LESS ΔV IS NEEDED, TRIP TIME CAN BE REDUCED

VIGORIDE **EXTENDED** IN LAUNCHER ONE FAIRING WITH 24X 3U CUBESATS

2021

0-300 KG >5 KM/SEC

\$3.5 M

APPLICATIONS

Mini-satellites boosting Small GEO satellite boosting Microsatellites clusters boosting Platform for in-orbit servicing Deep space missions (asteroids, lunar, Mars) Small rocket in-space booster

VIGORIDE EXTENDED IN LAUNCHER ONE FAIRING WITH NOTIONAL MAXIMUM VOLUME PAYLOAD

44" [112 cm]

VIGORIDE EXTENDED MISSION PARAMETERS

PARAMETER

IN-SPACE DRY MASS

MAXIMUM WET MASS WITH PAYLOAD

TOTAL IMPULSE CAPABILITY

PAYLOAD: LEO TO GTO

PAYLOAD LEO TO GEO

PAYLOAD LEO TO LUNAR ORBIT

PAYLOAD TO ESCAPE

MAIN THRUSTER

LEO departures from 200 km circular orbit

ESPA GRANDE	LAUNCHER ONE
135 KG	135 KG
700 KG	500 KG
2X10 ⁶ N-S	1X10 ⁶ N-S (TYPICAL)
300 KG	175 KG
225 KG	125 KG
150 KG	100 KG
100 KG	75 KG
650 SEC ISP, 0.8 N	650 SEC ISP, 0.8 N

MOMENTUS IS BUILDING AND FLYING REAL HARDWARE

X1 HARDWARE DELIVERED & INTEGRATED 2018

HIGH POWER VIGORIDE EXTENDED **TESTS 2019**

VIGORIDE COMMERCIAL SERVICE 2020

13+ GLIENTS \$420 MILLION IN LOI'S SI MILLION IN REVENUE **\$8.3 MILLION IN SEED**

VISION

A future where humanity is equipped to move freely throughout the solar system.

DISCUSSION

Confidential

ar or a sur an airte