
3/23/2021 Building Autoencoders on Sparse, One Hot Encoded Data | by Nick Hespe | Towards Data Science

https://towardsdatascience.com/building-autoencoders-on-sparse-one-hot-encoded-data-53eefdfdbcc7 1/10

Follow 570K Followers

Photo by Veronica Benavides on Unsplash

Building Autoencoders on Sparse, One Hot
Encoded Data
A hands-on review of loss functions suitable for embedding sparse one-hot-
encoded data in PyTorch

Nick Hespe Sep 28, 2020 · 9 min read

You have 1 free member-only story left this month. Sign up for Medium and get an extra one

Get started Open in appGet started Open in app

https://towardsdatascience.com/?source=post_page-----53eefdfdbcc7--------------------------------
https://medium.com/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fsubscribe%2Fcollection%2Ftowards-data-science&operation=register&redirect=https%3A%2F%2Ftowardsdatascience.com%2Fbuilding-autoencoders-on-sparse-one-hot-encoded-data-53eefdfdbcc7&source=post_page-----53eefdfdbcc7---------------------follow_header-----------
https://towardsdatascience.com/followers?source=post_page-----53eefdfdbcc7--------------------------------
https://unsplash.com/@vivalaveronica?utm_source=medium&utm_medium=referral
https://unsplash.com/?utm_source=medium&utm_medium=referral
https://medium.com/@nahespe?source=post_page-----53eefdfdbcc7--------------------------------
https://medium.com/@nahespe?source=post_page-----53eefdfdbcc7--------------------------------
https://towardsdatascience.com/building-autoencoders-on-sparse-one-hot-encoded-data-53eefdfdbcc7?source=post_page-----53eefdfdbcc7--------------------------------
https://medium.com/m/signin?operation=register&redirect=https%3A%2F%2Ftowardsdatascience.com%2Fbuilding-autoencoders-on-sparse-one-hot-encoded-data-53eefdfdbcc7&source=-----53eefdfdbcc7---------------------metered_view_2-----------
https://medium.com/m/signin?operation=register&redirect=https%3A%2F%2Ftowardsdatascience.com%2Fbuilding-autoencoders-on-sparse-one-hot-encoded-data-53eefdfdbcc7&source=post_page-----53eefdfdbcc7---------------------nav_reg-----------
https://rsci.app.link/?%24canonical_url=https%3A%2F%2Fmedium.com%2Fp%2F53eefdfdbcc7&~feature=LoOpenInAppButton&~channel=ShowPostUnderCollection&~stage=mobileNavBar&source=post_page-----53eefdfdbcc7--------------------------------
https://medium.com/?source=post_page-----53eefdfdbcc7--------------------------------
https://medium.com/m/signin?operation=register&redirect=https%3A%2F%2Ftowardsdatascience.com%2Fbuilding-autoencoders-on-sparse-one-hot-encoded-data-53eefdfdbcc7&source=post_page-----53eefdfdbcc7---------------------nav_reg-----------
https://rsci.app.link/?%24canonical_url=https%3A%2F%2Fmedium.com%2Fp%2F53eefdfdbcc7&~feature=LoOpenInAppButton&~channel=ShowPostUnderCollection&~stage=mobileNavBar&source=post_page-----53eefdfdbcc7--------------------------------
https://medium.com/?source=post_page-----53eefdfdbcc7--------------------------------

3/23/2021 Building Autoencoders on Sparse, One Hot Encoded Data | by Nick Hespe | Towards Data Science

https://towardsdatascience.com/building-autoencoders-on-sparse-one-hot-encoded-data-53eefdfdbcc7 2/10

Since their introduction in 1986 [1], general Autoencoder Neural Networks have

permeated into research in most major divisions of modern Machine Learning over the

past 3 decades. Having been shown to be exceptionally effective in embedding complex

data, Autoencoders offer simple means to encode complex non-linear dependencies

into trivial vector representations. But while their effectiveness has been proven in

many aspects, they often fall short in being able to reproduce sparse data, especially

when the columns are correlated like One Hot Encodings.

In this article, I’ll briefly discuss One Hot Encoding (OHE) data and general

autoencoders. Then I’ll cover the use cases that bring about the issues with

Autoencoders trained on One Hot Encoded Data. Lastly, I’ll discuss the issue of

reconstructing sparse OHE data in-depth, then cover 3 loss functions that I found to

work well under these conditions:

1. CosineEmbeddingLoss

2. Sorenson-Dice Coefficient Loss

3. Multi-Task Learning Losses of Individual OHE Components

— that solve for the aforementioned challenges, including code to implement them in

PyTorch.

One Hot Encoding Data
One hot encoding data is one of the simplest, yet often misunderstood data

preprocessing techniques in general machine learning scenarios. The process binarizes

categorical data with ‘N’ distinct categories into N columns of binary 0’s and 1’s. Where

the presence of a 1 in the ‘N’th category indicates that the observation belongs to that

category. This process is simple in Python using the Scikit-Learn OneHotEncoder

module:

from sklearn.preprocessing import OneHotEncoder
import numpy as np

Instantiate a column of 10 random integers from 5 classes
x = np.random.randint(5, size=10).reshape(-1,1)

print(x)
>>> [[2][3][2][2][1][1][4][1][0][4]]

Instantiate OHE() + Fit/Transform the data
ohe_encoder = OneHotEncoder(categories="auto")

Get started Open in app

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://medium.com/m/signin?operation=register&redirect=https%3A%2F%2Ftowardsdatascience.com%2Fbuilding-autoencoders-on-sparse-one-hot-encoded-data-53eefdfdbcc7&source=post_page-----53eefdfdbcc7---------------------nav_reg-----------
https://rsci.app.link/?%24canonical_url=https%3A%2F%2Fmedium.com%2Fp%2F53eefdfdbcc7&~feature=LoOpenInAppButton&~channel=ShowPostUnderCollection&~stage=mobileNavBar&source=post_page-----53eefdfdbcc7--------------------------------
https://medium.com/?source=post_page-----53eefdfdbcc7--------------------------------

3/23/2021 Building Autoencoders on Sparse, One Hot Encoded Data | by Nick Hespe | Towards Data Science

https://towardsdatascience.com/building-autoencoders-on-sparse-one-hot-encoded-data-53eefdfdbcc7 3/10

encoded = ohe_encoder.fit_transform(x).todense()

print(encoded)
>>> matrix([[0., 1., 0., 0., 0.],
 [0., 0., 0., 1., 0.],
 [0., 0., 1., 0., 0.],
 [0., 0., 0., 1., 0.],
 [0., 0., 1., 0., 0.],
 [1., 0., 0., 0., 0.],
 [0., 0., 1., 0., 0.],
 [0., 0., 1., 0., 0.],
 [0., 0., 0., 1., 0.],
 [0., 0., 0., 0., 1.]])

print(list(ohe_encoder.get_feature_names()))
>>> ["x0_0", "x0_1", "x0_2", "x0_3", "x0_4"]

But while simple, this technique can sour fast if you are not careful. It can easily add

superfluous complexity into your data, as well as change the effectiveness of certain

classification methods on your data. For example, columns that are transformed into

OHE vectors are now co-dependent, this interaction makes it difficult to represent

aspects of the data effectively in certain types of classifiers. For example, if you had a

column with 15 different categories, it would take an individual decision tree with a

depth of 15 to handle the if-then patterns in that one hot encoded column. A great

example of these issues can be found here if you’re interested. Similarly, since the

columns are co-dependent, if you use a classification strategy with bagging (Bootstrap

Aggregating) and perform features sampling, you may miss the one-hot encoded

column entirely, or consider only part of its component classes.

Autoencoders
Autoencoders are unsupervised neural networks that work to embed data into an

efficient compressed format. It does this by utilizing an encoding and decoding process

to encode the data down to a smaller format, then decoding that smaller format back

into the original input representation. The model is trained by taking the loss between

the model reconstruction (decoding), and the original data.

Get started Open in app

https://towardsdatascience.com/one-hot-encoding-is-making-your-tree-based-ensembles-worse-heres-why-d64b282b5769
https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205
https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205
https://medium.com/m/signin?operation=register&redirect=https%3A%2F%2Ftowardsdatascience.com%2Fbuilding-autoencoders-on-sparse-one-hot-encoded-data-53eefdfdbcc7&source=post_page-----53eefdfdbcc7---------------------nav_reg-----------
https://rsci.app.link/?%24canonical_url=https%3A%2F%2Fmedium.com%2Fp%2F53eefdfdbcc7&~feature=LoOpenInAppButton&~channel=ShowPostUnderCollection&~stage=mobileNavBar&source=post_page-----53eefdfdbcc7--------------------------------
https://medium.com/?source=post_page-----53eefdfdbcc7--------------------------------

3/23/2021 Building Autoencoders on Sparse, One Hot Encoded Data | by Nick Hespe | Towards Data Science

https://towardsdatascience.com/building-autoencoders-on-sparse-one-hot-encoded-data-53eefdfdbcc7 4/10

Courtesy of A. Dertat in his TDS Piece: Applied Deep Learning — Part 3: Autoencoders

Actually representing this network in code is also quite easy to do. We start with two

functions: The Encoder Model, and the Decoder Model. Both ‘models’ are wrapped

into a class called Network, which will encompass the entire system for our training

and evaluation. Lastly, we define a function Forward, which is what PyTorch uses as

the entryway into the Network that wraps both the encoding and the decoding of the

data.

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

class Network(nn.Module):
 def __init__(self, input_shape: int):
 super().__init__()
 self.encode1 = nn.Linear(input_shape, 500)
 self.encode2 = nn.Linear(500, 250)
 self.encode3 = nn.Linear(250, 50)

 self.decode1 = nn.Linear(50, 250)
 self.decode2 = nn.Linear(250, 500)
 self.decode3 = nn.Linear(500, input_shape)

 def encode(self, x: torch.Tensor):
 x = F.relu(self.encode1(x))
 x = F.relu(self.encode2(x))
 x = F.relu(self.encode3(x))
 return x

 def decode(self, x: torch.Tensor):
 x = F.relu(self.decode1(x))
 x = F.relu(self.decode2(x))
 x = F.relu(self.decode3(x))
 return x

 def forward(self, x: torch.Tensor):
 x = encode(x)

Get started Open in app

https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
https://medium.com/m/signin?operation=register&redirect=https%3A%2F%2Ftowardsdatascience.com%2Fbuilding-autoencoders-on-sparse-one-hot-encoded-data-53eefdfdbcc7&source=post_page-----53eefdfdbcc7---------------------nav_reg-----------
https://rsci.app.link/?%24canonical_url=https%3A%2F%2Fmedium.com%2Fp%2F53eefdfdbcc7&~feature=LoOpenInAppButton&~channel=ShowPostUnderCollection&~stage=mobileNavBar&source=post_page-----53eefdfdbcc7--------------------------------
https://medium.com/?source=post_page-----53eefdfdbcc7--------------------------------

3/23/2021 Building Autoencoders on Sparse, One Hot Encoded Data | by Nick Hespe | Towards Data Science

https://towardsdatascience.com/building-autoencoders-on-sparse-one-hot-encoded-data-53eefdfdbcc7 5/10

 x = decode(x)
 return x

def train_model(data: pd.DataFrame):
 net = Network()
 optimizer = optim.Adagrad(net.parameters(), lr=1e-3,
weight_decay=1e-4)
 losses = []

 for epoch in range(250):
 for batch in get_batches(data)
 net.zero_grad()

 # Pass batch through
 output = net(batch)

 # Get Loss + Backprop
 loss = loss_fn(output, batch).sum() #
 losses.append(loss)
 loss.backward()
 optimizer.step()
 return net, losses

As we can see above, we have an encoding function, which starts at the shape of the

input data — then reduces its dimensionality as it propagates down to a shape of 50.

From there, the decoding layer takes that embedding, then expands it back out to the

original shape. In training, we take the reconstruction from the decoder and take the

loss of the reconstruction vs the original input.

Problems With Loss Functions
So now we’ve covered the Autoencoder Structure and the One Hot Encoding Process

we can finally talk about the problems associated with using One Hot Encodings in

Autoencoders, and how to solve for this issue. When an autoencoder compares the

reconstruction to the original input data, there must be some valuation of the distance

between the proposed reconstruction and the true value. Typically, in cases where the

values output is considered disjoint from one another one would use a cross-entropy

loss or MSE loss. But in the case of our One Hot Encodings, there are several issues that

make the system more complex:

1. The presence of a one in one column means that there must be a zero in its

corresponding OHE columns. i.e. columns are not disjoint

2. Sparsity in the input of the OHE vectors can lead to the system choosing to simply

return 0’s for most of the columns to reduce the error

Get started Open in app

https://medium.com/m/signin?operation=register&redirect=https%3A%2F%2Ftowardsdatascience.com%2Fbuilding-autoencoders-on-sparse-one-hot-encoded-data-53eefdfdbcc7&source=post_page-----53eefdfdbcc7---------------------nav_reg-----------
https://rsci.app.link/?%24canonical_url=https%3A%2F%2Fmedium.com%2Fp%2F53eefdfdbcc7&~feature=LoOpenInAppButton&~channel=ShowPostUnderCollection&~stage=mobileNavBar&source=post_page-----53eefdfdbcc7--------------------------------
https://medium.com/?source=post_page-----53eefdfdbcc7--------------------------------

3/23/2021 Building Autoencoders on Sparse, One Hot Encoded Data | by Nick Hespe | Towards Data Science

https://towardsdatascience.com/building-autoencoders-on-sparse-one-hot-encoded-data-53eefdfdbcc7 6/10

These problems combine to lead the two aforementioned losses (MSE, Cross-Entropy)

to be ineffective in reconstructing sparse OHE data. Below I’ll cover three losses that

offer a solution to one or both of the issues presented above, and code to implement

them in PyTorch:

Cosine Embedding Loss
Cosine Distance is a classic vector distance metric that is used commonly when

comparing Bag of Words representations in NLP problems. The distance is calculated

by finding the cosine angle between the two vectors calculated as:

Image by author

This method proves to be good at quantifying the error in the reconstruction of the

sparse OHE embeddings because of its ability to evaluate the distance of the two

vectors taking into account the deviations of the binary values in the individual

columns. This loss is by far the easiest to implement in PyTorch as it has a pre-built

solution in Torch.nn.CosineEmbeddingLoss

loss_function = torch.nn.CosineEmbeddingLoss(reduction='none')

. . . Then during training . . .

loss = loss_function(reconstructed, input_data).sum()
loss.backward()

Dice Loss
Dice loss is an implementation of the Sørensen–Dice coefficient [2], which is very

popular in the field of computer vision in segmentation tasks. In simple terms, it is a

measure of overlap between two sets, and is related to the Jaccard distance between

two vectors. The dice coefficient is highly sensitive to differences in column values in

the vectors and is popular in Image Segmentation as it utilizes this sensitivity to

effectively differentiate between pixel edges in the image. Dice loss follows the

following equation:

Get started Open in app

https://pytorch.org/docs/stable/generated/torch.nn.CosineEmbeddingLoss.html
https://medium.com/m/signin?operation=register&redirect=https%3A%2F%2Ftowardsdatascience.com%2Fbuilding-autoencoders-on-sparse-one-hot-encoded-data-53eefdfdbcc7&source=post_page-----53eefdfdbcc7---------------------nav_reg-----------
https://rsci.app.link/?%24canonical_url=https%3A%2F%2Fmedium.com%2Fp%2F53eefdfdbcc7&~feature=LoOpenInAppButton&~channel=ShowPostUnderCollection&~stage=mobileNavBar&source=post_page-----53eefdfdbcc7--------------------------------
https://medium.com/?source=post_page-----53eefdfdbcc7--------------------------------

3/23/2021 Building Autoencoders on Sparse, One Hot Encoded Data | by Nick Hespe | Towards Data Science

https://towardsdatascience.com/building-autoencoders-on-sparse-one-hot-encoded-data-53eefdfdbcc7 7/10

Image by Author

For more information about the Sorensen Dice Coefficient — you can check out this

medium post by Shuchen Du

PyTorch does not have an in-house Implementation of Dice Coefficient. But a good

implementation can be found on Kaggle in their Loss Function Library — Keras &

PyTorch [3]:

Individual Loss Functions for Different OHE Columns
Lastly, you can treat each One Hot Encoded column as its own classification problem

and take the loss for each of those classifications. This is a use case of a Multi-Task

learning problem, where the autoencoder is solving for reconstructing the individual

components of the input vector. This works best when you have several / all OHE

columns in your input data. For example, if you had an encoded column with 7

categories as the first seven columns: you could treat that as a multi-class classification

problem and take the loss as the cross-entropy loss of the sub-problem. You can then

combine the losses of the sub-problems together and pass that backward as the loss of

the batch as a whole.

class DiceLoss(nn.Module):
 def __init__(self, weight=None, size_average=True):
 super(DiceLoss, self).__init__()

 def forward(self, inputs, targets, smooth=1):

 #comment out if your model contains a sigmoid acitvation
 inputs = F.sigmoid(inputs)

 #flatten label and prediction tensors
 inputs = inputs.view(-1)
 targets = targets.view(-1)

 intersection = (inputs * targets).sum()
 dice = (2.*intersection + smooth)/
 (inputs.sum() + targets.sum() + smooth)

 return 1 - dice

Get started Open in app

https://medium.com/ai-salon/understanding-dice-loss-for-crisp-boundary-detection-bb30c2e5f62b#:~:text=Dice%20loss%20originates%20from%20S%C3%B8rensen,between%20two%20samples%20%5BWikipedia%5D.&text=3%20from%20the%20perspective%20of,of%20overlap%20between%20two%20sets.
https://www.kaggle.com/bigironsphere/loss-function-library-keras-pytorch
https://medium.com/m/signin?operation=register&redirect=https%3A%2F%2Ftowardsdatascience.com%2Fbuilding-autoencoders-on-sparse-one-hot-encoded-data-53eefdfdbcc7&source=post_page-----53eefdfdbcc7---------------------nav_reg-----------
https://rsci.app.link/?%24canonical_url=https%3A%2F%2Fmedium.com%2Fp%2F53eefdfdbcc7&~feature=LoOpenInAppButton&~channel=ShowPostUnderCollection&~stage=mobileNavBar&source=post_page-----53eefdfdbcc7--------------------------------
https://medium.com/?source=post_page-----53eefdfdbcc7--------------------------------

3/23/2021 Building Autoencoders on Sparse, One Hot Encoded Data | by Nick Hespe | Towards Data Science

https://towardsdatascience.com/building-autoencoders-on-sparse-one-hot-encoded-data-53eefdfdbcc7 8/10

Image by Author

Below you’ll see an example of this process with an example of three One Hot Encoded

Columns, each with 50 categories.

from torch.nn.modules import _Loss
from torch import argmax

class CustomLoss(_Loss):
 def __init__(self):
 super(CustomLoss, self).__init__()

 def forward(self, input, target):
 """ loss function called at runtime """

 # Class 1 - Indices [0:50]
 class_1_loss = F.nll_loss(
 F.log_softmax(input[:, 0:50], dim=1),
 argmax(target[:, 0:50])
)

 # Class 2 - Indices [50:100]
 class_2_loss = F.nll_loss(
 F.log_softmax(input[:, 50:100], dim=1),
 argmax(target[:, 50:100])
)

 # Class 3 - Indices [100:150]
 class_3_loss = F.nll_loss(
 F.log_softmax(input[:, 100:150], dim=1),
 argmax(target[:, 100:150])
)

 return class_1_loss + class_2_loss + class_3_loss

In the above code you can see how individual losses are taken on subsets of the

reconstructed output, and then combined as a sum at the end. Here we use a negative

Get started Open in app

https://medium.com/m/signin?operation=register&redirect=https%3A%2F%2Ftowardsdatascience.com%2Fbuilding-autoencoders-on-sparse-one-hot-encoded-data-53eefdfdbcc7&source=post_page-----53eefdfdbcc7---------------------nav_reg-----------
https://rsci.app.link/?%24canonical_url=https%3A%2F%2Fmedium.com%2Fp%2F53eefdfdbcc7&~feature=LoOpenInAppButton&~channel=ShowPostUnderCollection&~stage=mobileNavBar&source=post_page-----53eefdfdbcc7--------------------------------
https://medium.com/?source=post_page-----53eefdfdbcc7--------------------------------

3/23/2021 Building Autoencoders on Sparse, One Hot Encoded Data | by Nick Hespe | Towards Data Science

https://towardsdatascience.com/building-autoencoders-on-sparse-one-hot-encoded-data-53eefdfdbcc7 9/10

log-likelihood loss (nll_loss) which is a good loss function for multiclass classification

schemes and is related to Cross-Entropy Loss.

Thank You!
In this article, we glanced over the concepts of One Hot Encoding categorical variables

and the General Structure and Goal of Autoencoders. We discussed the downsides of

One Hot Encoding Vectors, and the main issues when trying to train Autoencoder

models on Sparse, One Hot Encoded Data. Lastly, we covered 3 loss functions that

tackle the Sparse One Hot Encoding issue. There’s no better or worse Loss for trying

to train these networks, of the functions that I’ve presented there's no way to tell

which one is right for your use case until you try them out!

Below I’ve included a bunch of resources that go in-depth into the topics that I’ve

discussed above, as well as some resources for the loss functions that I’ve presented.

Sources
1. D.E. Rumelhart, G.E. Hinton, and R.J. Williams, “Learning internal representations

by error propagation.” Parallel Distributed Processing. Vol 1: Foundations. MIT

Press, Cambridge, MA, 1986.

2. Sørensen, T. (1948). “A method of establishing groups of equal amplitude in plant

sociology based on similarity of species and its application to analyses of the

vegetation on Danish commons”. Kongelige Danske Videnskabernes Selskab. 5 (4):

1–34. AND Dice, Lee R. (1945). “Measures of the Amount of Ecologic Association

Between Species”. Ecology. 26 (3): 297–302.

3. Kaggle's Loss Function Library: https://www.kaggle.com/bigironsphere/loss-

function-library-keras-pytorch

Other Helpful Resources Mentioned

1. Issues With OHE Data: https://towardsdatascience.com/one-hot-encoding-is-

making-your-tree-based-ensembles-worse-heres-why-d64b282b5769

2. Background of Bagging: https://towardsdatascience.com/ensemble-methods-

bagging-boosting-and-stacking-c9214a10a205

3. A Great article about Dice Coefficient: https://medium.com/ai-

salon/understanding-dice-loss-for-crisp-boundary-detection-bb30c2e5f62b

Get started Open in app

https://en.wikipedia.org/wiki/Kongelige_Danske_Videnskabernes_Selskab
https://www.kaggle.com/bigironsphere/loss-function-library-keras-pytorch
https://towardsdatascience.com/one-hot-encoding-is-making-your-tree-based-ensembles-worse-heres-why-d64b282b5769
https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205
https://medium.com/ai-salon/understanding-dice-loss-for-crisp-boundary-detection-bb30c2e5f62b
https://medium.com/m/signin?operation=register&redirect=https%3A%2F%2Ftowardsdatascience.com%2Fbuilding-autoencoders-on-sparse-one-hot-encoded-data-53eefdfdbcc7&source=post_page-----53eefdfdbcc7---------------------nav_reg-----------
https://rsci.app.link/?%24canonical_url=https%3A%2F%2Fmedium.com%2Fp%2F53eefdfdbcc7&~feature=LoOpenInAppButton&~channel=ShowPostUnderCollection&~stage=mobileNavBar&source=post_page-----53eefdfdbcc7--------------------------------
https://medium.com/?source=post_page-----53eefdfdbcc7--------------------------------

3/23/2021 Building Autoencoders on Sparse, One Hot Encoded Data | by Nick Hespe | Towards Data Science

https://towardsdatascience.com/building-autoencoders-on-sparse-one-hot-encoded-data-53eefdfdbcc7 10/10

Sign up for The Variable
By Towards Data Science

Every Thursday, the Variable delivers the very best of Towards Data Science: from hands-on tutorials
and cutting-edge research to original features you don't want to miss. Take a look.

Get this newsletter

By signing up, you will create a Medium account if you don’t already have one. Review our Privacy Policy for more information
about our privacy practices.

Autoencoder One Hot Encoding Sparse Data Loss Function Pytorch

About Help Legal

Get the Medium app

Your email

Get started Open in app

https://medium.com/towards-data-science/newsletters/the-variable?source=newsletter_v3_promo--------------------------newsletter_v3_promo-----------
https://policy.medium.com/medium-privacy-policy-f03bf92035c9?source=newsletter_v3_promo--------------------------newsletter_v3_promo-----------
https://towardsdatascience.com/tagged/autoencoder
https://towardsdatascience.com/tagged/one-hot-encoding
https://towardsdatascience.com/tagged/sparse-data
https://towardsdatascience.com/tagged/loss-function
https://towardsdatascience.com/tagged/pytorch
https://medium.com/?source=post_page-----53eefdfdbcc7--------------------------------
https://medium.com/about?autoplay=1&source=post_page-----53eefdfdbcc7--------------------------------
https://help.medium.com/hc/en-us?source=post_page-----53eefdfdbcc7--------------------------------
https://policy.medium.com/medium-terms-of-service-9db0094a1e0f?source=post_page-----53eefdfdbcc7--------------------------------
https://itunes.apple.com/app/medium-everyones-stories/id828256236?pt=698524&mt=8&ct=post_page&source=post_page-----53eefdfdbcc7--------------------------------
https://play.google.com/store/apps/details?id=com.medium.reader&source=post_page-----53eefdfdbcc7--------------------------------
https://medium.com/m/signin?operation=register&redirect=https%3A%2F%2Ftowardsdatascience.com%2Fbuilding-autoencoders-on-sparse-one-hot-encoded-data-53eefdfdbcc7&source=post_page-----53eefdfdbcc7---------------------nav_reg-----------
https://rsci.app.link/?%24canonical_url=https%3A%2F%2Fmedium.com%2Fp%2F53eefdfdbcc7&~feature=LoOpenInAppButton&~channel=ShowPostUnderCollection&~stage=mobileNavBar&source=post_page-----53eefdfdbcc7--------------------------------
https://medium.com/?source=post_page-----53eefdfdbcc7--------------------------------

