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Preface

During the last decades, large deployable structures are starting to be seen as a plausible configuration to mul-
tiple space missions, such as solar sailing, LEO (Low Earth Orbit) deorbiting missions or solar power genera-
tion. The potential of this kind of structures lays in their high area-to-mass ratio and their low launch volume,
which decreases the overall cost of the mission. Technological advances in key areas, such as thin film solar
cells or new deployment methods, as well as the miniaturization of satellites and their components, have con-
siderably increased the usefulness of this design. The research presented in this document aims to contribute
to these technological developments, helping to unfold the whole potential of this structural solution. This
research comprises the MSc thesis of the author, in partial fulfillment of the MSc in Aerospace Engineering by
the Technical University of Delft. The research was conducted during an internship at the department of Guid-
ance Navigation and Control (GNC) Systems, Institute of Space Systems, German Aerospace Center (DLR). The
research focuses in the study of the behavior of large thin flexible structures (LTFSs) in space from the perspec-
tive of the attitude determination and control system (ADCS). This work was performed in close relation to the
DLR’s mission GoSolAR (Gossamer Solar Array), which targets the technical developments that are necessary
to unfold large flexible photovoltaic arrays in space.

The contributions of the research can be classified in two areas, related to the modeling of the structure
and to the design of the ADCS. In relation to the first one, a methodology to integrate the flexibility of a struc-
ture into its equations of motion is explained from a theoretical perspective and implemented over a flexible
spacecraft. This methodology is based in Lagrange’s equations and can be applied to diverse structures, allow-
ing modeling accurately the dynamics of the system while maintaining the model comprehensive and of rela-
tively low order. The implementation of this approach leads to equations of motion containing both rigid and
flexible motion and provides a guideline to apply the procedure to other structures. These equations enable
to conduct an evaluation of the impact of the flexibility of a structure on its dynamics in a space environment.
This way, the vibrations induced in the system due to, for example, actuators specifications or sudden changes
in the external disturbances can be studied both qualitatively and quantitatively.

The second major area in which this thesis aims to contribute to the body of knowledge is related to the
design and evaluation of attitude controllers targeting flexible satellites. Different controller’s designs are pro-
posed, based in: 1) a linear-quadratic regulator (LQR) approach, 2) robust control theory, particularly in the
minimization of H∞ and H2 norms, and 3) a control approach based in analytical dynamics, known as the
Udwadia–Kalaba approach. The performance of these designs was evaluated not only in relation to control
instructions related to the rigid motion of the satellite, e.g. angular rate, but also to the capability of each
controller of damping the system, reducing the vibrations that appear due to its flexibility. The particularities
that need to be considered when implementing each controller are also studied, in order to give a clear idea
of when would each controller be an adequate control solution. The result is a set of different control designs,
including for each of these designs: 1) the methodology to derive the controller, 2) the performance of the
controller and 3) the particularities and limitations of its implementation. This gives a clear basis to make a
decision on which control approach to use in each particular scenario.
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1
Introduction

The last decades have witnessed the introduction of flexible structures in the space field, a conceptual change
in design from the compact rigid structures satellites conventionally consist of. Even though this idea is not
new, its potential applicability in the space domain is rapidly evolving. Its current emergence is caused by two
main factors: 1) technological advances in key related areas, e.g. thin film solar cells or ultra-light sail films,
and 2) miniaturization of satellites and their components, which is driving a decrease in weight and size [35].
Despite of the enabling effect of the progress in these areas, there are still many technological advances needed
to be able to fully materialize the potential of these structures. Throughout this research, the author aims to
contribute to this scientific effort, adding his bit to unfolding the complete capability that flexible structures
have in relation to space.

Among the current projects and missions within this field, the DLR’s (German Aerospace Center) GoSolAr
(Gossamer Solar Array) demonstrator mission is particularly relevant in relation to this study. This relevancy is
driven by the fact that this study was conducted as an intern at DLR and collaborator in the GoSolAr mission.
Further details regarding the mission, its objectives and specifications are given in chapter 2. Figure 1.1 shows
an example of a DLR’s project related to the GoSolAr mission and with a considerable degree of similarity from
an ADCS perspective.

Figure 1.1: Artist’s rendering of Gossamer-1 demonstrator [24].

The GoSolAr project provided a useful and representative case of study. This case of study, in combination
with software tools already developed by DLR, provided with the base from where to initiate this study. These
software tools consist on a simulation environment suitable to study the performance of the ADCS (Attitude
Determination and Control System). The use of this environment allows avoiding the need to build and verify
new software tools, saving this effort for the actual research. However, as it plays a relevant role in the validity
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of the results obtained and the conclusions drawn, it is to be explained in detail. This is done in chapter 3. In
this chapter, an initial analysis of a proposed ADCS for the GoSolAr mission is also shown. The design of this
ADCS is conventional and its analysis aims to give an initial idea of the expected behavior of the spacecraft
from an attitude perspective.

After having defined a consistent setup which can be used to study the performance of ADCS’s designs, the
actual research can start. Two main topics are studied: 1) modeling of flexible structures and 2) control strate-
gies. A brief introduction on these two topics, which are both considerably extensive and complex, is given
later in this chapter. The model of the flexible structure was built based on a tradeoff between several aspects,
among which the most relevant are: 1) the degree of similarity with the real structure and 2) the usefulness in
relation with a potential controller. These factors drove the decision to use an analytical approach based on
Lagrange’s equations. The derivation of this flexible model is analyzed in chapter 4.

The second research topic consists in providing an understanding on different control strategies in rela-
tion with the model built, their performances and requirements. This is a broad topic and neither all control
theories are analyzed nor absolutely realistic cases are considered. The decisions on which control concepts
to study and implement were mainly motivated by solutions in the existing literature, the advice of the the-
sis supervisors and the previous expertise of the author. The controllers implemented were based in a lin-
ear–quadratic regulator (LQR), the minimization of H∞ and H2 norms (robust control) and the existing par-
allelism between constrained and controlled system (from an analytical dynamics perspective). Detailed de-
scriptions of each of these concepts are given in chapter 5, which also includes analyses on their performance
and assessments on their potential uses.

Finally, the main conclusions of the research are drawn (chapter 6), aiming to give a clear overview of the
main achievements of the study, and providing at the same time with options for further studies in the field.

The rest of this chapter aims to cover four main areas, linked to providing the reader with: 1) an under-
standing of the reason this project was chosen, 2) a general overview of the state of the art, 3) detailed research
questions and objectives and 4) the structure of the rest of the report. In order to justify the interest of the
project, an introduction to the role of flexible structures in space in given, including different technological
uses and examples of missions (section 1.1). Regarding the state of the art of the fields of interest (section 1.2),
two main areas are covered: 1) modeling of flexible structures and 2) attitude determination and control of
large thin flexible structures (LTFSs) in space. Additionally, comments are made regarding the influence of the
space environment in the dynamics of a satellite and generic information on ADCS designs. These two last
areas are considered to be common knowledge and, thus, are not covered in detail in this report. Finally, the
research objective and research questions are defined in section 1.3 and the structure of the report is shown in
section 1.4.

It is to be highlighted that this chapter is based in two previous documents that were developed as a pre-
vious step to starting the actual MSc thesis. These documents are: 1) Literature Study (May 2018. Literature
Study assignment. TU Delft.) and 2) Project Proposal and Plan (April 2018. Research Methodologies course.
TU Delft.). The changes w.r.t. these documents are driven by the additional knowledge and expertise gained
throughout the study, which gives a clearer perspective of the research.

1.1. Flexible structures in space

Figure 1.2: Solar-sailing IKAROS [28].

The fact that every structure is, to some degree, flexible, broadens the scope of this research and imposes
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the need of further limiting it, via a more precise definition of what kind of structures are to be studied. The
type of structures that are within the scope of this thesis are large thin flexible structures (LTFSs). These struc-
tures are characterized by having a extremely high area-to-mass ratio compared to more conventional struc-
tures (compact). This increase is generally caused by the use of film-like bodies. The structural stability of the
system can be ensured using different rigidizing strategies, such as a structure composed of several booms or
via the centrifugal force appearing due to imposing a spin in the spacecraft. It is to be highlighted that this
definition do not include multiple types of structures (e.g. robotic arms) where, due to strict performance
requirements, flexibility may have a non-negligible effect.

The use of LTFSs in space has two main potential advantages: 1) low launching volume and 2) generate
large lightweighted structures [21]. The low launching volume is caused by the two configurations that this
kind of structures usually has, stowed and deployed. The low mass of the structure in relation with its final
(deployed) size depends on both the film-like body, which will be called membrane from this point on, and
the additional rigidizing components. It can be concluded that the main benefit of these structures is that they
allow decreasing the cost of getting large areas/volumes in space. Therefore, the main question to be asked
regarding their potential is what these large areas can be used for. The number of applications is rather high,
going from large antennas to deployable telescopes. Three of these applications, chosen due to the similarity
between the structures they use and that used in the case of study (GoSolAr), are explained further: 1) solar
sailing, 2) drag sailing and 3) solar power. This aims to give an idea of the past evolution of this technology and
the opportunities that it presents.

Solar sailing consists in using the solar radiation to propel the spacecraft, to generate a ∆v . The solar
radiation pressure is highly dependent on the properties of the surface exposed to the sun but it remains always
considerably low (of the order of 1 µN /m2 close to Earth orbit). This drives the need for large lightweighted
surfaces, i.e. LTFSs, if a meaningful acceleration is to be obtained. An example of a mission using this concept
is the JAXA mission IKAROS (figure 1.2), launched in 2010 [28]. With its 20-meter-span square solar sail, it
was used to verify the solar radiation pressure and several GNC (guidance, navigation and control) concepts.
In the last decade, the tendency towards miniaturization of satellites (e.g. CubeSats) is driving a decrease in
their mass and, therefore, the size of the solar sail needed. This influences directly the complexity and risk
associated with the use of this technology, increasing its potential uses.

Regarding drag sailing, two main applications can be pointed out: 1) aerobraking and 2) deorbiting. Aero-
braking is already a well-established method of changing the orbiting when arriving to a planet and, whether
it could benefit time-wise from the use of LTFSs, more conventional structures have been successfully used.
The increase of the population of space debris and the collision risk associated with it is driving a growth in the
interest for active deorbiting strategies [26]. The use of LTFSs to increase the effective area of the spacecraft,
thus increasing the drag and the rate of decay of the orbit, is among the potential solutions for this problem.
An example of the interest in this kind of application is the Deployable Gossamer Sail for Deorbiting by ESA
[8].

Figure 1.3: Deployed ROSA [2].

The third and last application considered here is the generation of solar-based power. The amount of
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power generated from solar radiation is driven by two main factors: 1) the efficiency of the solar cells and 2)
the area covered by solar cells exposed to the solar radiation. The evolution of thin film solar cells has opened
the door to using them in LTFSs, potentially increasing the power production and lowering the weight of the
structure, and, thus, the cost. Examples of missions where this technology was implemented are the Hubble
telescope, where vibrations thought to be caused by these solar panels drove the decision to change them
for conventional rigid panels [9], and the NASA demonstrator mission ROSA (figure 1.3), in which a roll of
thin solar panels was deployed and folded. More information about the ROSA mission can be found in [2],
where the advantages of this kind of power generation are also pointed out, as well as other missions and
configurations which have implemented it. Finally, the mission which is used as the main case of study of
this thesis, GoSolAr, also aims to demonstrate and contribute to the development of this technology (more
information in chapter 2).

1.2. Related research topics
The aim of this section is not to cover completely and in depth the state of the art of all the areas touched
throughout the research. That would require a few thousand pages and is considered to be out of the scope
of this thesis. Instead, the objective is to give an overview on the most relevant topics, which can be useful to
understand the alternatives that were faced during the project as well as the reasoning behind the decisions
made.

Two main topics are introduced: 1) modeling of flexible structures and 2) attitude control particularities
when applied to LTFSs. These two areas comprise most of the research done, which is shown in chapters 4 and
5. Another two areas are briefly introduced, as they may be of help to understanding the research problem but
are not directly linked to it: 1) space environment, particularly disturbances that may influence the attitude of
a spacecraft, and 2) components and operation of the ADCS.

1.2.1. Modeling flexible structures
The objective behind modeling something is, usually, to be able to analyze different cases without the need of
running actual experiments, allowing to gain knowledge about a problem at a much lower cost. In our case,
the knowledge that is pursued is related to the effect of the flexibility in the dynamics of the satellite, mainly,
but not limited to, rotational dynamics (i.e. related to the attitude). Alternatively, this effect could be studied
from an experimental perspective, but that would increase the cost associated with the study from a very early
stage. In the general topic of simulations versus experiments, the optimal approach seems to be to combine
both, using experimental data to improve the accuracy of the simulations and simulations to be able to study
a greater number of more complex cases. In our case, the role of the model is clear, to provide with a first idea
of the behavior of these structures, useful from a control perspective.

The model is intended to represent the dynamics of a spacecraft. This can be done in a number of ways,
depending not only in the structure of the spacecraft, but also in the accuracy that is required and in the
purpose of the model. However, one first decision that clearly differentiate between existing possibilities is
how, or if, the flexibility of the structure is taken into account. Several possibilities are pointed out below [4]:

• Rigid motion. It is the simplest approach and the most commonly used. It assumes the relative posi-
tion between the different points of the structure remains constant throughout time, unaffected by the
forces and torques exerted over it. Depending on the case it can be useful as a first insight or even be
an approximation good enough. Its simplicity allows a low computational cost, as the number of state
variables remains low and the relation between them simple.

• Rigid motion + flexible motion. An initial solution to study the non-rigid motion of certain parts of the
body was to divide the problem in two. In this separation, the first problem solved was that of a rigid
body. The second consisted then in modeling the behavior of the flexible parts under the force and
stress field which had been obtained from the first problem. This division decreases the computational
power needed to solve the problem, but it has one main limitation: the interaction between flexible and
rigid motion is not considered [25].

• Flexible motion. This approach integrates flexible and rigid motion and solves the complete problem
simultaneously, taking into account the interconnection between the different variables defining rigid
and flexible dynamics. It is more complex and computationally costly.
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It can be clearly observed in the options given that a tradeoff is needed, assessing mainly the accuracy
required, the computational power procurable and the time available to build the model. Historically, most
LTFSs have been modeled as rigid bodies, and this has very rarely (e.g. Hubble telescope) posed a problem
throughout the mission. The main justification for neglecting the effect of the flexibility is the high natural
frequencies of the system, due to the small size of the structures. Examples of studies related with the ADCS of
LTFSs in which the structure was modelled as a rigid body are [22][34]. However, in other studies the potential
influences of the flexible modes in case they are coupled with other rigid-motion frequencies are pointed out
[5] [20]. Example of studies including the flexibility on their analyses are [27] and [7].

In the particular case analyzed in this study, the flexibility inherent to the structures studied makes it neces-
sary to evaluate the interaction between rigid and flexible dynamics. This is necessary in order to understand
how the structures behave and to design and implement control strategies targeting that behavior. However,
integrating the flexibility of the structure into the dynamics and kinematics of the system is not an easy task
and it is still a research area. Some of the options for performing this integration are shown below [17].

1. Defining a set of rigid bodies connected by joints, giving the system a flexible behavior.

2. Defining the structure as a set of interconnected flexible bodies with simple geometries.

3. Defining the structure as a small set of interconnected flexible bodies with complex geometries.

It is important to understand the evolution of three main characteristics of the model when going from
option 1 to option 3: 1) the mathematical complexity increases, increasing the difficulty linked to building the
model, 2) the possibility to use the same functions/model to structures with different geometries decreases,
as the model becomes more specific, and 3) the order of the model derived decreases, as less elements are
considered.

These are some of the decisions that need to be made before starting to build the model. There are, how-
ever, still numerous aspects that need to be evaluated before being able to actually model the structure. An
example easy to comprenhend is which kinematic formulation to use. There are several possibilities when
defining the coordinates and reference frame(s), e.g. floating reference frame, finite segment method and in-
cremental finite element formulations, and they influence enormously the applicability of the different meth-
ods to solve the problem [25].

In this thesis, the approach that was implemented consists on implementing the Lagrange equations in
combination with an assumed modes method and a simplified model of the spacecraft. More information
about the particularities of the implementation can be found in chapter 4 and in [17]. Additionally, a numerical
model based on defining the spacecraft as a set of rigid bodies interconnected via flexible joints was built using
the MATLAB tool SimScape, in order to verify the analytical model.

1.2.2. Attitude control of LTFSs
The second main topic that has been studied throughout this MSc thesis is related with the design of an atti-
tude determination and control system (ADCS) addressing the particularities of this kind of structures (LTFSs).
In order be able to successfully go through this designing process, it is first necessary to understand these par-
ticularities and how they influence the behavior of the satellite. There are two main characteristics of LTFSs
that affect the attitude dynamics of a spacecraft with this type of structure: 1) high area-to-mass ratio and 2)
effect of the flexibility. Both of them where introduced in previous sections and will now be explained in more
detail, focusing in their influence over the ADCS design.

The increase of the area-to-mass ratio is caused by the use of big structures (from a dimensional perspec-
tive) with low-mass and thin components (such as composite booms or thin-film solar cells). The size of the
structure influences the interaction of the spacecraft with the environment (i.e. gravity and magnetic fields,
atmosphere, solar radiation...etc), increasing the torque and force disturbances that are exerted over the satel-
lite. Particularly relevant is the increment in the torque disturbances, not only caused by a direct increase in
the forces (e.g. increase on effective area drives an increase on drag), but also by the fact that the distance
between the center of pressure and the center of mass can increase considerably. This, in combination with
the rise in the moment of inertia (high when compared to a compact satellite of similar mass), makes it nec-
essary to be able to provide a significantly higher control torque (compared to compact structures) to be able
to achieve the same control accuracy. Producing this torque is not a trivial task, specially if the following two
limitations, which apply for most conventional satellites, are kept: 1) the control torque must be applied in the
central part of the spacecraft and 2) the actuators should have low mass and volume [35].
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This structural particularity drives a need to develop new concepts and strategies to control the satellite in
a efficient way. Two main solutions can be found in the existing literature: 1) alternative actuators and 2) alter-
native control strategies. The use of alternative actuators is usually based in using the big size of the structure
to generate a higher torque, e.g. shifting the center of mass away from the center of pressure or generating
diferential forces far away from the center of mass. Abundant examples of these alternative actuators can be
found in [11] and [33]. Another option is to use more conventional actuators in combination with alternative
control strategies, e.g. passive stabilization using a spin in the main axis of inertia. This last option was the
one chosen at the beginning of the project, as it does not imposes additional requirements in the design of the
spacecraft and is compatible with the requirements of the mission. More details are given in chapter 2.

Regarding the effect of the flexibility in the dynamics of a spacecraft, several studies have considered it and
tried to define in which cases it needs to be taken into account (see [32]). The importance of this effect in a
mission, and, thus, the possibility of neglecting it, is mainly linked to two factors:

• Potential interaction between the natural frequencies of the system, flexible modes of the structure, with
either the external disturbances or the control input. (Most of) the external disturbances have low fre-
quencies, related to the orbital period. An example of an external disturbance with high frequency is
when the spacecraft goes in or out an eclipse. According to [17], the overlap between the control band-
width and the natural frequencies is the distinguishing factor of the problems in which the flexibility
may pose a problem, which is likely the case for the next generation of large space structures.

• Strictness of the mission requirements. In case of high pointing accuracy requirements or requirements
related with the vibrations of the structure, the flexibility may need to be included in the analysis of the
mission in order to guaranty complying with those requirements.

It can be deduced from the points above, that the influence of the flexibility could range from adding small
vibrations compromising the requirements of the mission (e.g. high accuracy Earth observation) to generating
instabilities in the system which could potentially endanger the spacecraft structural stability. For the cases
where the flexibility of the structure can pose a problem, there are two main options to approach the issue:

• Passive control. It does not add much complexity to the system and it is, usually, robust from a stability
perspective. However, it can add weight and its performance is limited. Examples of this strategies are
spinning the spacecraft and passively damping the booms by adding a layer of a highly damped material.

• Active control. It is considerably more complex and has several inherent difficulties not easy to over-
come, among which are: 1) control theories applicability, as most of these assume all state variables
known, which may very well not be the case, 2) computational cost linked to the high order of the sys-
tems and problems related with reduced orders, and 3) modeling errors and inaccuracies [17].

Throughout this study, passive control is not studied in detail, although the effect of different damping
coefficients is addressed. Most of the research effort is invested towards evaluating diverse active control pos-
sibilities, their performances and their requirements (chapter 5).

1.2.3. Additional fields of interest
Even though the two fields just explained cover most of the innovative work performed throughout this thesis,
knowledge and understanding of some other areas was needed in order to successfully conduct the research.
These areas are mainly two: 1) ADCS components and operation and 2) space environment characteristics.

It is necessary to understand how the different ADCS components are interconnected and how they operate
in order to be able to efficiently design this system. In this regards, knowledge about the following topics was
gained in the initial stage of the thesis:

• Process of obtaining measurements. This involves understanding what sensors may be available (e.g.
magnetometer), what they measure (e.g. magnetic field) and what errors are inherent to those measure-
ments (e.g. noise).

• Processing of the measurements. Two main operations are conducted over the raw measurements in
order to give an estimation of the state vector as accurate as possible. The first one relates the measured
variables with the state variables (e.g. sun vector to pointing error), while the second reduces the effect
of noise and biases via estimators (e.g. Kalman filter).
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• Connection between state vector estimation and control command (controller). Different mathematical
constructs, or control theories, can be used for this connection, leading to completely different behaviors
of the system (e.g. robust control).

• Application of the control command. The control command is exerted via actuators, which impose their
own limitations regarding the nature of the actuation (e.g. maximum angular acceleration of a reaction
wheel).

Even though the focus of the thesis is in the controller, the influence of the other components of the ADCS
should not be underestimated, and the problem is to be addressed as a whole. For additional information
about specifications of particular sensors and actuators the author refers to [32], for more information regard-
ing measurements processing to [10] and for an overview on control design to [19].

Regarding space environment, only two main areas are considered: 1) disturbances affecting the dynamics
of a spacecraft in LEO (Low Earth Orbit) and 2) limitations affecting the ADCS. In relation to the disturbances
influencing a spacecraft in LEO and their influence over the dynamics of the satellite the author refers to [31].
Four main disturbances are considered: gravity gradient, atmospheric drag, solar pressure and magnetic field.
With respect to the limitations on the ADCS, they can be divided into: hardware limitations (requirements
in weight, volume, power consumption...etc.), affecting the choosing of actuators and sensors, and software
limitations (computational cost), influencing the design of the controller. This limitations are addressed in a
qualitative way throughout the report.

1.3. Research specifications
For this subsection, the author refers to a previous document done in partial fulfillment of the MSc in Aerospace
Engineering at TU Delft. This document was developed as part of the course on Research Methodologies and
aimed to provide with a clear understanding of the MSc thesis. Even though some changes have been im-
plemented throughout the research, most of its initial structure has been maintained. This way, the research
objective can be enunciated as:

The research objective is to contribute to the development of attitude control concepts applicable to large
thin flexible structures in space. This aim is achieved by evaluating the performance of different control concepts
applied to this type of structures. This evaluation is based initially in existing literature, evolving then into
simulations in a MatLab/Simulink environment.

Sub-goals were defined in relation with this research objective in order to move gradually towards it. These
sub-goals are: 0) gain knowledge about related technologies, sofware tools and mathematical concepts related
to the research area, 1) define and study a reference scenario, 2) model the dynamics of the LTFSs, 3) design,
implement and evaluate the performance of different ADCS concepts. This sub-goals were further developed
into specific tasks. The highest level tasks are shown in the work flow on figure 1.4.

Figure 1.4: Schematic work flow for the MSc Thesis.

The ultimate research question that is targeted with this work is the following:
What attitude controllers, of those designed, are applicable to thin flexible structures (LTFSs) in space, and

to what degree?
As this question is considerably complex, lower level sub-questions where defined in order to give some

insight on the way the research was approached:
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1. What are the relevant properties and requirements of the case of study (GoSolAr), in relation with the
ADCS?

2. What influences, other that those related with the flexibility, does the particular structure of the GoSolAr
satellite (LTFS) has over the ADCS performance?

3. How can the flexibility of the structure be modeled?

(a) How and why was the approach for modeling the structure chosen?

(b) What assumptions, simplifications and errors are inherent to the model built?

(c) How can the model be improved?

4. Which ADCS concepts, of those designed, is optimal for each case?

(a) What ADCS concepts are to be designed and why?

(b) What is the performance of each concept?

(c) What are the requirements (e.g. sensors) that each concept imposes in the ADCS?

The resources used to answer this questions are mainly two: 1) existing literature and 2) analyses in a
simulated environment. The simulations were performed using a DLR’s simulation environment as a basis,
and implementing changes in the dynamics of the spacecraft and in the ADCS design, when necessary.

1.4. Structure
This report is organized in 5 chapters, not taking into account the conclusions. Each chapter presents a partic-
ular area of the research. This chapter (chapter 1) introduces the research’s relevancy, area and objectives. This
way, it explains some potential uses of large thin flexible structures in space, illustrating each use with mission
examples. Then, the two main topics targeted by the research, i.e. modeling of flexible structures and attitude
control of flexible structures, are briefly explained, aiming to provide an overview of the possibilities in these
areas. Finally, the research is further defined by enunciating the research objective and research questions.

Chapter 2 describes the DLR’s (German Aerospace Center) mission GoSolAr (Gossamer Solar Array). This
mission is used as the main case of study throughout the research, being used to define some of the require-
ments for the controller (e.g. pointing accuracy attainable) and the specifications of the satellite. These speci-
fications include not only the structure of the spacecraft but also the set of sensors and actuators available and
the orbit chosen.

Chapter 3 contains an initial analysis of the case of study, considering the structure of the satellite rigid.
This chapter also includes a descriptions of the simulation environment used, i.e. the control loop used to
evaluate the performance of different controllers. In this initial analysis, the controllers used are: a b-dot
controller for the detumbling phase and LQR-based controller for controlling orientation of the satellite. This
analysis already points out some limitations in the performance of the controller, due to the structure of the
satellite and to the ADCS’s hardware used.

In chapter 4, the methodology used to integrate the flexibility of the satellite’s structure in its equations
of motion is explained in detail. This is done in order to ease the application of this methodology to diverse
structures. Then, it is implemented over a simplification of the structure of the GoSolAr satellite. Some com-
ments are made over potential improvements in the model used. Finally the equations of motion obtained
were verified using a numerical model.

Chapter 5 contains the performance of different controllers, this time taking into account the flexibility of
the satellite. First of all, the performance of the b-dot and LQR-based controllers is studied and the effect of
flexibility in the behavior of the satellite pointed out. Then, the flexible plant is linearized, both analytically
and numerically, in order to enable deriving linear robust controllers based in H∞ and H2 norms. The re-
sulting robust controllers are introduced into the simulation environment and their performance evaluated.
The last controllers obtained are derived using an analytical dynamics approach. This last approach is imple-
mented using both the rigid and the flexible equations of motion, and the different performances are studied.
Finally, an analysis of the sensibility of these controllers to noise and error is conducted, assessing also the
particularities of their implementation.
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2
Case of Study

The aim of this section is to introduce the case of study used throughout this thesis, the DLR’s mission GoSolAr.
Defining a case of study can be of great help when researching a topic as broad in options and possibilities
as the one chosen, as it allows focusing on an specific case, without an excessive number of ’free’ variables.
E.g. the structure of the satellite of the GoSolAr mission consists on a square membrane with four booms
attached to the central part of the satellite and to the tips of the membrane, therefore, that is the configuration
considered. It also provides realistic estimations of the data needed, as those data are also defined as part of
the mission (e.g. moment of inertia or drag coefficient). This grants that the results obtained are not based
in ideal configurations, distant from real applications. Even though the use of a case study may seem to be
limiting the applicability of the research, it does quite the opposite: by applying the methodology described to
a particular case, a clear and structured way of applying it to any other case is provided. Additionally, the use,
as case of study, of a mission under development can also provide a useful insight to that mission.

As previously pointed out, the main case of study of the MSc thesis is based in the GoSolAr (Gossamer Solar
Array) demonstrator mission. This mission focuses in the ’gossamer deployment systems for huge thin-film
photovoltaic array’ [13]. This is particularized into two objectives: 1) developing of a flexible photovoltaic array
and 2) deploying a 25m2 gossamer solar power generator. The goal of this mission is to demonstrate (in orbit)
the two-dimensional deployment of this flexible array of thin-film photovoltaics. The general objectives and
characteristics of this mission can be found in [13] and will only be discussed in this document when they
have an influence to the ADCS. The rest of this section will cover three main topics: 1) ADCS in the GoSolAr
mission, 2) relevant data regarding the GoSolAr satellite and 3) usefulness of this case of study in relation with
the research objective.

2.1. GoSolAr’s ADCS
Three main aspects of the GoSolAr mission are studied w.r.t. the ADCS. First of all, the top level requirement for
the ADCS, which is to maintain an orientation w.r.t. the sun with an accuracy of 10 degrees, during operation.
The reasoning behind this requirement is that the membrane is assumed not to be completely flat. This lack
of flatness is assumed to affect the local orientation of each point of the membrane up to 10 degrees. As the
objective of pointing towards the sun is to be able to study the performance of the solar cells in the membrane,
further accuracy is assumed to superfluous. Neither the demonstration of the wrinkling of the membrane nor
the justification of the requirement are within the scope of this study.

Additional requirements that may be considered related to the ADCS are: 1) guaranty safe deployment
and 2) minimum deorbiting time. In the case of the deorbiting time, it could be maximized by controlling the
relative orientation between the spacecraft and its velocity w.r.t. the atmosphere. However, it would interfere
directly with the pointing requirement, so it is not considered. Regarding the deployment phase, its dynamics
are considered to be beyond the scope of the work due to its complexity and highly non-linear character.

The second aspect to be considered is related with the different modes that appear throughout the mission,
as well as with the changes in the structure configuration of the satellite (deployment). In order to give a clear
idea of this different ADCS’s stages, a timeline of the mission w.r.t. the main ADCS’s action is explained below.
Four main stages are distinguished:

1. Detumble. After launch, the satellite has an (arbitrary) angular velocity, which is expected to be of the
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order of 12 degrees per second. The first task of the ADCS is to stabilize the spacecraft, reducing this
angular rate.

2. Deployment. The deployment is done in two stages, deploying first the booms along one of the diagonals
of the membrane and then along the other. For the analyses shown throughout this report, this dual
process is not considered and only two configurations of the spacecraft are taken into account: stowed
and deployed. It is recommended to study also the behavior of the ’semi’-deployed configuration in
further stages of the project.

3. Reach and maintain operation point. This includes both pointing towards the sun and performing ad-
ditional actions to stabilize the satellite around that orientation. In our case, the initial idea, which was
afterwards included in the final design, was to spin the satellite. It is to be noticed that this process can
be conducted also before the membrane and booms of the spacecraft are deployed. However, in this
case a small reorientation and manipulation of the spin needs to be conducted again after deployment.

4. The rest of the mission consists initially in maintaining the orientation to the sun within the accuracy re-
quired (10 degrees). Additionally, the possibility of modifying the relative orientation to the sun (initially
the objective was defined as pointing the normal of the membrane plane towards the sun) is consid-
ered. This would allow a more exhaustive characterization of the flexible solar array. This process can be
conducted on several occasions.

After deriving the ADCS main tasks throughout the mission, it is necessary to analyze what is available for
fulfilling this objectives. An initial (optional) requirement was to try to comply with the requirements using
only a magnetorquer. This was proven to be enough, in combination with an induced spin in the mayor axis
of inertia, to achieve the required performance. The reason for selecting this actuator, if able to comply with
the requirement, are self-evident: it is cheap, simple and light.

Among the sensors needed to address the requirements are the following: 1) fine sun sensor, 2) gyroscope
and 3) magnetometer. The fine sun sensor should have the same orientation as the solar cells, in order to
ensure that the sun in within the FoV (field of view) of the sensor at the operating point (solar cells directed
to the sun). The gyroscope is used to control the spin of the satellite as well as to estimate the change in
attitude during eclipses. The magnetometer is use in combination with the magnetorquer to generate the
control torque. It can also be used to provide provide an estimation on the attitude, if necessary. Additional
sensors that could benefit the performance of the satellite from an ADC perspective are: 1)GPS and 2) coarse
sun sensors. The GPS is to be included among the satellite’s sensor even if not needed for the ADCS. It enables
to compute the attitude, which is not a requirement for this mission, of the satellite using the magnetometer
and the sun sensor. A set of coarse sun sensors covering a full angle can be used to estimate the pointing
error w.r.t. the sun when it is outside the FoV of the fine sun sensor. However, this can also be done using
information of the power generated by the solar panels positioned in the different surfaces of the satellite.

Having characterized the ADCS that is to be implemented, its particularities can now be further described.
The challenges in this mission w.r.t. the ADCS, part of which have already been introduced, are shown below:

• High area-to-mass ratio. With a nominal membrane area of 25ms2 and a estimated total weight of
around 60 kg, this ratio is considerably higher that for conventional satellites (e.g. before deployment
the effective area is around 0.3 m2, two orders of magnitude lower). As a consequences, external dis-
turbances generate higher torques and the moment of inertia is higher than other satellites of similar
mass.

• The use of magnetorquers as the only actuators. The reason this control strategy is unusual in this type of
satellites is that most missions involving LTFSs are deep space missions or demonstrator for technology
enabling for deep space missions. In the case studied, the main goal is to generate power using a light
flexible structure. As this objective does not exclude LEO orbits and the demonstrator mission is planed
to have this type of orbit, using only magnetorques reduces cost and launching weight. However, a direct
consequence is that the control torque is limited both by the maximum dipole that can be generated and
by the direction and intensity of the local magnetic field.

• The potential interaction of the flexible modes of the structure with the rigid motion of the spacecraft.
This influence can be driven both by external disturbance (e.g. eclipse) and by the control torque (e.g.
duty cycle of the magnetorque).
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2.2. GoSolAr’s specifications
In order to further define the case of study to be analyzed, a considerable amount of aspects of the satellite and
of the mission needs to be described in detail. It is necessary to keep in mind that the mission is still in a very
early stage and, therefore, relevant changes in the design can still occur. This section aims to include the most
relevant specifications of the mission in relation to the design of the ADCS. Among these aspects are:

1. Information w.r.t. the structure of the satellite, including the geometrical specifications. As previously
mentioned, two configurations will be studied: stowed (S) and deployed (D). In the deployed configura-
tion some components can be differentiated from a structural perspective (see figure 2.1), being: central
part, membrane and booms. In the stowed configuration the membrane is stowed and the booms rolled
inside of the central part. Geometrical specifications are included in table 2.1.

2. Mass properties of the different components and throughout the different configurations explored. In-
clude three main aspects of the spacecraft in both stowed and deployed configurations: mass, moment
of inertia and position of the center of gravity. Table 2.2.

3. Properties related with the non-rigid motion of selected components. These properties are only studied
in relation with the booms. As the selection of which booms to use is not yet taken, several options are
included here (table ). However, throughout the study, and for the purpose of coherence in the results,
the boom implemented is that with a zero sub-index. The data includes the bending stiffness (EI), the
density of the boom (just for giving an idea of the cost in weight of increasing the stiffness) and the
dissipation coefficient (kd ), which is expressed as a function of the bending stiffness.

4. Interaction with disturbances. Here the coefficients and properties of the (operating) spacecraft with an
influence over the way the satellite interacts with its environment are studied. The main disturbances in-
cluded in this study were previously defined as the gravity gradient, the atmospheric drag, the magnetic
field and the solar radiation. In light of this, information about the drag coefficient, magnetic dipole and
optical properties of the membrane is included in table 2.4. These values may diverge slightly from the
actual mission.

5. Specifications of the sensors used. A number of sensors in relation to the GoSolAr ADCS have already
been introduced. Their main characteristics are included in table 2.5.

6. Similarly to the previous point, the specifications regarding the actuator used (magnetorquer) are in-
cluded in table 2.6.

7. Finally the orbit(s) that are to be studied are to be defined in order to be able perform further analy-
ses. As these are not yet defined, different orbits will be studied throughout the report, aiming to give
an understanding on how changes in this aspect of the mission would potentially influence the ADCS
performance.

Figure 2.1: Different elements of the deployed configuration of the GoSolAr satellite, from a structural perspective.
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Property [units] Magnitude Property [units] Magnitude
Dimensions(S) [m3] 0.5x0.5x0.5 Membrane area [m2] 25

Boom length [m] 3.5355

Table 2.1: Geometrical data.

Property [units] Magnitude Property [units] Magnitude
Stowed mass [kg ] 60.8 Membrane mass [kg ] 6.2

Central part mass [kg ] 53.1 Boom mass [kg ] 0.38
Ixx(S) [kg m2] 3.19 Ixx(D) [kg m2] 17.3130
Iyy(S) [kg m2] 3.42 Iyy(D) [kg m2] 18.9068
Izz(S) [kg m2] 2.92 Izz(D) [kg m2] 31.7930
Ixy(S) [kg m2] 0.005 Ixy(D) [kg m2] 0.005
Ixz(S) [kg m2] -0.01 Ixz(D) [kg m2] -0.01
Iyz(S) [kg m2] -0.011 Iyz(D) [kg m2] -0.004

CoG(S) [m] [0 0 0] CoG(D) [m] [0 0 0.05]

Table 2.2: Mass data.

Property [units] Magnitude Property [units] Magnitude
E I0 [N m2] 1320 ρ0 [kg /m] 0.0785
E I1 [N m2] 113.36 ρ1 [kg /m] 0.019
E I2 [N m2] 397.71 ρ2 [kg /m] 0.03
E I3 [N m2] 5156 ρ3[kg /m] 0.102

kd [N m2/s2] α EI α [-] 0-0.01

Table 2.3: Non-rigid dynamics (booms).

Property [units] Magnitude Property [units] Magnitude
CD (drag coefficient) [-] 1.2 Magnetic dipole module [Am2] 0.1

Spectral reflectance coefficient[-] 0.5 Diffuse reflectance coefficient [-] 0.5

Table 2.4: Interaction with environment.

Sensor Property [units] Magnitude
Coarse sun sensor FoV [deg 2] Full view
Coarse sun sensor Noise [deg ] 10
Coarse sun sensor Bias [deg ] 3

Fine sun sensor FoV [deg 2] 30 (conical)
Fine sun sensor Noise [deg ] 0.2
Fine sun sensor Bias [deg ] 0.5
Magnetometer Noise [T ] 8.5e-9
Magnetometer Bias [T ] 250e-9

Gyroscope Noise [deg /s] 0.025
Gyroscope Bias [deg /s] 5e-3

GPS Noise [m] 0
GPS Bias [m] 10

All sensors Measuring frequency [H z] 5

Table 2.5: Sensor specifications.

Actuator Property [units] Magnitude
Magnetorquer Max dipole [Am2] 10
Magnetorquer Time constant [s] 0.05
Magnetorquer Duty cycle [%],[s] 90%, 5

Table 2.6: Actuator specifications.
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2.3. GoSolAr and research objective
This final section of the chapter aims to highlight the relation between the GoSolAr mission and the research
objective that is targeted by this thesis. By doing so, the selection of this mission as a case of study is justified
and the relevance in relation with the research questions that we aim to answer is sustained.

When looking at the structure of the GoSolAr’s satellite (figure 2.1), it is clear that it is far from a conven-
tional compact spacecraft. Looking at the specifications of the structure it can be observed that this satellite
qualifies for being considered a large thin flexible structure (LTFS). Particularly meaningful among this speci-
fications are:

• Thin membrane with an area of 25 m2.

• Composite booms with a length of 3.5 meters aiming to rigidize the structure.

• High moment of inertia and low weight (table 2.2).

Having shown that this satellite can be considered an LTFS, and considering that this kind of structures is
the main target of the research, the relation between the GoSolAr mission and the thesis becomes self-evident.
Furthermore, the selection of GoSolAr as a case of study allows to derive more concrete research questions,
which can be helpful to define a path towards fulfilling the research objective. The main questions specified
are shown below.

• To what degree can the mission requirements be fulfilled with the set of sensors and actuators defined?

• How can the structural particularities, i.e. flexibility, of the structure be modeled?

• What is the influence of these particularities in the ADCS performance?

• How can this change in behavior be approached from a control perspective?
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3
Basic Rigid Body Analysis

As it can be deduced from its title, this chapter aims to provide with an initial analysis of the case of study. The
objective of this basic analysis is to give an approximate idea on the performance to be expected in relation
to the ADCS. The specifications of the analysis are those of a conventional ADCS analysis, i.e. assuming the
satellite is a rigid body.

As a prerequisite to performing this analysis, a simulation environment was built. This environment was
based in the Attitude control system simulator for Compact Satellite (CS) developed by the German Aerospace
Center (DLR). This tool is implemented in Simulink (MATLAB). Its main characteristics are described in sec-
tion 3.1, with a particular emphasis in the changes driven by the particularities of the GoSolAr mission (e.g.
particular sensors used).

Among the main insights resulting from this analysis are the following:

• Limitations inherent to the use of the defined set of sensors and actuators.

• Challenges in relation to the particularities of the spacecraft’s structure, without taking into account the
flexibility.

In addition, the results obtained will be allow to, in further stages of the research, isolate and analyze the
effect the flexibility of the structure has on the performance of the ADCS. Within this analysis, a search for the
limitations of the GoSolAr mission w.r.t. aspects such as the altitude of the orbit is also conducted.

3.1. Simulation environment
As has been pointed out, the simulation tool used to conduct the analyses is built in a Simulink environment.
This tool is based in the Attitude control system simulator for Compact Satellite (CS) developed by the Ger-
man Aerospace Center (DLR). Due to its internal use at DLR, this tool is assumed verified. The main changes
implemented throughout the study were: 1) the controller’s block, 2) the satellite’s plant, once the flexibility
is introduced, and 3) the structure of the satellite, affecting its interaction with the external disturbances. The
high level components of the this tool are shown in figure A.1 in appendix A. This section introduces each of
those components, explaining their role in the control loop shown and their most relevant characteristics.

3.1.1. Sensors and estimator
Two main processes are included in the sensors’ block, related to simulating the measuring process and de-
riving the state variables from those measurements. This way, a first sub-block generates each sensor’s mea-
surements from the actual state of the spacecraft. The possibility of taking into account noise and biases (data
based in table 2.5) into the measurements of each of the sensors is considered and implemented. This im-
plementation is done so that the decision of whether to consider ideal or real measuring process is an input
variable. Additionally, two particularities of the sun sensors, i.e. the lack of measurements during eclipse and
when the sun is outside the field of view, are also taken into account.

The second process that occurs inside this block aims to construct the state vector from the measurements.
In order to be able to do this, the variables that are included in the state vector need first to be defined. One
self-evident variable is the angular rate (w.r.t. the body fixed reference frame). When going through the existing
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literature it may seem equally obvious that the other variable is to be a quaternion defining the attitude of the
satellite w.r.t. the inertial reference frame. This was the initial strategy followed, computing this quaternion
using sun sensor’s and magnetometer’s measurements combined with a deterministic algorithm (TRIAD) [3].
However, it was noticed that this approach go beyond the mission requirements, which only aims to control
the relative orientation of an axis in the body fix reference frame w.r.t. the sun vector. Therefore, this strategy,
which involves also estimating the magnetic field and sun vector in the inertial reference frame based in the
position, was considered unnecessarily complex. The decision was then made to use the sun vector as the
second state variable. In the absence of measurements (eclipse) the change in this variable is estimated based
in the angular rate. In figure 3.1, the effect of considering the real measuring process is shown. It can be seen
that, while the error in the angular rate remains of similar magnitude, there are three distinguishable error
behavior areas in the case of the sun vector. These areas are: 1) coarse sun sensor, up to 500 seconds, 2) fine
sun sensor, 1000-1500 and 4000-5000 seconds, and 3) estimation based in angular rate, 2000-3500 seconds.
Particularly relevant is the steady increase in the error during eclipse time, caused by the bias in the angular
rate.

Figure 3.1: Measuring process analysis. Comparison of actual state variables (up), measured state variables (center) and error (down).

This ’raw’ (unfiltered) state vector goes then through the estimator’s block. In the event that the sensors
are assumed ideal this block is commented off. In case the measuring process includes the noise and biases of
the sensors, an extended Kalman filter is used to improve the accuracy of the state vector. The mathematical
derivations involved in this filter are not included in this report. Furthermore, with the objective of simplify-
ing the problem and avoid a potential interference in the results, during most of the research the measuring
process is assumed ideal and the filter is not used.

3.1.2. Controller and actuator
As previously mentioned, there are two main tasks for the ADCS throughout the mission: 1) detumbling and
2) pointing and maintaining a relative orientation w.r.t. the sun. For each of these tasks a different controller is
designed. The reason for doing this is that the controller needed for detumbling is considerably simpler than
the one used during operation. For the detumbling phase, the controller used is commonly known as b-dot
controller. It aims to reduce the angular velocity of the spacecraft by generating a dipole with the form shown
in expression 3.1 [1]. This equation is based in the assumption that the change of the magnetic field in the
inertial reference frame is negligible when compared to that in the body fixed reference frame.

~m =−kω ~̇bu ≈−kω
~b ×~ω

b
(3.1)
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For the second stage, pointing and maintaining a relative orientation w.r.t. the sun, the controller was
derived using a linear quadratic regulator (LQR) approach to compute static gains, which relate the control
variables with the control command. Further explanations on how the gains have been computed are included
in section 3.2.1. It is to be reminded that this controller aims to generate an angular velocity in the body fix
reference frame and control the orientation of the rotating axis in the inertial reference frame. The control
variables are computed from the guidance instructions (spin and relative orientation between rotation axis
and sun vector) and the state estimation (sun vector and angular rate). This computation is based on direct
substraction in the case of the angular rate and in the method explained in [6] for the pointing error. This
method gives an approach to express the difference between two axis that are to be aligned (according to
guidance instructions). The equations resulting from the application of this method are shown in expression
3.2, where v1 and v2 are the axes to be aligned and cv the control variable related to the pointing error. With
respect to the linearization points used for the LQR controller, two points are used, varying the angular rate: 1)
ω= 0 and 2) ω=ωg , where ωg is the guidance angular rate for the spacecraft.

~e = v1 × v2

|v1 × v2|
; θ = ar ccos(v1 · v2); [e×] =

 0 −e3 e2

e3 0 −e1

−e2 e1 0

 ;

E =I + si nθ[e×]+ (1− cosθ)[e×]2 → ~cv = [E23 −E32;E31 −E13];

(3.2)

After computing the desired control torque, the controller takes into account that the actuator use (mag-
netorquer) is only able to provide a torque in a plane normal to the local magnetic field. This is taken into
account by the conventional approach of projecting the desired torque into that plane. Other alternatives can
be found in literature but are not considered here [23]. Then, based on the information regarding the magnetic
field, the command torque is transform into a command dipole, which is to be generated by the magnetorquer.

The actuator used is a three axis magnetorquer, aligned with the main axis of the satellite. The specifica-
tions of the actuator are shown in table 2.6. However, as the impact or meaning of some of these specifications
may not be that intuitive, they deserve further explanation. The time constant is linked to the velocity at which
the magnetorquer can change the dipole it is generating. Therfore, for a time constant t, the transfer function
of the magnetorquer is 1/(t s+1). The duty cycle is meant to switch on and off the magnetorquer so the magne-
tometer can measure the unaffected local magnetic magnetic field. This measurement is directly necessary for
the b-dot controller and indirectly for the LQR controller, as it is the base for the relation between the torque
desired and the command dipole.

3.1.3. External disturbances
For computing the external disturbances, a simplified model of the structure is used. This model is a cube in
the case of the stowed configuration and a body like that shown in figure 3.2 for the deployed configuration. It
does not take into account the interaction between different parts of the structures (e.g. shade projected by the
central part over the membrane). Four origins of disturbance torques (gravity field, magnetic field, atmosphere
and radiation pressure) and two of disturbance forces are considered (atmosphere and radiation pressure).
The following expressions for these disturbances were already implemented in the attitude control system
simulator for Compact Satellite provided by the German Aerospace Center and have not been modified. The
gravity gradient is computed as shown in equation 3.3, where MoI is the moment of inertia and ru the unitary
position vector. The magnetic disturbance calculation is given in equation, where m is the satellite’s dipole
and b the local magnetic field.

Figure 3.2: Schematic view of the satellite structure used in the computation of surfaces forces (solar pressure and drag) for the deployed
configuration.

~Tg = 3
µ

|r |3 (~ru × (MoI~ru)); (3.3)
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~Tm = ~m ×~b; (3.4)

The value of the of the solar irradiance (ir ) used to compute the solar pressure is assumed constant and
with a value of 1358 W /m2. This is an approximation, as it actually varies (variations <10%) throughout the
year and solar cycle (≈11 years). Both the disturbance torque and disturbance force are computed based in the
simplified structure previously mentioned and in expression 3.5, used to compute the distributed force over
the surfaces exposed to the solar radiation. In this expression, s is the sun vector, n the normal of the surface,
θ the angle between both, Csr the spectral reflectivity coefficient, Cdr the diffusive reflectivity coefficient and
A the area.

~fr = ir ((1−Csr )~s +2(Csr cosθ+ 1

3
Cdr )~n)Acosθ; (3.5)

The atmospheric density is defined at the beginning of each simulation and considered constant through-
out it. It is computed at the initial altitude based on the Harris-Priester model [16], assuming a value of 111
W /m2/H z of the F10.7 cm flux level and taking the maximum density. This value (F10.7 cm flux level) shows
considerable variations during the solar cycle, from 65 to 275, having a great influence in the density (up to 2
orders of magnitude), which increases as the flux level increases. The assumption is optimistic, in the sense
that it is assumed that the satellite is operating at a time with low solar activity, but still strict, as it takes into
account the maximum densities to be found under that solar activity. The consequences of this assumption
will be evaluated in section 3.2.2. Once the atmospheric density is defined, the force and torque caused by the
drag can be computed using equation 3.6 combined with the definition of the structure.

~fd =−1

2
CDρv2 Acosθ~vu ; (3.6)

Figure 3.3 compares external disturbance torques generated for stowed and deployed configurations. In
the stowed configuration only gravity gradient and magnetic torque generate torque, as the center of mass
matches the center of pressure (nominal case). In the deployed configuration the gravity gradient and at-
mospheric drag generate the highest torques (of the order of 5e-5 Nm), followed by solar pressure (5e-6) and
finally magnetic torque (5e-8). Due to the similarity in the moments of inertia in x and y axes, the gravity gra-
dient is smaller in the z-axis. The internal magnetic dipole is assumed not to change due to the deployment.
Therefore, the magnetic torque remains of a similar magnitude. Evidently, during the eclipse there is no solar
pressure.

3.1.4. Equations of motion
The plant of the satellite contains the equations of the dynamics and kinematics of the spacecraft. Even though
the equations related to linear motion are also included in the model, only those related to the angular motion
are shown here. The expressions shown throughout this subsection were obtained from [32], where more
detailed derivations can be found. In this initial analysis, the satellite was assumed to behave as a rigid body.
Taking this assumption into account (i.e. the moment of inertia is constant), the dynamics of the spacecraft
can be derived from the angular momentum (L) as shown in equation 3.7. In this equation, ω is the angular
rate, MoI the moment of inertia and T the external torque.

~L =MoI~ω

d~L

d t
= ~T −~ω×~L = MoI

d~ω

d t
~̇ω= MoI−1(~T −~ω× (MoI~ω))

(3.7)

Regarding the kinematics of the spacecraft, it is necessary to choose how to describe the attitude of a rigid
body, i.e. the relative orientation of two three-axes reference frames. It was decided to use Euler symmetric
parameters, which describe this relative orientation using a quaternion. The four elements of this quaternion
(Q) contain information regarding the Euler axis ([e1,e2,e3]) and angle (φ) (see expression 3.8). The rotation
needed to go from one reference frame to the other is then described as a rotation of the Euler angle in the
Euler axis.
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Figure 3.3: Comparison of the external disturbances (torques) over stowed (right) and deployed (left) configurations. 550 km of altitude.

Q1 = e1si n
φ

2
; Q2 = e2si n

φ

2
; Q3 = e3si n

φ

2
; Q4 = cos

φ

2
; (3.8)

Using this parametrization leads to the expression of the kinematics of the spacecrafts shown in equation
3.9. In this equation Q is the quaternion andΩ is the extended angular rate. The conversion of the angular rate
(ω) into the extended angular rate (Ω), consists in adding a forth component equal to zero. More information
about quaternion algebra (e.g. quaternion product) can be found in [18].

Q̇ = 1

2
QΩ; (3.9)

These two equations (3.7 and 3.9) define the motion of the satellite assuming it is a rigid body. In chap-
ter 4, this assumption is eliminated and, therefore, these equations are extended to include the effect of the
flexibility.

The two blocks left are less interesting from the research’s perspective. The transformation block computes
all relevant variables from data regarding time, position and attitude of the satellite. These variables include,
for example, the local magnetic field and the sun vector in the body reference frame. The visualization block
provides with a direct way of visualizing and analyzing the results.

3.1.5. Structural configurations and initial conditions
Once the ADCS loop components have been introduced, it is necessary to analyze the different set-ups or
configurations that can appear during the mission and, thus, have been implemented in the simulation. First
of all, regarding the structure, two main options are considered: stowed and deployed. In the first case the
geometry of the spacecraft consists on a prism with the dimensions specified in table 2.1. For the deployed
case, the membrane lays centered in the surface of the prism pointing to +Z-axis in the body fix reference frame
and each of the four booms is connected to the central part of the satellite and to one corner of the membrane
(see figure 2.1). Another aspect to be define for each simulation is the initial condition of the spacecraft. Three
main possibilities are studied:

• After launch and before the detumbling phase. The assumptions made are that: 1)the norm of the an-
gular velocity is 12 deg/s, 2) the direction of the angular velocity is aleatory and 3) the attitude of the
spacecraft is aleatory. This is considered to be consistent with the actual situation expected after launch.
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• After the detumbling phase has been conducted the angular rate is assumed to be reduced to 0.1 deg/s,
based in the results obtained. Both the direction of this angular velocity and the attitude of the satellite
are still defined in an aleatory way.

• After the spacecraft has been given a spin in the z-axis and this axis has been aligned with the sun vector,
the operation phase is reached. In this case the error in the angular rate is assumed to be of the order of
0.01 deg/s and the error in the in the pointing direction of the order of 1 degree.

Finally, regarding the ADCS operation, it is necessary to consider two cases: active and inactive. In case the
system is active the controller is chosen based in the initial conditions: b-dot controller if the satellite is still
tumbling and LQR based controller for the rest of the scenarios.

3.2. Results
This section contains the results obtained when performing analyses based in the description given in the
previous section. Therefore, the simulation environment described is used and the satellite is considered a
rigid body. The analyses cover the two main tasks of the ADCS (detumbling and pointing phases) and aim
to give a clear idea of the performance over the different structural configurations (stowed and deployed) for
several scenarios (i.e. initial conditions, orbital parameters..etc.).

A separation is made between two set of results. The first set (section 3.2.1) contains an exhaustive analysis
over the performance of the controller over the complete mission, containing all combinations of phases and
structural configurations, for a defined array of orbital parameters. In the second sub-section (section 3.2.2),
the analyses performed focus in the most critical aspects of the mission (as identified in 3.2.1). By focusing in
these parts, it studies the limitations that may arise as well as different conceptual alternatives that could be
implemented in the mission.

3.2.1. Basic analysis
This analysis is conducted in order to gain a further understanding about the ADCS role in the mission and
the main challenges that will appear throughout it. To achieve this goal, is necessary to first conduct an initial
analysis covering all different configurations and tasks that this system will face during the mission. To simplify
this analysis, the number of variables changing for the different analyses is lowered by choosing a concrete
orbit. The orbit chosen has an altitude of 600 km, inclination of 60 deg and the rest of the orbital parameters
are zero. The starting date of the simulation remains also constant for all the simulations, being 01/09/2015.

All possible combinations of the two structural configurations (deployed and stowed) and control phases
(detumbling and pointing) are considered. The initial condition of the spacecraft is defined based on those
two parameters, as shown in table 3.1, where: ω0 is 12 deg/s, ω1 is 0.01 deg/s, a is a vector containing three
values out of a standard normal distribution and b containing four values (computed for each run), IS is the
moment of inertia of the stowed configuration and ID of the deployed configuration.

Control phase Structural configuration Angular rate Attitude quaternion

Detumbling Stowed ω0
a
|a|

b
|b|

Detumbling Deployed I−1
d (Isω0

a
|a| )

b
|b|

Pointing Stowed ω1
a
|a|

b
|b|

Pointing Deployed ω1
a
|a|

b
|b|

Table 3.1: Initial conditions for the satellite’s attitude.

The performance of the controller in the detumbling phase is measured by the reduction achieved in the
module of the angular rate. This reduction is shown in figure 3.4 for the stowed configuration and in figure 3.5
for the deployed configuration. In each case, 5 different initial conditions (based in table 3.1) are considered.

It can be observed that in both configurations the b-dot controller is able to stabilize the satellite, keeping
the module of the angular velocity under 0.01 deg/s for the stowed configuration and under 0.1 deg/s for the
deployed configuration. The time needed for detumbling is of the order of 2 hours for the stowed configuration
and 1 hour for the stowed one.

Regarding the differences between the two configurations, it can be observed that the angular velocity
reduction achieved in the stowed configuration is considerably higher than in the deployed configuration.
This is mainly caused by: 1) an increase in the external disturbances, due to an increase in the area exposed
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Figure 3.4: Module of the angular velocity throughout the detumbling phase for 5 different initial conditions. Stowed configuration.

Figure 3.5: Module of the angular velocity throughout the detumbling phase for 5 different initial conditions. Deployed configuration.

to solar radiation pressure and drag, and 2) increase in the moment of inertia. As the specifications of the
actuator (magnetorque) remain constant throughout the different satellite’s configuration, its performance
decreases as the external disturbance torque and the moment of inertia increase. Another clear difference is
that the initial angular rate is lower for the deployed configuration, as the increase of the moment of inertia
of the spacecraft throughout the deployment phase slows the spinning of the satellite, conserving the angular
momentum. This leads to a lower time for reaching the final detumbled stage.

After considering these two main possibilities regarding when to conduct the detumbling of the spacecraft
w.r.t. the mission timeline (before and after deployment), no clear ’winner’ is discovered. As the results are
considerably similar from an ADCS perspective, the decision on which one to implement must be based in
other factors, such as loads induced during deployment or influence in later ADCS’ phases.

The other control phase to be studied is the pointing towards the sun. As part of this phase, the satellite
is also given a spin in order increase its stability w.r.t. the direction of the spin axis. As previously mentioned,
during this phase the controller uses static gains computed using an LQR approach. As explained in section 5.1,
this approach aims to find a gain matrix K, such that function J is minimum when applied over a linear system
(see expression 3.10). This function depends on the state vector, the control command and the weighting
matrices Q, R and N, which define the importance of each state and control variable.

ẋ = Ax +Bu → J =
∫ ∞

0
(xT Qx +uT Ru +2xT Nu)d t → umi n(J ) = K x (3.10)
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The minimization of the J function is done using a built-in Matlab function (lqr). However, in order to be
able to implement this function, the weighting matrices need first to be defined. This is done experimentally,
analyzing the performance of the controller for several combinations of weights for the pointing error, angular
rate error and commanded torque. The most promising weights are then selected. An example on how this
was done can be seen in appendix B. The final weights selected are: 5e-3 for the pointing error, 1e4 for the
angular rate error and 1e5 for the control torque. Regarding the linear plant used, two linearization points were
implemented, giving two different sets of gains. The first point is centered in zero angular rate and the second
one in the desired final angular rate. The change between these sets of gains is implemented automatically by
the controller once the spacecraft reaches the desired angular rate.

The performance of the controller in this control phase (pointing) is now evaluated, over both stowed
(figure 3.6) and deployed (3.7) configurations. There is one difference in the control strategy used in each
configuration: while in the stowed configuration the satellite is accelerated to the final desired spin from the
beginning, in the deployed configuration the acceleration is progressive (see figure 3.8). This is done in order
to avoid reaching a highly stable configuration far from the desired orientation. These simulations were run
under the assumption of ideal measurements. 10 different cases were run for each configuration, changing
the initial condition according to table 3.1.

Figure 3.6: Pointing error [rad] throughout the pointing stage for 10 different initial conditions. Stowed configuration.

The main conclusion that can be extract from these results is that the mission attitude requirements re-
garding pointing accuracy can be fulfilled (for the particular orbit studied) with the ADCS design proposed.
This design comprises the set of sensors and actuators as well as the controller, previously described. It is also
to be mentioned that further optimization of the gains and a more precise use of the progressive spin may have
the potential of decreasing the time needed to reach the operating point and even to increase the attainable
accuracy.

Two main aspects of the results are to be studied: 1) the convergence speed towards the operating point
and 2) the accuracy with which the spacecraft can be maintained in that point. Regarding 2, when comparing
the results obtained for both configurations (stowed and deployed), it can be observed that, similarly to the
results for the detumbling phase, the accuracy achieved in the stowed configuration is considerably better
than the one in the deployed configuration. The explanation is, a priori, similar: increase in the external
disturbances and in the moment of inertia. In relation with the time needed to reach the operation point,
it can be noticed that it is highly dependent on the initial attitude, ranking between 0.5 and 1.5 days for both
stowed and deployed configurations. Again, no clear benefits are observable for conducting the pointing stage
before or after the deployment has taken place.

It was also noticed that, in the deployed configuration, the error shows a periodic behavior linked in fre-
quency with the orbit of the spacecraft. A more detailed view of this behavior is shown in figure 3.9. This
periodic behavior appears to be divisible in two main distributions: 1) higher period (≈ 1.6h), in relation with
the orbital frequency and therefore with most external disturbances, and 2) higher frequency (twice the pre-
vious one), in relation with the limitation to the control torque imposed by the local magnetic field (locally
underactuated).
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Figure 3.7: Pointing error [rad] throughout the pointing stage for 10 different initial conditions. Deployed configuration. Progressive
acceleration.

Figure 3.8: Angular velocity [rad/s] throughout the pointing stage for 10 different initial conditions. Deployed configuration. Progressive
acceleration.

Finally, it is important to remark that the ADCS system is able to maintain the deployed satellite pointing
towards the sun within the limits specified in the requirements. In figure 3.7, the results show that the point-
ing error remains below 3 degrees after the first attitude correction. However, further analyses are needed in
order to prove the stability of the configuration for broader time spans, different initial altitudes and orbital
parameters.

3.2.2. Extended results
The analysis conducted in the previous section can be used to understand qualitatively the performance of the
ADCS, pointing out which are the critical phases and main potential limitation that may appear. It is now safe
to state that the most critical structural configuration for the ADCS is the deployed configuration and that the
most demanding control phase is pointing.

Throughout this section, additional analyses are shown with the aim of giving an additional insight to the
GoSolAr mission and, therefore, to missions with similar characteristics. These additional analyses focus in
two main aspects of the mission: 1) orbit selection and 2) conceptual alternatives for the design of the mission.

With respect to the selection of an orbit, two main limitations are studied, both related to the interaction
of the spacecraft with the space environment:

• Altitude.

• Inclination and right ascension of the ascending node.
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Figure 3.9: Periodicity of the pointing error in the long term.

W.r.t. the altitude, the objective is to define both the upper and lower limits that allow complying with
the mission requirements on pointing accuracy. The results of the simulations used to draw conclusions in
relation this limitation are included in appendix C.

The upper constrain in the attitude is caused by two main factors: 1) strength of the magnetic field and
2) code of conduct (which aims to contain the increase of orbital debris). As at higher altitudes the magnetic
field’s strength lowers, the control torque that can be applied also decreases. However, the decrease of the
magnetic field is followed by a decrease in the disturbances caused by the gravity gradient and the atmospheric
drag, which are dominant for lower altitudes. Therefore, the decrease in the control torque attainable is not
considered to be critical for altitude within the range considered for this mission. This is confirmed in figures
C.2, which shows that the detumbling phase can be successfully conducted up to 800 km, and C.3, which
shows that the pointing error can be keep within requirements for altitudes up to 750 km. On the other hand,
the current code of conduct limits the deorbiting time of the nominal configuration to 25 years. This nominal
configuration can be assumed to be the worst case scenario (i.e. failure in deployment) or the actual nominal
scenario (i.e. successful deployment). This decision makes a considerable impact, as in the first case the initial
altitude is limited to around 600 km while in the second one it can go up to almost 800 km. Therefore, it can be
concluded that the main limitation regarding the upper limit of the initial altitude is related to the application
of the code of conduct and not to the ADCS requirements.

Regarding the lower constrain in altitude, the main cause is the fast (exponential) increase of the atmo-
spheric density when decreasing the altitude. Even thought, the magnetic field strength also increases, at a
certain altitude the magnetorquer will not be able to cope with the torque generated by the drag. This limits
the operative lifetime of the mission, as below this altitude the controller will not be able to ensure that the
satellite is pointing towards the sun within the accuracy required. The results (appendix C) indicate that the
altitude limit for controlling the spacecraft with the selected ADCS design is slightly below 450 km. For the
flux level (F10.7) assumed, this altitude states for a mean density of 2.2E-12 kg /m3. It is to be highlighted that,
throughout the solar cycle, the mean density at 450 km of altitude can vary from 1.1E-11 (high solar activity) to
9E-13 (low solar activity). This means that the altitude limitation for the mission changes with time, pointing
out to the possibility of ensuring the lifetime and the deorbiting time simultaneously, by launching the space-
craft to a low orbit in a period of low solar activity. Two main options to extend the lifetime of the spacecraft to
lower altitudes can be observed: 1) to ensure it operates in a timeframe where the solar activity is low and 2) to
reduce the membrane area.

An analysis on the deorbiting time of the satellite is shown also in appendix C. This analysis shows the de-
orbiting profile (altitude as a function of time) for different initial conditions, including: 1) date (linked to the
solar cycle), 2) initial altitude and 3) success/failure of the deployment. The only external disturbance taken
into consideration is the drag. The density is computed using Harris Priester atmospheric model, estimating
the radio flux based on data from the Space Weather Prediction Center (U.S. Dept. of Commerce). In case of
failure of deployment the effective area is assumed constant (0.25 m2). In case of success of deployment the
effective area is compute in two phases: 1) For densities lower than 3E-12 kg /m3 the membrane is assumed
to be pointed towards the Sun and, therefore, the effective area is computed based on the satellite’s velocity
and the position of the sun, and 2) for higher densities the membrane is assume oriented perpendicularly to
the velocity (constant effective area equal to the area of the membrane). This analysis shows that, in case the

24



nominal case is assumed to be a failure in deployment, there are two main possibilities, if the requirements on
maximum an minimum deorbiting time are kept at 25 years and 6 months: 1) ensure launching at an epoch
with low solar activity or 2) reduce the membrane area. In case the nominal case is assumed to have success-
fully deployed the membrane, both requirements can easily be met by choosing an initial higher altitude.

Figure 3.10: Study of the pointing phase for an inclination of 97 deg and different right ascensions of the ascending node. Altitude: 550km.

The second main factor to be taken into account when choosing the orbit is that, in order for the magne-
torquer to be able to properly control the attitude of the satellite, the direction of the magnetic field should
not be steady. As pointed out in previous sections, the exclusive use of magnetorquers to control the atti-
tude of the satellite leads to a locally underactuated spacecraft. In order to be able to minimize the effect of
this local phenomena, the orbit of the spacecraft needs to be such that the magnetic field varies throughout
the orbit allowing exerting control torques in any direction. Taking into account that Earth’s magnetic dipole
(simplification of the actual magnetic field, which is considerably more complex) has an inclination of around
11 degrees, it can be deduced that orbits with low inclinations may encounter this kind of problem. In this
orbits the magnetic field remains close to an axis normal to the orbital plane, imposing a hard limitation in
the torque applicable in that direction, making the spacecraft less controllable or even uncontrollable. In ap-
pendix D, several analyses over a range of orbital inclinations and right ascensions of the ascending node are
run. These analyses confirm the lack of controllability (with the controller developed) of the system for some
orbits with low inclinations.

It is also to be noted that, even for orbits with high inclination, the accuracy obtained differs considerably
for different right ascensions of the ascending node. The reason behind this is that, as the membrane plane is
pointed towards the sun, its relative orientation w.r.t. its orbital velocity is determined by this orbital parameter
(right ascension of the ascending node). This relative orientation influences the both the evolution of the
effective area determining the drag and the distance between the center of pressure and center of mas, having
a considerable effect in the disturbance torque generated by the drag. This can be seen in figure 3.10, were
the pointing accuracy obtained changes between 3 and 10 degrees as a function of the right ascension of the
ascending node.

When studying the design of the mission, three main potential changes are considered, listed below. These
changes are explained in the remaining of this section using mainly a qualitative approach.
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• Change in the orientation of the solar cells.

• Reorientation phases throughout the mission.

• Changing the pointing objective at low altitudes.

The reason to evaluate the possibility of changing the orientation of the solar cells is that this orientation
defines the vector that is to be aligned (in direction and orientation) with the sun vector. The two alternatives
are shown in figure 3.11 as A, the orientation chosen initially, and B, the alternative to be analyzed. The main
drawback of configuration A is that it leads to the operating point being an unstable equilibrium point w.r.t.
the torque produced by the solar radiation. This is because the center of mass is more distant to the sun than
the membrane plane. On the other hand, in configuration B, the operation point is a stable equilibrium point
w.r.t. to this torque. In case the solar radiation was the dominant disturbance, this would be a critical point for
improving the pointing accuracy of the satellite. In the range of altitudes considered in the GoSolAr mission
and in this report, the dominant disturbance torques are caused by gravity and drag, and, thus, the benefit to
be gain by this change of configuration is limited. However, for missions aiming higher altitudes it would be a
point to be taken into consideration.

Figure 3.11: Orientation of the solar cells. A: nominal plane, B: alternative plane.

Among the objectives of the GoSolAr mission is to characterize the solar array. In order to allow a more
complete characterization of this array, it seems to be optimal to study different orientations of it w.r.t. the
incident solar radiation. From a control perspective, re-orientating the rotation axis towards an aleatory fixed
axis in the inertial reference frame, expressed in the body fixed reference frame, do not pose a problem. Fur-
thermore, the proximity of the new axis to the previous one (i.e. the sun vector) increases the convergence rate,
leading to a maneuver time of the order of 1-6 hours.

However, when examining in depth this new axis some challenges are found. The conditions that this axis
should fulfill are: 1) fixed orientation with respect to the sun vector, which is equivalent to being (quasi) con-
stant in the inertial reference frame, and 2) be expressed in the body fixed reference frame. Fulfilling both
requirements is not trivial in the absence of complete knowledge regarding the attitude of the satellite. In the
initial case, where this axis is the sun vector, it can be expressed directly in the body fixed reference frame due
to the use of sun sensors. The solution for this problem is considerably immediate, computing the attitude
quaternion. This is done using the TRIAD method (previously mentioned), which computes it using the rela-
tive rotation between sun and magnetic vectors in the inertial and body fixed reference frames. Even though
this computation is considerably simple, it still adds some computational cost. The results (see figure 3.12)
confirm the estimation on the time needed for performing this maneuvers, between 1 and 6 hours. Further-
more, they also point out the pointing accuracy achieved is not dependent of the angle w.r.t. the sun vector.

The final aspect of the mission considered is related with what control strategy to follow when the ADCS is
no longer able to maintain the orientation towards the sun within the accuracy requirements. In the analyses
shown previously, the controller developed aimed to continuously point towards the sun (or towards other
inertially fixed direction). However, as it has been shown before, there is an lower limit in the altitude from
where this is not possible anymore. In order to avoid uncontrolled tumbling, an additional phase is proposed,
in which the drag is used to create an equilibrium point and stabilize the spacecraft attitude around it. This
way, this additional phase consist in using the structure of the satellite and the dominant external disturbance
(drag) for passive control of the spacecraft’s attitude. From a conceptual perspective, this passive control is
based in aligning the satellite’s axis Z (see figure 3.2) as close as possible to the satellite’s velocity vector w.r.t.
the atmosphere. It is also to be mentioned, that the importance of this phase is low when compared to the
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Figure 3.12: Evolution of the angle w.r.t. the sun vector for two different guidance instructions and initial conditions. h=550km, i=97 deg.

overall mission, as once the density of the atmosphere is such that the pointing requirements can’t be met, the
rate of orbit decay is high and the satellite deorbits in the order of days. This is the reason why this phase was
not analyzed in further detail.

3.3. Conclusions
The main conclusion of this chapter is that the mission requirements in relation with the ADCS are met, in the
absence of the potential effect of the flexibility, by the design proposed. The results are also meant to give an
idea of the accuracy attainable and of the behavior of the structure from an attitude perspective. Furthermore,
these analyses are also useful to isolate an analyze the effect of the flexibility in further stages of the study.

Additionally, several challenges, in relation with the particularities of the structure and with the proposed
ADCS design, that are considered particularly relevant are pointed out below.

• The spacecraft is locally under-actuated. The control torque produced is always contained in a plane
normal to the local magnetic field. Therefore, in the absence of additional actuators, the system will
always be locally under-actuated.

• Low volume available to be use for potential actuators, in relation to the moment of inertia and to the
effective area interacting with external disturbances. This volume limits the length of the magnetorquers
and, thus, the maximum dipole that can be generated.

• In the deployed configuration, the center of mass and the center of pressure are no longer coincident.
This increases the effect of the solar radiation and atmospheric drag in the final disturbance torque.

Concerning potential improvements in this area, the most relevant addition would be, from the author
perspective, the implementation of either periodic control or a finite-horizon approach to address the local
under-actuation.
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4
Flexible model

The aim of this chapter is to improve the accuracy and completeness of the analysis shown in the previous
section, as well as to take the next step towards answering the research questions. In order to be able to do
this, we aim to go beyond the ’simple’ dynamics of the rigid bodies, incorporating the effect of flexibility in our
equations of motion.

In order to decide the approach to use when adding this effect, the objectives that are targeted with the
derivation of these new equations need to be defined. Two main objectives are distinguished below. Note
that a tradeoff needs to be made between achieving these two goals, as the second one prevents for using
over complicated models (such as those which would be used for the study of the static deformations or load
distribution over the structure).

• Increase the accuracy of the model of the satellite. This objective is related to allowing a more precise
evaluation of the performance of the different ADCS designs studied.

• Generate meaningful equations that can give an insight of the behavior of the plant and be used for
control purposes.

The rest of the chapter is structured starting with a brief introduction to the theoretical basis of the method
used to derived these equations/model, highlighting its potential applicability to cases different than the one
covered in this report. Then, the implementation of the method over a simplified version of the spacecraft’s
structure is explained in detailed. Several possibilities for increasing the similarity of this simplified case to the
real one are also explained. After building the model for a particular case of study, the results are compared to
those obtained using a numerical model, with the aim of verifying the process of deriving the equations.

4.1. Theoretical background
As explained in the first chapter of this thesis, a considerable number of approaches to modeling a flexible
structure can be found in the existing literature. In this study, an analytical method was selected, as it appears
to be the most suitable for covering both objectives of the model: it allows building an accurate model while
maintaining the order of the system low enough for it to be comprehensible and useful in control applications.

Of course, there are several analytical approaches to derive equations of motion taking into account the
flexibility of the structure. The one chosen in this study is based in the Lagrange equations and, more partic-
ularly, in one of the methods explained in [17], which was found extremely useful throughout the progression
of the thesis. The reasons to select this particular approach (i.e. Lagrange’s equations in combination with
assumed modes method), which will be properly explained throughout this section, are the following:

• It allows a relatively easy and intuitive derivation of the equations of motions, w.r.t. other methodologies
(i.e. most of the derivations are partial derivatives).

• The arbitrary selection of the coordinates makes possible to determine these coordinates in relation with
the structure analyzed and with the variables of interest for each case.
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The model is derived from the classical form of Lagrange equations 4.1, which has been widely used, in
holonomic discrete coordinate systems, to obtain the equations of motion [17]. In this expression, L is the
lagrangian, T the kinetic energy, V the potential, q a coordinate and Q the non-conservative forces over coordi-
nate q. This expression is derived from the generalized Hamilton principle, shown in expression 4.2, assuming
the virtual work of the non-conservative forces (Wnc ) can be expressed as shown in equation 4.3.

d

d t
(
∂L

∂q̇
)− ∂L

∂q
=Q; L = T −V ; (4.1)

∫ t2

t1

δ(T −V )d t +
∫ t2

t1

δWnc d t = 0; (4.2)

δWnc =
∑

i
Qiδqi ; (4.3)

In order to distinguish between the non-conservative internal forces (i.e. dissipation) and the external
forces, expression 4.4 was defined, where D is the Rayleigh dissipation function. Finally, assuming that the
potential (V) is a function only of q (and not of q̇), this equation can expressed as shown in equation 4.5,
which will be used from this point. The sub-index i points out the discrete number of coordinates to be used.

d

d t
(
∂L

∂q̇
)− ∂L

∂q
+ ∂D

∂q̇
=Qext ; (4.4)

d

d t
(
∂T

∂q̇i
)− ∂T

∂qi
+ ∂V

∂qi
+ ∂D

∂q̇i
=Qi ; (4.5)

Once this initial equation has been defined, it is necessary to go through the terms that appear in it. In
order to enable the derivation of the equations of motion, we aim to describe the kinetic energy (T), potential
(V) and dissipation function (D) as shown in expression 4.6. In this expression N is the number of coordinates
(which will be called generalized coordinates from this point on), qi is the generalized coordinate i, q̇i its time
derivative and M, K and F are NxN matrices.

T (q, q̇ , t ) =1

2

N∑
i=1

N∑
j=1

Mi j (q)q̇i (t )q̇ j (t )

V (q, t ) =1

2

N∑
i=1

N∑
j=1

Ki j qi (t )q j (t )

D(q̇ , t ) =1

2

N∑
i=1

N∑
j=1

Fi j q̇i (t )q̇ j (t )

(4.6)

Assuming expressions for M, K and F can be found, expression 4.5 can be further developed, leading to
expression 4.7. This assumption is later on validated by deriving the three matrices. Equation 4.7 contains the
equations of motion of the system and will be used throughout the rest of the study as the basic expression of
the model. Three main terms appear to be added w.r.t. the conventional and well-known expression for the
dynamics of a simple flexible system (i.e. M q̈+F q̇+K q =Q). These additional terms are caused by the depen-

dency of the mass matrix (M) on time (Ṁ(q, q̇ , t )q̇(t )) and on the generalized coordinates ( 1
2 q̇T (t ) ∂M(q,t )

∂q q̇(t ))
and by effect of the time derivative taking into account the rotating character of the system (R(q, q̇ , t )). Note
that ∂M

∂q is a tensor in with dimension NxNxN, and, therefore, the result of the term involving that quantity is a
vector as well as the rest of the terms.

M(q, t )q̈(t )+ Ṁ(q, q̇ , t )q̇(t )+R(q, q̇ , t )− 1

2
q̇T (t )

∂M(q, t )

∂q
q̇(t )+K q +F q̇ =Q (4.7)

This expression (4.7) is generic and can be applied to different geometries and structures by defining an
adequate set of generic coordinates, in line with the structure and with the objectives of the study. This imple-
mentation over a particular structure can be done following the process shown in figure 4.1. This process is
now briefly introduced and later on explained in detail for the case of study analyzed in this thesis.
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Figure 4.1: Procedure followed for the derivation of the flexible model.

First of all, in order to be able to study the dynamics of a structure, the structure itself needs to be define.
This definition process includes the assumptions that are being made to simplify the actual structure as well
as complete definition of the different bodies and their relevant structural properties (e.g. density or bending
stiffness). Having defined the structure, the objective the model is built for is to be evaluated. By analyzing this
objective the relevant variables that need to be included in the model can be obtained (e.g. if the vibrations
of a boom are to be studied, its deformation needs to be included as a variable). Once these variables are
defined, it is necessary to evaluate if the kinetic energy, potential and dissipation function can be expressed as
a function of them, taking into account the assumptions made. If this is not possible, it may be necessary to
consider adding variables.

When expression for T, V and D as functions of the study variables have been found, several options are pos-
sible to obtain the matrices M, K and F. The method used here is called assumed modes method and is based
in selecting a set of shape functions, which represents the different flexible modes that appear in the structure,
using discrete number of generalized coordinates. The nature and implementation of these functions will be
further explained throughout this chapter. After obtaining matrices M, K and F, the rest of the terms of expres-
sion 4.7 need to be computed. Particularly relevant is the conversion of external forces into generalized forces
(Q), which is here done using the virtual work principle. The process concludes with the implementation of
the equations. Two additional phases are shown here, as they play a relevant role for the particular case of
study: 1) verification of the equations obtained and 2) integration of the model in the simulation environment
described in the previous chapter.

4.2. Flexible model
This section aims to explain the process followed for deriving the equations of motion for a particular set of
assumptions in relation with the structure. As shown in figure 4.1, this process starts by defining the structure
that is to be modeled and the variables which have a relevant role in the analysis. Then, through deriving
the kinetic energy, the potential and the dissipation function, and defining a consistent set of generalized
coordinates, the terms involved in expression 4.7 can be expressed in a generic form. This generic form means
that the precise form of the shape functions have not been defined up to this point. Finally, the shape functions
are defined and the actual equations of motion obtained.

4.2.1. Structure and variables
Due to the high complexity of the modeling of the flexibility of the membrane, it was decided to (initially)
define the structure to be modeled including only the flexibility of the booms. The possibility of including the
flexible dynamics of the membrane at later stages of the project was left open but finally not implemented.
Even though this limits considerably the accuracy with which the equations of motion obtained model the
behavior of the actual spacecraft, it is considered a considerable improvement w.r.t. assuming a rigid body in
the sense that:

• It provides with an understanding on how the flexible and rigid modes interact with each other, including
qualitative and quantitative results.

• It enables to estimate the effect of the flexibility in the performance of the ADCS.

• It can be used to study different possibilities for addressing the particularities of a flexible structure from
an ADCS perspective.
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• It describes a methodology to model this kind of structures, which can also be used in relation to more
complex setups.

As mentioned before, this analysis only included the flexibility of the booms, considering the spacecraft as
a combination of rigid and flexible bodies. This way, the structure analyzed consists on a rigid body to which
four flexible bodies (booms) are attached (see figure 4.2). Initially, the rigid body was assumed to contain the
mass and moment of inertia of both the central part of the spacecraft and the membrane. However, in light
of further analyses (see section 4.3), it was decided to increase the density of the booms, incorporating there
part of the membrane’s mass and moment of inertia. The reasoning behind this explained in section 4.3 and
does not play a role in deriving this equation of motions but just in the final coefficients that will appear in the
matrices.

Figure 4.2: Schematic drawing of the targeted structure.

Additional general assumptions that were made when defining the structure are:

• The rigid body geometry is assumed constant throughout time and independent from the motion of the
booms.

• In relation with the evaluation of the interaction between the membrane and the external disturbances
(drag and solar pressure), the membrane is assumed rigid and maintains a fixed relative position w.r.t.
the central part of the satellite.

• The distributed forces and torques applied in the membrane are assigned to the central part and the tip
of the booms. This distribution is done by dividing the membrane in 4 rigid triangular membranes, each
one laying on 2 boom tips and the central hub.

• The only elastic deformations studied are those of the bending of the booms. Therefore, no torsion or
axial deformation is considered.

• The mass distribution of the booms is assumed to be concentrated along its longitudinal dimension.

Once the structure targeted by the model has been defined, the variables of interest need to be taken into
account. Two main categories of variables can be distinguish, related with: 1) rigid motion and 2) flexible
motion. Those variables linked to the rigid motion describe the motion of the central part of the satellite and
are those conventionally used for this purpose: position, attitude, velocity and angular rate. Of particular
interest for this analysis are those related with the rotation of the spacecraft (i.e. attitude and angular rate).
Even thought we are linking them to rigid motion, it is to be highlighted that the evolution of these variables is,
of course, affected by variables of the flexible motion. With respect to this second category, the main variables
to be addressed are the deformations of the booms. These variables are continuous and contain the bending
deformation of each boom along its span.

In order to consistently define these variables, three reference frames need to be used: 1) inertial reference
frame, 2) body fixed reference frame and 3) boom reference frame (for each boom). The inertial reference
frame (RFI) is defined as the inertial Earth reference frame. The body fixed reference frame (RFB) origin is the
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Figure 4.3: Schematic drawing of a boom.

geometrical center of the central part of the spacecraft, and the axes are defined as shown in figure 4.2. These
two reference frames (RFI and RFB) are used to define the rigid motion variables (e.g. the attitude describes
the rotation between RFB and RFI). The third reference frame(s) used is defined for each boom (RFL), it has
the same origin as RFB but the orientation of the axes is such that the x-axis is aligned with the longitudinal
dimension of the boom (see figure 4.3)

4.2.2. Generic equations of motion
The objective of this section is to explain how the generic equations of motion were obtained. It is organized
starting the derivation of the kinetic energy as a function of the selected variables (previous section). Then,
this expression is converted into an expression with the form shown in equations 4.6. In order to do this,
generalized coordinates have been defined using the assumed modes method, which will be explained later.
This allows reformulating the expression of the kinetic energy and computing the mass matrix (M) and the
terms related with this matrix. Obtaining of the the potential and dissipation functions (V and D) and matrices
(K and F) is then explained. Finally, the conversion of the external forces to generalized forces (forces applied
over the generalized coordinates) is analyzed. This conversion is not immediate and requires the application
of the virtual work principle.

The reason the kinetic energy is computed before defining the generalized coordinates is that, even though
the main aim of these coordinates is to be able to study the variables of interest, they should also allow to
represent completely the the matrices M, F and K. Out of these matrices, M is the most complicate. As it is
linked to the kinetic energy, it is advantageous to derived first and expression for this energy and then study
the possibilities regarding the generalized coordinates.

The kinetic energy of a system can be expressed as the sum of the kinetic energy of the different bodies
included in that system. The case studied consists on five bodies: one rigid body and four flexible booms.
Therefore, the kinetic energy can be expressed as shown in equation 4.8, where Ek,T is the total kinetic energy,
Ek,R that of the rigid body and Ek,Bi the one of boom i. The computation of the kinetic energy related to the
rigid body (Ek,R ) is well known and it can be expressed as shown in equation 4.9. ω is the angular velocity of
RFB with respect to RFI, I is the moment of inertia, m the mass and vo is the velocity of the origin of RFB.

Ek,T = Ek,R +
4∑
i

Ek,Bi ; (4.8)

Ek,R = 1

2
ωT Iω+ 1

2
mv2

o (4.9)

The kinetic energy of each boom can be expressed in relation with the velocity of each of its massive points.
This leads to the integral shown in expression 4.10., where ρ is the longitudinal density, L the length of the
boom, s the integration variable covering the longitudinal dimension of the boom and v is the velocity w.r.t.
RFI. This velocity can be divided in two parts, assigned to: 1) the rigid motion of the central part of the satellite
(v andω) and 2) the velocity of deformation of the booms. The deformation of the booms is expressed as u and,
therefore, the velocity of deformation as u̇. This two terms are shown in equation 4.11. Introducing expression
4.11 into 4.10 leads to the expression for the kinetic energy of a boom shown in equation 4.12.

Ek,b =
∫ L

0

1

2
ρv2(s)d s (4.10)
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v(s) =vo +ω× r (s)+ u̇(s);

r (s) = [s,0,0]+u(s); u̇(s) = [u̇x , u̇y , u̇z ];
(4.11)

Ek,b =1

2
ρ

∫ L

0

[
(vox +ωy uz −ωz uy + u̇x )2 + (voy +ωz ac −ωx uz + u̇y )2 + (voz +ωx uy −ωy ac + u̇z )2]d s (4.12)

Having computed the two terms that appear in the expression of the total kinetic energy (expression 4.8),
this can be expressed as shown in equation 4.13. However, it is to be reminded that the objective of this deriva-
tion is not to obtain an expression for the kinetic energy but rather for the mass-matrix (M). In order to do
this, the terms involved in expression 4.13 are classified depending on whether they contain the velocity (v),
angular rate (ω) or the deformation velocity (u̇). This differentiation is shown in expression 4.14.

Ek,b = 1

2
ωIω+ 1

2
M v2

o+
1

2
ρ

∫
b1

[
(vox +ωy u1z −ωz u1y + ˙u1x )2 + (voy +ωz (s +u1x )−ωx u1z + u̇1y )2 + (voz +ωx u1y −ωy (s +u1x )+ u̇1z )2]d s+

1

2
ρ

∫
b2

[
(voy −ωx u2z +ωz u2x + ˙u2y )2 + (−vox +ωz (s +u2y )−ωy u2z − u̇2x )2 + (voz −ωy u2x +ωx (s +u2y )+ u̇2z )2]d s+

1

2
ρ

∫
b3

[
(−vox −ωy u3z +ωz u3y − ˙u3x )2 + (−voy +ωz (s −u3x )+ωx u3z − u̇3y )2 + (voz +ωx u3y +ωy (s −u3x )+ u̇3z )2]d s+

1

2
ρ

∫
b4

[
(−voy +ωx u4z −ωz u4x − ˙u4y )2 + (vox +ωz (s −u4y )+ωy u4z + u̇4x )2 + (voz −ωy u4x −ωx (s −u4y )+ u̇4z )2]d s

(4.13)

v,−→1

2
M v2

0 +2mb v2
0 +ρ

∫ L

0
vT

o ((
∑

Rbi )ω)d s +ρ
∫ L

0
vT

o (
∑

u̇i )d s

ω,−→ρ

∫ L

0
vT

o ((
∑

Rbi )ω)d s + 1

2
ωT (Iω)+ ρ

2

∫ L

0
ωT ((−∑

R2
bi )ω)d s +ρ

∫ L

0
u̇T ((

∑
Rbi )ω)d s

u̇i ,−→ρ

∫ L

0
vT

o u̇i d s +ρ
∫ L

0
u̇T

i (Rbiω)+ ρ

2

∫ L

0
u̇2

i d s

(4.14)

Rbi =
 0 di z −di y

−di z 0 di x

di y −di x 0

 ;d1 =
s +u1x

u1y

u1z

 ;d2 =
 u2x

s +u2y

u2z

 ;d3 =
−s +u3x

u3y

u3z

 ;d4 =
 u4x

−s +u4y

u4z

 (4.15)

In expression 4.14, it can be seen that even though the kinetic energy has been defined as a function of
the selected variables, the matrix M is not obtainable. This is because the variable u and u̇ are function of
both time and the longitudinal distance (s). This means it is not possible to solve this integrals or to take these
variables outside of the integrals. In order to overcome this issue, the deformation of the booms are expressed
as a combination of time dependent (q) and space dependent (φ) functions. In equation 4.16, i defines the
coordinate, j the boom and k the mode.

ui j (s, t ) =
N∑

k=1
qi j k (t )φi j k (s); i : x, y, z; j : 1,2,3,4; k : 1,2...N

Φ j ,k =
φx j k 0 0

0 φy j k 0
0 0 φz j k

 (4.16)

The strategy followed to define these shape functions is known as the assumed modes method, and con-
sists in expressing the deformation of the booms as shown in expression 4.16. There is another alternative,
which consists in lowering the number of modes and dividing the boom into multiple flexible elements (finite
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element method). The reason to choose the first method is that it leads to a lower order system. This enables
to use the resulting equations not only in the modeling of the plant but also in its control. In the finite element
method, in the other hand, the number of elements increases considerably fast and, thus, the order of the sys-
tem. This leads to an increase in the computational cost, becoming inefficient for using it for control purposes.
The method used also has, however, some inconveniences. Particularly important are: 1) need to derived the
shape functions for each particular geometry and 2) complicated shape functions [17].

Introducing the shape functions shown in expression 4.16 into the expressions in 4.14, leads to the expres-
sion for the mass matrix (M) shown in equation 4.17. Additionally, the definition of the shape function makes
possible to define the generalized coordinates, which include: 1) position, 2) attitude quaternion and 3) qi j k ,
with i:x,y,z, j:1-4 and k:1-N (see expression 4.16). The q̇ shown in expression 4.6, is then expressed as shown in
equation 4.18.

M =



(M +4mb )Iu ρ
∫ L

0
∑

Rbi d s ρ
∫ L

0 Φ1,1 ρ
∫ L

0 Φ1,2 ... ρ
∫ L

0 Φ4,N−1 ρ
∫ L

0 Φ4,N

−ρ ∫ L
0

∑
Rbi d s I +ρ ∫ L

0 −∑
R2

bi d s ρ
∫ L

0 RT
b1Φ1,1d s ρ

∫ L
0 RT

b1Φ1,2d s ... ρ
∫ L

0 RT
b4Φ4,N−1d s ρ

∫ L
0 RT

b4Φ4,N d s

ρ
∫ L

0 Φ1,1 ρ
∫ L

0 Φ1,1Rb1d s ρ
∫ L

0 Φ
2
1,1 ρ

∫ L
0 Φ1,1Φ1,2 ... 0 0

ρ
∫ L

0 Φ1,2 ρ
∫ L

0 Φ1,2Rb1d s ρ
∫ L

0 Φ1,1Φ1,2 ρ
∫ L

0 Φ
2
1,2 ... 0 0

... ... ... ... ... ... ...

ρ
∫ L

0 Φ4,N−1 ρ
∫ L

0 Φ4,N−1Rb4d s 0 0 ... ρ
∫ L

0 Φ
2
4,N−1 ρ

∫ L
0 Φ4,N−1Φ4,N

ρ
∫ L

0 Φ4,N ρ
∫ L

0 Φ4,N Rb4d s 0 0 ... ρ
∫ L

0 Φ4,N−1Φ4,N ρ
∫ L

0 Φ
2
4,N


(4.17)

q̇ = [v0x ; v0y ; v0z ;ωx ;ωy ;ωz ; q̇x,1,1; q̇y,1,1; q̇z,1,1; q̇x,1,2; q̇y,1,2; q̇z,1,2; ...; q̇x,4,N−1; q̇y,4,N−1; q̇z,4,N−1; q̇x,4,N ; q̇y,4,N ; q̇z,4,N ]
(4.18)

Once the mass matrix (M) has been derived, the terms in relation with it in the general expression for the
equations of motion (equation 4.7) can be obtained. Differentiating this matrix w.r.t. time is relatively simple,
as the only time dependent variables involved in M are the deformation of the booms. As these deformations
are expressed as a combination of shape and time dependent functions (see equation 4.16), their derivation
with respect to time is immediate. The term q̇T ∂M

∂q q̇ is considerably more complex. In order to simply its
addition to the final expressions and avoid including tensors in the implementation, it has been divided in two
parts: q̇T ∂M

∂q and q̇ . The first of these parts was derived and the expression for its non-zero rows is shown in
equation 4.19. In this expression i is the axis (x,y,z), k the mode (1-N), j the boom (1-4) and N the total number
of modes included). Finally, the term addressing the rotation of the reference frame (R) includes the non-zero
terms shown in expression 4.20.

q̇T (t )
∂M(q, t )

∂q
(a, :) =1

2



(ρ
∫ L

0
∂
∑

Rbi
∂qi j k

d s)ω

(−ρ ∫ L
0
∂
∑

Rbi
∂qi j k

d s)v − (ρ
∫ L

0
∂
∑

R2
bi

∂qi j k
d s)ω+∑

l mn((ρ
∫ L

0
∂RT

bl
∂qi j k

Φl ,md s)q̇nml )

(ρ
∫ L

0 Φ1,1
∂Rb1
∂qi j k

d s)ω

(ρ
∫ L

0 Φ1,2
∂Rb1
∂qi j k

d s)ω

...

(ρ
∫ L

0 Φ4,N
∂Rb4
∂qi j k

d s)ω



T

a =6+ i +3(k −1)+3N ( j −1); i = x, y, z;k = 1...N ; j = 1...4;

(4.19)

R(q, q̇ , t )(1 : 3) =ω× (M(1 : 3,1 : 3)v)

R(q, q̇ , t )(4 : 6) =ω× (M(4 : 6,4 : 6)ω)
(4.20)

Regarding the potential energy, only that related with the elastic deformation of the booms is taken into
account. The potential (V) can be expressed (following the derivations shown in [17]) as shown in equation
4.21, where i defines the coordinate, j the boom and k the mode. This expression leads to a general form of K
as shown in expression 4.22. The dissipation force can be approximated using a Rayleigh equation, leading to
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a expression of F similar proportional to that of K, changing EI for kd . This coefficient needs to be obtained
experimentally.

V (t ) =∑
j

∫ L

0
E I (

∂2u j

∂s2 )2d s =∑
j

∑
i

∫ L

0
E I (

∂2u j i

∂s2 )2d s; j ∈ [1,4], i ∈ [1,3] (4.21)

K =



0 0 0 0 ... 0 0
0 0 0 0 ... 0 0

0 0
∫ L

0 E I (
∂2Φ1,1

∂s2 )2d s
∫ L

0 E I
∂2Φ1,1

∂s2
∂2Φ1,2

∂s2 d s ... 0 0

0 0
∫ L

0 E I
∂2Φ1,1

∂s2
∂2Φ1,2

∂s2 d s
∫ L

0 E I (
∂2Φ1,2

∂s2 )2d s ... 0 0
... ... ... ... ... ... ...

0 0 0 0 ...
∫ L

0 E I (
∂2Φ4,N−1

∂s2 )2d s
∫ L

0 E I
∂2Φ4,N−1

∂s2
∂2Φ4,N

∂s2 d s

0 0 0 0 ...
∫ L

0 E I
∂2Φ4,N−1

∂s2
∂2Φ4,N

∂s2 d s
∫ L

0 E I (
∂2Φ4,N

∂s2 )2d s


(4.22)

The next step is to convert the real forces (Qr ) that are exerted over the structure (satellite) into a vector
of generalized forces(Qg ). This is done by calculating the virtual work that the real forces will perform as a
function of the general coordinates (see expression 4.3). It has been assumed that the forces and torques
exerted over the satellite are: 1) force over the central part (F0 = Qr (1 : 3)), 2) torque over the central part
(T0 =Qr (4 : 6)), 3) forces over the tip of the booms (F1,F2,F3,F4 →Qr (7 : 18)) and 4) torques over the tip of the
booms (T1,T2,T3,T4 →Qr (19 : 30)). The location of each of these disturbances in the vector of real forces is also
indicated. The redistribution of the loads on the membrane over the hub and the tip of the booms is assumed
to take place before this step. The virtual work can be then expressed as shown in equation 4.23, where Rbi

is defined in expression 4.15, F indicates force, T torque, r position, θ atittude, u bending deformation, 0 rigid
motion and 1-4 booms. This derivation was done following the reasoning shown in [17]. This expression can
be further developed into matrix C, in expression 4.25, which relates the real and the generalized forces.

δW =Fiδri +Tiδθi = F0δr0 +F1δr1 +F2δr2 +F3δr3 +F4δr4 +T0δθ0 +T1δθ1 +T2δθ2 +T3δθ3+
T4δθ4 = F0δr +T0δθ+F1(δr +Rb1δθ+δu1)+F2(δr +Rb2δθ+δu2)+F3(δr +Rb3δθ+
δu3)+F4(δr +Rb4δθ+δu4)+T1(δθ+δd1)+T2(δθ+δd2)+T3(δθ+δd3)+T4(δθ+δd4)

(4.23)

d1 =
 0
−u′

1z
u′

1y

 ; d2 =
 u′

2z
0

−u′
2x

 ; d3 =
 0

u′
3z

−u′
3y

 ; d2 =
−u′

4z
0

u′
4x

 (4.24)

Qg =CQr ; C =



Iu 0 Iu Iu Iu Iu 0 0 0 0
0 Iu −Rb1 −Rb2 −Rb3 −Rb4 Iu Iu Iu Iu

0 0 Φ1,1(L) 0 0 0 H1,1(L) 0 0 0
0 0 Φ1,2(L) 0 0 0 H1,2(L) 0 0 0
... ... ... ... ... ... ... ... ... ...
0 0 0 0 0 Φ4,N−1(L) 0 0 0 H4,N−1(L)
0 0 0 0 0 Φ4,N (L) 0 0 0 H4,N (L)


(4.25)

H1,k =−H3,k =
0 0 0

0 0 φ′
y1k

0 −φ′
z1k 0

 ; H2,k =−H4,k =
 0 0 −φ′

x2k
0 0 0

φ′
z2k 0 0

 (4.26)

4.2.3. Particularized equations of motion
After the generic expression for the equations of motions has been obtained, there is one main decision left:
the shape functions that are to be used. This decision is necessary to be able to define the terms on equation
4.7 and, thus, to define the actual equations of motion of the system. Another decision to be made is related to
the number of modes. However, with the aim of leaving the tradeoff between accuracy and model complexity
for further stages of the project, the equations are derived and implemented for a generic number of modes.
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Another decision to be made is in which reference frame to compute the kinetic energy. In this regard, the
decision was made to use a reference frame with the center coincident with the geometric center of the central
part of the satellite and with the same linear velocity, but no acceleration or angular velocity. This decision is
based in the high values of the velocity w.r.t. the inertial reference frame, which can cause numerical problem
if the time step of the simulation is not small enough.

As previously mentioned, the deformation of the booms is expressed as the sum of space dependient and
time dependent functions 4.16. The space dependent functions are calle shape functions. The decision of
which shape functions to use is critical and their derivation is not trivial. For the work presented here, these
functions were extracted from [17] and are defined as shown in equation 4.27 and figure 4.4.

φk (s) = 1− cos(
kπs

L
)+ 1

2
(−1)k+1(

kπs

L
)2 (4.27)

Figure 4.4: Shape functions for the first 5 modes.

These shape functions address the bending deformation of the booms. As was mentioned in the initial
assumptions regarding the structure that is to be modeled, no axial deformation or torsion of the booms is
considered. Furthermore, in order to simplify the shape functions, it was assumed that there is no displace-
ment of the tip of the boom in the axial direction (see x-axis in figure 4.3). In reality these two conditions are
not consistent, but for case of study this inconsistency in negligible due to the extremely low values of the
deformation w.r.t. the total length of the boom.

In the expressions of the terms that appear in the equation of motion (expression 4.7) some terms related
to the shape functions appear. These terms involve applying different manipulation processes over these func-
tions, such as integrating them or particularizing them over a certain point of the structure. In order to be able
to compute the actual equation of motion, those terms are obtained here, as functions of the mode (k,l) and
the length of the boom (L). ∫ L

0
φk = L(1+ 1

6
(−1)k+1(kπ)2) (4.28)

∫ L

0
φkφl = L(1+ (−1)k+l ((

k

l
)2 + (

l

k
)2)+ 1

2
δkl + (−1)k+1 k2π2

6
+ (−1)l+1 l 2π2

6
+ (−1)k+l k2l 2π4

20
) (4.29)

∫ L

0
sφk = L2(

1

2
+ 1

8
(−1)k+1(kπ)2 − ((−1)k −1)

1

(kπ)2 ) (4.30)

∫ L

0
φ′′

kφ
′′
l = ((−1)k+l + 1

2
δkl )

k2l 2π4

L3 (4.31)

φk (L) = 1+ (−1)k+l + 1

2
(−1)k+l (k2π2) (4.32)
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φ′
k (L) = (−1)k+l k2π2

L
(4.33)

After defining this quantities, the equations of motion can be computed by substituting in the generic
expressions derived in section 4.2.2. The matrices can be considerably big, as its final dimension is equal to
nxn, with n = 6+12N , being N the number of modes. It is necessary to keep in mind the the shape function
assigned to the axial direction of each boom is zero, i.e. φx1k = φy2k = φx3k = φy4k = 0. As an example, an
because it is the most complex matrix, the expression for the mass matrix (M) is shown in detail in equations
from 4.34 to 4.44.

M =


M1,1 M1,2 M1,3 ... M1,N

M2,1 M2,2 M2,3 ... M2,N

M3,1 M3,2 M3,3 ... M3,N

... ... ... ... ...
MN ,1 MN ,2 MN ,3 ... MN ,N

 (4.34)

M1,1 = (M +4mb)

1 0 0
0 1 0
0 0 1

 ; (4.35)

M1,2 = M T
2,1 = ρ

4∑
j=1

 0
∑N

k=1 qzk
∫
φzk d s −∑N

k=1 qyk
∫
φyk d s

−∑N
k=1 qzk

∫
φzk d s 0

∑N
k=1 qxk

∫
φxk d s∑N

k=1 qyk
∫
φyk d s −∑N

k=1 qxk
∫
φxk d s 0


j

; (4.36)

Ml ,1 = M T
1,l = ρ


∫ L

0 φxl 0 0

0
∫ L

0 φyl 0

0 0
∫ L

0 φzl

 ;

l ∈ [3,4N +2]

(4.37)

Ml ,2 = M T
2,l = ρ

 0 0 0
−∑N

k=1 qzk
∫
φzkφyl d s 0

∫
sφyl d s∑N

k=1 qyk
∫
φykφzl d s −∫

sφzl d s 0

 ;

l ∈ [3, N +2]

(4.38)

Ml ,2 = M T
2,l = ρ

 0
∑N

k=1 qzk
∫
φzkφxl d s −∫

sφxl d s
0 0 0∫

sφxl d s −∑N
k=1 qxk

∫
φxkφzl d s 0

 ;

l ∈ [N +3,2N +2]

(4.39)

Ml ,2 = M T
2,l = ρ

 0 0 0
−∑N

k=1 qzk
∫
φzkφyl d s 0 −∫

sφyl d s∑N
k=1 qyk

∫
φykφzl d s

∫
sφzl d s 0

 ;

l ∈ [2N +3,3N +2]

(4.40)

Ml ,2 = M T
2,l = ρ

 0
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∫
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∫
sφxl d s

0 0 0
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∫
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l ∈ [3N +3,4N +2]

(4.41)
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0
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∫ L
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(4.42)
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Mw v = ρ
0 0 0

0
∫
φy wφy v d s 0

0 0
∫
φzwφzv d s

 ;

w, v ∈ [3, N +2;3, N +2] or w, v ∈ [2N +3,3N +2;2N +3,3N +2]

(4.43)

Mw v = ρ


∫
φxwφxv d s 0 0

0 0 0
0 0

∫
φzwφzv d s

 ;

w, v ∈ [N +3,2N +2; N +3,2N +2] or w, v ∈ [3N +3,4N +2;3N +3,4N +2]

(4.44)

4.3. Model improvements
After having derived the equations of motion for a structure which includes the flexibility of the booms, it is
considered beneficial to analyze potential ways to increase the fidelity of this model w.r.t. the actual spacecraft.
In order to do this, the first objective is to find what is the main driver of the lack of accuracy of the model. This
is implicit in the description of the structure modeled, where ’only’ the flexibility of the booms is considered.
The main limitation of the model is, thus, that it does not take into account the flexibility of the membrane,
which is considered a rigid body fixed to the central part of the satellite. There are several consequences of this
assumption, among which the most relevant (to the author’s best knowledge) are listed below.

• The constraints that the membrane imposes in the bending of the booms are not considered. This would
mainly affect the motion in the membrane’s plane but could also affect the effective bending stiffness of
the booms, by inducing axial load in their tips.

• The moment of inertia of the membrane is constant.

• The interaction with the environment (i.e. drag and solar pressure) does not take into account potential
deformations in the membrane.

Even though these problems are initially considered to be out of the scope of this thesis, some ideas for
future developments are pointed out here. These concepts are analyzed in relation to: 1) the difficulty of
implementing them into the equations of motion and 2) the increase in accuracy that it would bring to the
model. Both factors are analyzed only from a qualitative perspective. The study of these possibilities is meant
to be helpful for future research in this area. The concepts analyzed are mentioned below.

1. Transfer part of the inertia/mass of the membrane to the booms, without further changes in the equa-
tions of motion. This increases the inertia linked to the bending deformations as well as the change in
the total moment of inertia due to these deformations. The complexity of the model is not increase and
the main difficulty consists on how to mathematically conduct this transfer. This option addresses the
second point highlighted previously, the steadiness of the membranes’s moment of inertia.

2. Change in the number of bodies considered in the model. Instead of 1 rigid body and 4 booms attached
to it, consider 5 rigid bodies (central part plus 4 rigid triangular membranes attached to the central hub
and to the tip of two booms) and 4 booms. This concept would include the variation of the membrane’s
moment of inertia as well as provide with a more accurate geometry w.r.t. the interaction with the en-
vironment. However, it is to be highlighted that it does not include the flexibility of the membrane, but
only links it to the booms. From a mathematical perspective, additional terms would need to be added
to the kinetic energy and, thus, the expression of the mas matrix (M) would have to be recalculated. This
change in the expression would be considerably simpler than that proposed in option 4.

3. W.r.t. the interaction of the membrane with the external loads, another possibility is to define instanta-
neously rigid geometries for the membrane as a function of those external loads. These would be useful
to study the dynamics of the plant as it would allow a more accurate computation of the changes in the
moment of inertia as well as provide with a more accurate geometry for computing the effect of drag
and solar pressure. These rigid geometries would have to be computed previously (e.g. using a finite el-
ement model). Being these geometries a function of the external loads, as well as considerably complex,
it would be difficult to use this information in the design of the ADCS controller.
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4. This option consists in following the same procedure used for introducing the flexibility of the booms
but in relation to the membrane. Therefore, set of generalized coordinates and shape functions able
to represent the motion of the membrane would need to be defined. These would be then introduced
into the kinetic, potential and dissipation functions, leading to a new definition of matrices M, K and
F. This would be the most complete approach, providing with an accurate evolution of the membrane’s
geometry w.r.t time as well as considering the effect of its structural properties (e.g. density) in the dy-
namics of the system. However, the complexity of finding a suitable set of generalized coordinates and
shape functions is considerably high, and so is obtaining the different terms involved in the equations
of motion.

The conclusions of this analysis pointed towards option 1 as the best tradeoff between: 1) increasing the
accuracy of the model, 2) create a model useful from a control perspective and 3) avoid overcomplicating the
model in excess. Regarding the transfer of the moment of the inertia of the membrane to that of the booms,
it was done based in two assumptions: 1) in the absence of deformation, the moment of inertia of the flexible
body is equal to that of the rigid body, and 2) the moment of inertia of the membrane is, when symmetrically
possible, distributed between the booms, by increasing their linear density.

4.4. Verification of the model
As it can be observed in the expressions shown of the mass matrix (equations 4.34 to 4.44), the terms appearing
in the equations of motion (expression 4.7) can reach a high complexity. Furthermore, several assumptions
and long derivations are also involved in the computation of these equations, which were then implemented
as a MATLAB function. These derivations, assumptions and implementation are potential sources of error. In
order to verify the final equations obtained, a verification procedure needs to be conducted. This procedure
is based in comparing the behavior of the model previously explained (which will be called ’analytical’ model
throughout this section) and a model built using a MATLAB tool named Simscape Multibody (’numerical’
model). This last model is based in a finite element’s approach and was also developed by the student. More
information about the elements of the numerical model can be found in appendix G. Two comparison are
performed: 1) single boom and 2) spacecraft model.

4.4.1. Single boom
The first stage of the verification process targets the implementation of the equations of motion (expression
4.7) over a single boom, particularly a candeliver boom. The model built in using the Simscape Multibody
tool consists on several rigid bodies (arbitrary number to be defined as an input) linked to each other by joints
which include stiffness and damping coefficients (see figure G.7 in appendix G).

The response of analytical and numerical models of the boom are studied for two external disturbances: 1)
force in the tip of the boom and 1) torque in the tip of the boom. The evolution of these disturbances through-
out time is modeled in three different ways: 1) delta, 2) step and 3) sine with variable frequency. In addition,
different number of elements is considered in the numerical model (from 1 to 20) and different number of
modes in the analytical model (from 1 to 10). The results of these comparison (i.e. the responses of the differ-
ent models to the external disturbances) are included in appendix F.

In these results, it can be observed that the behavior of both models is highly similar and that this similarity
increases with the number of modes/elements. It can also be seen that the analytical model converges faster
to the actual solution w.r.t. the number of modes, than the numerical model w.r.t. the number of elements.
The final conclusion of this comparison is that the analytical model for a single boom is verified.

4.4.2. Satellite’s model
The second model built aims to represent the actual flexible plant developed in section 4.2. Therefore, it consist
on a central rigid body with 4 candeliver booms attached. The physical properties (moment of inertia, bending
stiffness...etc) are defined accordingly to those used for the analytical model. An schematic view of this model
is shown in appendix G, figure G.7.

Numerous comparisons were run in order to verify the similarity between the models. This was an arduous
and time-consuming task throughout which several inconsistencies were found and solved. One of the most
representative cases is included here, while more extensive examples are included in appendix G. It is thought
to be representative due to sharing the order of magnitude with the actual case of study both in the initial
conditions and in the external disturbances. The results of both analytical and numerical models are shown
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in figures 4.5 and 4.6 respectively. In these figures, r states for position, v velocity, T attitude quaternion, ω
angular rate and ui deformation on the tip of the boom. The units are those of the International System and
the x-axis contains time. The specifications, i.e. initial conditions and external disturbances, of this particular
example (named case 0) are shown below.

• Initial conditions: v = [3;2;5]km/s;ω= [−0.1;0.1;1.75]∗1E −2r ad/s.

• External disturbances: pulses of a period of 10 s, pulse width of 1% and a phase delay of 1 second. The
magnitude of the total force is 2[0.9649;0.1576;0.9706]∗1E −5N uniformly applied over the membrane.
The magnitude of the torque is 2[0.2785;0.5469;0.9575]∗1E −5N m.

Figure 4.5: Evolution of the state variables, as resulting from the analytical model. Case 0.

Among the analyses shown in appendix G are the following (only differences w.r.t. the case above are men-
tioned): 1) absence of external disturbances, 2) static external disturbances (instead of periodic), 3) initial
conditions equal to zero and 4) different initial conditions and external disturbances. The analysis of these,
and multiple other cases, led to the conclusion that the dynamics of both models have a high degree of sim-
ilarity, at least for cases of the order of magnitude of the case of study. The analytical equations are therefore
considered verified. However, it is necessary to keep in mind that there are some differences inherent to the
definition of the models, which can pose a problem under certain circumstances:

• The analytical model assumes no axial displacements. This creates an inconsistency in the length of
the boom proportional to the square of the bending deformation divided by the length of the boom.
Therefore, an error in the moment of inertia arises, increasing with the bending deformation and the
mass of the booms.

• While the deformation in the analytical model is continuous, the deformation in the simscape model is
defined by the relative rotation between a set of rigid boom elements.
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Figure 4.6: Evolution of the state variables, as resulting from the numerical model. Case 0.

4.5. Conclusions
This section has one main objective: integrate the flexibility of the structure into the equations of motion. This
objective can be further developed into two main tasks: 1) explain in detail a procedure to derive, implement
and verify a dynamic model of a flexible structure, and 2) apply this procedure to a simplified model of the
GoSolAr spacecraft.

In relation with the general explanation of the procedure, an schematic analysis is shown in figure 4.1.
There are 5 main milestones on this process: 1) defining the structure to be analyzed and the variables targeted
in the analysis (e.g. deformation of the booms), 2) deriving kinetic energy, potential and dissipation function
using those variables, 3) choose generic coordinates such that the variables chosen are represented in a finite
(low when possible) number of coordinates, 4) making sure that there are shape functions that can relate the
generic coordinates with the variables in an accurate way (not trivial for complex structures) and 5) obtain
the terms of the equations of motion. The verification procedure can be done in a number of ways and with a
considerably high number of software resources. Similarly, the actual implementation can be done in multiple
ways.

Three main ideas are to be highlighted w.r.t. this procedure. The equations of motion derived are based
in Lagrange’s equations (see expression 4.1). The procedure involves complex mathematical derivations but
aims to obtain a relatively simple and representative set of equations of motion for the structure. The process
explained can be applied to other structures, assuming that a suitable set of shape functions and generalized
coordinates can be found.

Implementing this procedure for the GoSolAr mission has, therefore, a dual objective. First of all, and more
importantly, it allows to study the flexibility of a spacecraft in relation with the ADCS. The second aim is to
provide with an example on how to apply the procedure of deriving the equations of motion to a real case. The
model is meant to integrate flexible and rigid motion of the defined structure, from a dynamic perspective. This
means that both the rigid and flexible variables are interconnected and their evolution throughout time affects
each other (e.g. vibrations in the booms to the magnetorquer duty cycle are transmitted to the angular rate).
This interconnection is visualized in the equations of motion (e.g. mass matrix terms shown in expression 4.34
to 4.44), where it can be seen that disturbances in any point of the structure affects both the rigid (position and
attitude) and flexible variables (deformations of the booms) as well as their derivatives w.r.t. time.

Through this integration of flexible and rigid motion, the behavior of the structure from a dynamic’s per-
spective can be consistently studied. Furthermore, the relative simplicity and low order of the final model
(depending on the number of flexible modes taken into consideration) allows: 1) gaining an understanding on
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the dynamics of this type of structures from a conceptual perspective, and 2) using the model in relation with
the development of a controller.
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5
Attitude Controller Design

In the previous chapter a model (i.e. equations of motion) of a simplified version of the GoSolAr spacecraft
has been derived and implemented, integrating the flexible and rigid motion of this structure. Throughout
this section different designs for the attitude controller are derived and their performance over these extended
equations of motion studied.

First of all, the effect that the introduction of flexible terms in the model of the satellite has on the perfor-
mance of the initial controller design has been analyzed (see section 3.2.1). The performance indexes used to
evaluate this controller go beyond the mission requirements of the GoSolAr mission, studying also the vibra-
tions introduced in the system due to its flexibility.

After studying the effect of the flexibility of the structure in the dynamics of the close (with an LQR con-
troller) and open plants, this chapter aims to study potential improvements in the performance of the attitude
controller, by using alternative designs. This improvement in performance is evaluated in relation to two main
indexes: 1) degree of compliment with the mission requirements (i.e. pointing accuracy) and 2) capability
of reducing the vibrations in the booms and, more important from an ADCS perspective, in the attitude and
angular rate.

Two additional analyses are conducted before diving into alternative controllers: 1) linearization of the
equations of motion and 2) change in the behavior due to changes in the plant specifications. The derivation
of the linearized plant is meant not only to provide with additional insight in relation with the dynamics of
the system, but also to verify the implementation of the numerical linearization. The effect of changes in the
specifications of the structure (e.g. length of the booms) in the behavior of the system is studied in order to
analyze whether it is possible or not to extrapolate the results to similar cases.

The first alternative to the controller based in an LQR approach is based in the application of robust control
theory, deriving controllers based in both H2 and H∞ norms. These controllers have the capability of focussing
in particular frequencies, i.e. the natural frequencies of the system to be controlled. The performance of these
controllers is studied in frequency and time domains, integrating them in the simulation environment de-
scribed in chapter 3. After having evaluated the potential of this approach, the possibility of extending the
information available to the controller, including the deformation of the booms, is considered. This additional
information makes it feasible to try to minimize not only the vibration in the angular rate, but also the vibra-
tion of the booms. The last controller studied is a non-linear controller developed from the existing relation
between constrained and controlled motion, studied from an analytical dynamics approach. This approach is
known as the Udwadia-Kalaba approach.

After deriving and evaluating the performance of each controller, some additional comments on the differ-
ences between the controllers in aspects such as the computational cost or sensibility to errors in the param-
eters’ estimation are made. This is meant to provide with a broader perspective when coming to decide which
controller to use for a particular case.

The different controller designs are explained based in the structure shown in figure 5.1. In this figure each
block simulates a part of the control loop, being: the controller (K), the actuators (A), the satellite’s equations
of motion (P), the sensors (S) and the weighting function (W). The signals that are inputs and outputs of this
blocks are: the guidance signal (yg), the measurements (y), the error signal (e), the control command (u), the
control actuation (ua), the external disturbances (w), the external forces and torques (Q), the state vector (x)
and the cost signal (z).
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Figure 5.1: Schematic view of the control loop.

Except in cases where the contrary is explicitly stated: 1) the measurements signal (y) contains the angular
rate and the sun vector, 2) the error signal (e) contains two magnitudes related with the pointing error (see
equation 3.2) and three with the angular rate error, and 3) the control command (u) is linked to the torque that
is to be generated by the magnetorquer (in the three axes).

5.1. LQR & b-dot controllers
At this stage of the study, a model of the satellite addressing the flexibility of part of its structure has been
derived, implemented and verified. This model was then implemented into the simulation environment de-
scribed in section 3.2.1 in order to be able to study the changes w.r.t. the case studied in that section, where
the satellite is assumed to be a rigid body. In the model implemented, the membrane moment of inertia has
been incorporated to the that of the booms as explained in section 4.3.

The objective of this analysis is to evaluate the consequences of the flexibility w.r.t. the ADCS performance.
Therefore, the differences in the behavior of the flexible and rigid plants w.r.t. the ADCS have been studied.
These differences are first studied in relation with the requirements of the mission (GoSolAr), i.e. pointing
requirement, and then from a more general approach, evaluating any existing difference. Additionally, and in
order to clarify the impact of the flexible modes in the dynamics of the system, both open (uncontrolled) and
close (LQR controller) plants are analyzed in the frequency domain.

But before evaluating the performance of these controllers, the process of deriving the LQR controller is
briefly introduced in relation to figure 5.1. The derivation of the LQR controller is done in two steps: 1) linearize
the equations of motion and 2) minimize a cost function. In this case, the equations of motion linearized are
those of the rigid motion (see expression 3.7). The linearization leads to a linear system as the one shown
in equation 5.1, where: 1) x, u and y are the same as in figure 5.1 and 2) A (state matrix), B (input matrix), C
(output matrix) and D (feedthrough matrix) are constant matrices. In this case the linear system was derived
analytically and, for the linearization, the actuator’s block was not considered (i.e. ua = u). More information
about the basis of this analytical linearization can be found in section 5.2.1.

Once the linear system is defined, a cost function J is defined based on weighting matrices linked to the
state vector (x) and to the control command (u). These matrices (Q,R and N) are equivalent to a weighting
function (W) in figure 5.1 and are related to the relative importance of errors in each variable and combination
of variables. The controller (K) is then derived as a constant control gain which minimizes the cost function
J. This optimization problem is solved with the help of the MATLAB’s function lqr, which solves it by solving
a Ricatti equation. As previously mentioned, the selection of Q, R and N was done in an iterative way, by
studying the performance of the controller (K) resulting from different values of these matrices (see appendix
B). Additional information regarding the derivation of the LQR controller can be found in [12].

ẋ = Ax +Bu; y =C x +Du; (5.1)

J =
∫ ∞

0
(xT Qx +uT Ru +2xT Nu)d t → [u = K x]mi n(J ) (5.2)

In relation with the b-dot controller, the explanation included regarding expression 3.1 is considered enough.
More information about this controller can be found in [1].
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5.1.1. Performance w.r.t. mission requirements
As previously mentioned, the ADCS has two main purposes within the GoSolAr mission: 1) detumbling the
satellite after launch and 2) pointing towards an inertially fixed (or slowly varying) axis (initially the sun vector)
with an accuracy of 10 degrees. In this section, these two phases will be conducted over the new model derived
(’flexible’ model) and the results will be studied in relation with that over the previous model (’rigid’ model).
The controllers used are the same as in section 3.2.1, i.e. a b-dot controller and LQR-based controller. In order
to limit the computational cost of the simulations, the model used for these analysis includes only the first
flexible modes of each boom.

First of all, the detumbling phase is studied. This phase consists in lowering the angular rate of the space-
craft, which starts with an uncontrolled angular rate as a result of its launch. In this case, the satellite is as-
sumed to be deployed, as otherwise there is no flexible part to be included. This way, figure 5.2 shows the
performance of the b-dot controller over the flexible plant for a set of different initial conditions. These initial
conditions are defined in the same way they were for the analysis of the rigid plant (see section 3.2.1).

Figure 5.2: Evolution of the angular velocity’s norm during the detumbling phase. Flexible model. 5 cases. Initial orbit as in figure 3.5.

When comparing it to the results shown in the previous chapter (see figure 3.5), it can be observed that the
performance of the b-dot controller does not deteriorate appreciably due to the flexibility of the structure, for
the nominal plant. In both cases, the angular velocity is reduced to around 0.1 deg/s. This result is relevant
even if the detumbling phase is conducted over the stowed spacecraft, as it provides with a safe mode con-
troller in case the satellite angular rate is disturbed throughout the mission. The detumbling phase has not be
considered in further analyses of the different controller, as no need for damping the vibrations of the system
is expected at this stage.

The next analysis targets the pointing phase. During this phase the spacecraft is to be given a spin and the
spin axis to be pointed towards a defined axis (i.e. sun vector). This is done using a controller which computes
the control command from the error in the pointing direction and in the angular rate, combined with steady
gains defined using an LQR approach (section 3.2.1). Figure 5.3 shows the performance of the controller over
the flexible plant for different initial conditions. The simulation’s initial conditions are those shown in section
3.2.1.

From a first observation, the controller seems to be able to provide the spin required and maintain an ori-
entation w.r.t. the sun within the accuracy required. Furthermore, there is no appreciable difference between
the performance of the controller over the rigid plant (see figure 3.7) and over the flexible plant, giving both an
approximate long term accuracy of 3 degrees (pointing error).

The evolution of the pointing error was further analyzed in order to evaluate the difference. This was done
by studying the distribution of the pointing error throughout the second half of the simulation (from times
2E5 to 6E5 seconds). The selection of the time frame is motivated by a desire of minimizing the influence of
the initial conditions. The standard deviations and means of these distributions, 10 for the rigid and 5 for the
flexible plants, are shown in figure 5.4.

From this analysis, no significant deterioration of the controller’s behavior is noticeable w.r.t. the mission
requirements. Therefore, no additional challenges in relation with the flexibility of the structure can be de-
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Figure 5.3: Evolution of the pointing error during the pointing stage. Flexible model. 5 cases. Initial orbit as in figure 3.7.

Figure 5.4: Properties of the evolution of the pointing error throughout time for the flexible and rigid plants.

duced. In the following section, these analyses are expanded in order to address other possible effects of the
flexibility of the structure.

5.1.2. Impact of flexibility
The aim of this section is to provide with a more complete understanding of the effects that the flexibility
inherent to the structure have (or may have) in relation with the ADCS. In order to do this, two main topics are
addressed: 1) explain the reason of the low impact of the flexibility w.r.t. the mission requirements (see section
5.1.1) and 2) noticeable consequences of the flexibility.

As shown in the previous section, the requirements of the mission are met even if the controller is design
based on a purely rigid body. In order to understand this, the problem needs to be studied in the frequency
domain. As mention in [32] and [17] the flexibility becomes a relevant problem when the natural frequencies
of the system interact with the frequencies of the controller or of the external disturbances. For the follow-
ing analyses, the frequency of the controller was divided into the frequency of the control process and the
frequency inherent to the use of a magnetorquer, i.e. duty cycle. In our case, these four sets of frequencies
take the following values: 1) natural frequencies, the lowest frequency (nominal case) is 14 Hz, 2) the control
process frequency is linked to the time step of the simulation and, thus, higher than the highest frequency
included, 3) the frequency of the external disturbances can be, with some exceptions that will be explained
later, related to the orbital frequency (period of around 1.5 hours), and 4) the period of the magnetorquer is
defined as 5 seconds. It can be observed that these bandwidths do not interact. Therefore, it is consistent that
the effect of the system’s flexibility is considerably limited.

However, the flexibility of the systems is still noticeable and affecting the behavior of the ADCS and of the
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whole system in a number of ways, when looking closer. These analyses aim to conduct this closer look on the
behavior of the structure by studying the evolution of two main variables (i.e. deformation of the booms and
angular rate) under the three main perturbations previously metioned (external disturbances, control process
and magnetorquer’s duty cycle).

The frequencies of the external disturbances are in the order of the orbital frequency, which is considerably
lower than the natural frequencies of spacecrafts of the type considered. For a nominal altitude of 600 km this
frequency is 1.1E-3 Hz, while the satellite studied has, in its nominal configuration, its lowest frequency at
14.5 Hz. Revised literature also indicates that these two bandwidth of frequencies are considerably distant
for current satellites. There is, however, an exception to this: the immersion or coming out of Earth’s projected
shadow (eclipse). The rate at which the forces change in this events can be related to the velocity of the satellite
and to it’s size, and the equivalent frequency is considerably higher. Therefore, the potential induced vibrations
in the booms in considerable (see figure 5.5). However, as it is not a continuous perturbation, it happens only
twice per each orbit, a minimum passive damping at the booms is able to minimize its effect. Furthermore,
as this perturbation is aligned with the rotation axis (in the operation point the spin axis points towards the
sun), its effect over the angular rate is minimum. Figure 5.5 is analyzed more in detail in appendix E, where
figure E.1 zooms in figure 5.5 and figure E.2 contains the deformations of the four booms. It can be seen that
the deformations are mainly in the z-axis, as the period of time shown is selected once the operating point
has been reached (pointing towards the sun). Furthermore, it can be concluded that this phenomena (eclipse)
generates high frequency vibrations with a considerably high amplitude. Even though for the particular case
of study (GoSolAr) this is not critical, it can be for other missions.

Figure 5.5: Vibration of the booms (boom 1) due to entering or coming out an eclipse.

The frequency of the controller in a real spacecraft is limited by the bus specifications and influenced by
the computational cost of the estimators and controllers involved. This frequency can be defined in order not
to interact with the eigen modes of the satellite. In the case of study, the limitations in the frequency of the
controller are not studied. Furthermore, the frequency of the controller is assumed, ideally, same as the time
step. This decision is based in the possibility of tuning it to avoid interaction with the natural modes of the
structure.

The vibrations due to the interaction between the magnetorquer and the lowest modes of the booms were
not expected to be particularly relevant around the operating point, as the relatively low control torque applied
is not enough to generate relevant vibrations (w.r.t. the mission requirements). However, even thought the
effect of this vibrations is not affecting the mission requirements, it is still noticeable. In figure 5.6 an example
of the vibrations induced in one of the booms due to the magnetorquer duty cycle is shown. It can be seen that
this duty cycle is affecting considerably the deformation of the boom, inducing fast vibrations.

In appendix E, the example in figure 5.6 is extended. First to the deformations on the rest of the booms
(figure E.4) and then to a more in detail analysis of the deformations in boom 1, also in relation with the angular
rate (figure E.3). Looking at the deformations in the different booms, it can be seen that they are opposite in
phase between the pair ’boom 1-boom 3’ and ’boom 2-boom 4’. This is caused by the nature of the duty cycle,
which consists in ’stopping’ the control torque and then ’starting’ it again, cyclically. The deformations caused
by a torque are antisymmetric, causing this opposition in phase. This opposition is also the reason why it
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Figure 5.6: Interaction of the flexible structure (boom 1) with the control torque (magnetorquer).

does not affect the long term evolution of the angular rate and attitude. In relation with the vibrations on each
boom, they are analyzed in more detail in figure E.3. It can be observed in this figure that the flexibility of
the boom also generates vibrations in the angular rate. The amplitude of these vibrations is considerably low
(≈ 1E −7[m] for the booms and ≈ 1E −7[rad/s] in the angular rate) and does not show a divergent behavior.
This amplitude is mainly affected by the maximum dipole that the magnetorquer can provide, increasing as
it increases. Several cases for different initial conditions and controllers (LQR and b-dot) were run showing
qualitatively the same behavior. Furthermore, changes (between 0% and 100%) in the damping coefficient
(which is the parameter with a higher degree of uncertainty) do not change qualitatively this behaviour, but
only damp the vibration of the booms faster.

5.1.3. Frequency domain
This section focuses in analyzing two topics in the frequency domain. This topics are: 1) effect of the flexibility
in the dynamics of the structure and 2) performance of the LQR controller.

Figure 5.7: Variables studied in the analyses in the frequency domain.

All analyses in the frequency domain included in this chapter focus in the same variables, which are pointed
out in figure 5.7. As it can be observed, the variables that are use in these analyses output are: 1) pointing error
(2 components: p1, p2) and 2) angular rate error (3 components: ax, ay, az). These variables are defined as ex-
plained in section 3 and are considered to contain all relevant information in relation with the attitude of the
satellite. The input initially contained both distributed forces and torques. However, it was noted in the first
analyses that the effect of the forces in the error variable is extremely low, so it was decided, for the sake of sim-
plicity, to focus only in the torques (Tx, Ty, Tz). The disturbances are scaled according to previous results (see
figure 3.3), so the torque magnitude is scaled with a factor of 1e-5. This selection of input and output variables
leads to a final input-output system of dimensions 3x5 (see for example figure 5.8). The analyses are then con-
ducted by studying the response in the frequency domain of the system, using a Bode diagram. This response
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is the amplification (in dB) of the input signal in each of the output signals over a range of frequencies.
In relation with the first topic to be analyzed, the response of the open plant (i.e. without a feedback

loop with a controller), is studied for both rigid (see section 3) and flexible (section 4) models. The analysis
is conducted by studying the response in the frequency domain of the linearization (centered in the operating
point) of the two models. The range of frequencies studied goes from 1E-11 to 1E3 rad/s. In the operating
point the satellite has a spin in the z-axis (normal to the membrane plane) and this axis is pointing towards an
axis quasi-static in the inertial reference frame (the sun vector changes considerably slow). The flexible plant
is modeled taking into account the first 5 modes of each boom. The variables used for the analysis are those
pointed out in figure 5.7 and the results are shown in figure 5.8.

Figure 5.8: Bode analysis over flexible (F) and and rigid (R) open plants.

There are two main aspects to be highlighted from this results, regarding the behavior at low and high
frequencies. It can be observed that the response on low frequencies (lower than 1 Hz) is extremely similar.
This supports the conclusions previously stated, saying that: if the external disturbances frequencies are low
enough w.r.t. the natural frequencies, they do not affect the behavior of the plant in a relevant manner. When
the response at higher frequencies is studied, the differences between flexible and rigid plants appear. It can
be seen that at the frequencies of the natural modes of the plant, the response has local maximums. However,
two other aspects in relation with these peaks need to be taken into consideration: 1) they are local maximums
but still considerably far away from the absolute maximum, meaning that their relative importance is probably
low, and 2) even though the first 5 modes of the booms are considered, only the first 2 are visible, which means
that the higher modes are damped considerably faster than the lower ones (the analysis is run with the nominal
damping coefficient, i.e. 1.32).

After this initial analysis, where the effect of the flexibility is explained by comparing rigid and flexible
models of the satellite, all further analyses will be conducted over the flexible plant (i.e. the equations of motion
derived in chapter 4). Having analyzed the behavior of the open plant, it is time to study the close plant,
evaluating the performance of the LQR controller. In order to do this, the response of the flexible plant is
analyzed with (close plant) and without (open plant) the LQR controller. In this case, only the first two modes
of the booms are included, without any noticeable effect in the results. The input and output variables are
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those pointed out in figure 5.7. The results of the analysis are shown in figure 5.9.

Figure 5.9: Bode analysis over the open and controlled (LQR controller) flexible plant.

It can be observed that the response over low frequencies, which is related to the rigid body motion, is
considerably improved. However, the response at higher frequencies remains the same as in the open plant.
It can be therefore concluded that this controller is not able to reduce the response at higher frequencies and,
thus, is not able to reduce vibrations at frequencies in the range of the natural modes. Despite of this, as shown
in previous sections, the controller is able to fulfill the requirements of the GoSolAr mission.

This analysis shows that the current ADCS design is not able to deal with the vibrations of the system in-
duced by the flexibility of the structure. Therefore, further controllers are to be studied in order to provide an
alternative, able to reduce the effect of these vibrations. With this objective, two main control strategies have
been analyzed: 1) robust control and 2) non-linear controller. However, before diving into these additional
control options, two analyses are conducted. First of all, in order to gain a deeper understanding on the dy-
namics of the flexible plant and the linearization processes, the linearization of this plant is studied. Secondly,
regarding the potential extrapolation of the results to other cases, the influence of variations of the physical
parameters (e.g. bending stiffness) of the system is studied.

5.2. Linearization of the plant
As explained in the previous section, the comparisons in the frequency domain are performed over linearized
plants. In order to further understand the meaning and limitations of operating over the linearized plant in-
stead of over the actual plant, the linearization of the flexible plant is studied in detail throughout this section.

Linearization states for the process of building a linear plant, such as that shown in equation 5.4, which
accurately models the behavior of the actual (non-linear) plant in the proximity of the linearization point.
Obtaining a linearized plant is a prerequisite to implementing several linear control approach, such as LQR or
the H∞ approach used.

Three main objectives are targeted in this section: 1) gain further understanding of the main drivers of the
flexible plant behavior, 2) gain expertise in the use of MATLAB built-in linearizing function and 3) validate the
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numerical results via an analytical derivation of the linear plant. In order to achieve these goals, the linearized
plant is first derived analytically and then numerically.

5.2.1. Analytical linearization
The linearization procedure followed is based in a Taylor expansion of first order (see equation 5.3). The mean-
ing of this equation is considerably intuitive, in the sense that it states that: the value of the function F when
leaving point x0 in the x direction, can be approximated by the value of F in x0 plus the rate of change of F
in the x direction ( ∂F

∂x ) multiplied by the distance covered ∆x. The objective of the linearization is to obtain a
system with the form shown in expression 5.4, with a behavior as similar as possible to the actual system. In
this expression x is the state vector, y the variables measured and u the control variables. Matrixes A, B, C and
D are functions of linearization point and are commonly know as: dynamic matrix (A), input matrix (B), output
matrix (C) and feedthrough matrix (D). In this particular case, the point chosen is that shown in expression 5.5.

F (x0 +∆x) ≈ F (x0)+ ∂F

∂x x0

∆x (5.3)

ẋ = Ax +Bu; y =C x +Du; (5.4)

r = r0; v = v0;Q =Q0;ω=ω0; qi j k = qi j k0; q̇i j k = q̇i j k0;u = u0; (5.5)

The state vector (x) comprises (in this order) the position (r), attitude quaternion (Q), bending deforma-
tions of the booms (q), velocity (v), angular rate (ω) and time derivative of the bending deformations (q̇). Vector
y contains the position, attitude quaternion, velocity and angular rate. In order to simplify the calculations,
the equation involving A, B and x is decomposed as shown in equation 5.6, where x1 contains the position,
attitude quaternion and bending deformations of the booms, and x2 the rest of the state vector.[

ẋ1

ẋ2

]
=

[
A11 A12

A21 A22

][
x1

x2

]
+

[
B1

B2

]
u;

[
y1

y2

]
=

[
C11C12

C21C22

][
x1

x2

]
+

[
D1

D2

]
u; (5.6)

The nonlinear expressions that are to be linearized are shown in expression 5.7 and were derived in chapter
4. R2 is an additional term that rotates the velocity vector in order to ’conserve’ it in the inertial reference
frame and not in the body reference frame (which is where the instantaneous kinetic energy is computed).
The expressions for the matrices mentioned in expression 5.6 are shown in expressions 5.8 to 5.17. The terms
not defined are zero. The parameter n states for the the length of x2. The term-by-term expressions for A21

and A22 are not shown here due to their extension.

x1 → ṙ = v ; Q̇ = 1

2
Qω; q̇ = d q ;

x2 → ẋ2 = M−1(x1)(−Ṁ(x1, x2)x2 + (
∂M(x1)

∂x1
x2)T x2 −K x1 −F x2 +Q(x1,u)+R(x1, x2))+R2(x2);

(5.7)

A11(1 : 3,4 : 7) =
2(v(1)Q(1)+ v(2)Q(2)+ v(3)Q(3)) −2(−v(1)Q(2)+ v(2)Q(1)+ v(3)Q(4)) 2(v(1)Q(3)+ v(2)Q(4)− v(3)Q(1))

2(−v(1)Q(2)+ v(2)Q(1)+ v(3)Q(4)) 2(v(1)Q(1)+ v(2)Q(2)+ v(3)Q(3)) 2(v(1)Q(1)+ v(2)Q(2)+ v(3)Q(3))
−2(v(1)Q(3)+ v(2)Q(4)− v(3)Q(1)) −2(−v(1)Q(4)+ v(2)Q(3)− v(3)Q(2)) 2(−v(1)Q(4)+ v(2)Q(3)− v(3)Q(2))
−2(−v(1)Q(4)+ v(2)Q(3)− v(3)Q(2)) 2(v(1)Q(3)+ v(2)Q(4)− v(3)Q(1)) 2(−v(1)Q(2)+ v(2)Q(1)+ v(3)∗Q(4))


T

;

(5.8)

A11(4 : 7,4 : 7) = 1

2


0 ω(3) −ω(2) ω(1)

−ω(3) 0 ω(1) ω(2)
ω(2) −ω(1) 0 ω(3)
−ω(1) −ω(2) −ω(3) 0

 ; (5.9)

A12(1 : 3,1 : 3) = (Q(4)2 −Q(1 : 3)2)I (3)+2Q(1 : 3)Q(1 : 3)T −2Q(4)

 0 Q(3) −Q(2)
−Q(3) 0 Q(1)
Q(2) −Q(1) 0

 ; (5.10)
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A12(4 : 7,4 : 6) = 1

2


Q(4) −Q(3) Q(2)
Q(3) Q(4) −Q(1)
−Q(2) Q(1) Q(4)
−Q(1) −Q(2) −Q(3)

 ; (5.11)

A12(8 : n +1,7 : n) =


1 0 ... 0
0 1 ... 0
... ... ... ...
0 0 ... 1

 ; (5.12)

A21 =∂M−1

∂x1
(−Ṁ x2 +

1

2
(
∂M

∂x1
x2)T x2 −K x1 −F x2 +R +Q)+M−1(−∂Ṁ x2

∂x1
+ 1

2

∂( ∂M
∂x1

x2)T x2

∂x1
− ∂K x1

∂x1
− ∂F x2

∂x1
+ ∂R

∂x1
+ ∂Q

∂x1
) =

=−M−1 ∂M

∂x1
M−1(−Ṁ x2 +

1

2
(
∂M

∂x1
x2)T x2 −K x1 −F x2 +R +Q)+M−1(

1

2

∂( ∂M
∂x1

x2)T x2

∂x1
−K + ∂R

∂x1
+ ∂Q

∂x1
);

(5.13)

A22 = M−1(−∂Ṁ x2

∂x2
+ 1

2

∂( ∂M
∂x1

x2)T x2

∂x2
− ∂K x1

∂x2
− ∂F x2

∂x2
+ ∂R

∂x2
+ ∂Q

∂x2
)+ ∂R2

∂x2
=

=M−1(−∂Ṁ x2

∂x2
+ 1

2

∂( ∂M
∂x1

x2)T x2

∂x2
−F + ∂R

∂x2
)+ ∂R2

∂x2
;

(5.14)

B1 = 0; B2 = M−1
l C ; 1 D = 0; (5.15)

C11(1 : 7,1 : 7) =


1 0 ... 0
0 1 ... 0
... ... ... ...
0 0 ... 1

 ; C12 = 0; (5.16)

C22(1 : 3,1 : 3) = A12(1 : 3,1 : 3) =C22(4 : 6,4 : 6); C21(1 : 3,4 : 7) = H(ω=v); C21(4 : 6,4 : 7) = H ; (5.17)

These matrices and the system they represent were implemented as a function of the linearization point
as a MATLAB function. From the final equations obtained it can be derived that there are 4 main parameters
in relation with the booms affecting the behavior of the system: linear density, length, bending stiffness and
damping coefficient.

5.2.2. Numerical linearization
The linearization is here performed numerically instead of analytically. For this purpose, built-in MATLAB
functions were used, particularly: 1) l i ni o, which is used to define the state input (u) and output (y) vectors,
and 2) l i near i ze, used to linearize the system defined by l i ni o. The particular value of l i ni o is that it allows
defining inputs and output in multiple ways, e.g. if they are defined as ’open’ the feedback loop, if any, is not
considered.

The resulting linear model is first compared to that obtained in the previous section (5.2.1). The input data
for the model is that stated in section 4.4.2. The comparison is performed by using a ν-gap metric, which was
introduced by Vinnicombe in [30]. This metric is meant to be used to find the stability margin of a perturbed
system. However, in this report, it is only used to express numerically the difference between two systems.
This difference ranks from 0 to 1, increasing as the difference between the systems increases. The computation
of the metric is done using the MATLAB’s funtion g apmetr i c. The comparison is done over three different
linearization points and the values of the ν-gap metric for each case are shown below. These results are the
basis to considered verified the derivation and implementation of the analytical derivation.

• For arbitrary attitudes and an arbitrary deformation of each boom of order 1E-5 m, ν-gap remains on
the order of 5E-7.

1C extracted from equation 4.25
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• For arbitrary attitudes and an angular rate equal to [0,0,0.0175]+∆(≈ 1E−3), ν-gap remains on the order
of 5E-4.

• For arbitrary attitudes, an angular rate equal to [0,0,0.0175]+∆(≈ 1E −3) and an arbitrary deformation
of each boom of order 1E-5 m, ν-gap remains on the order of 5E-4. According to the results previously
obtained, the operating point will remain within this ranges.

Analogously, this linearized plant is compared with a linearization of the plant built in simscape 2. An
schematic view of the numerical model is shown in figure G.7 in appendix G. The number of modes and ele-
ments per boom used in this comparison are 5 and 10, respectively. Linearizing at an aleatory attitude and for
zero angular rate, the value of ν-gap is around 0.25. The higher values can be explained based on numerical
errors and the slightly different assumptions made. This is considered an additional verification of the analyt-
ical equations of motion derived in chapter 4. Some additional aspects to be considered in relation with this
last comparison are:

• Reducing the system output (y) to the attitude quaternion and the angular rate (avoiding including the
position and velocity) leads to a higher degree of accuracy measured in terms of the ν-gap. This way,
for the same case, it is lowered from 0.25 to 0.03. This points out that the main differences in the linear
models are regarding the velocity/position of the spacecraft, which are not that relevant from an ADC
perspective.

• Effect of the damping. Higher damping leads to a higher degree of similarity of the models, probably due
to decreasing the importance of higher modes, which have a lower accuracy.

5.3. Potential changes in the system
Throughout this section, potential changes in the design are addressed in order to analyze whether the behav-
ior remains qualitatively similar. This is done in order to justify potential extrapolations of the results to other
cases with a similar structure. This study focuses only in the peaks in response related to the flexibility and in
how these peaks are affected by perturbations in the specifications of the boom.

This way, instead of studying the response of the complete flexible plant, only the difference w.r.t. the rigid
plant is studied. A plant is built with the configuration shown in figure 5.10, where G0 is the rigid plant and ∆
the effect of the flexibility. ∆ is estimated so that: G f ≈ G0 +∆, where G f is the flexible plant. This estimation
is done numerically, by obtaining the response in frequency of rigid and flexible plants and computing the
difference. The MATLAB function idfrd is used to store the difference in response over frequency. Additionally,
the function tfest has been used to estimate a transfer function based in that difference. It is important to
highlight that, even though this configuration is similar to that used in relation with H2, H∞ or µ−synthesis,
this is not what it is used for here.

Figure 5.10: Additive perturbation configuration [14].

The selection of the boom parameters that are varied is based in the results of the analytical linearization,
and comprises the following:

• Bending stiffness. 2 cases: 20% and 100% of nominal value.

• Damping coefficient. 3 cases: 1%, 10% and 100% of nominal value.

• Linear density. 3 cases: 20%, 100% and 500% of nominal value.

2In order for the simscape model to obtain the initial conditions (linearization point), the linearization time should be higher than zero.
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• Length. 2 cases: 100% and 200% of nominal value.

As to avoid excessive figures, only the response of the angular rate error in the x-axis under the action of
a torque in the same axis is considered, assuming only one mode (N=1). From previous results it can be seen
that this is representative. Figure 5.11 shows the response of the function ∆(s) in the frequency domain for all
the combinations of changes in the parameters previously mentioned.

Figure 5.11: Bode analysis on the variation of the disturbance induced by the flexibility of the booms. Input: torque in x-axis direction.
Output: angular rate in x-axis direction.

It can be observed that even with considerable variation in the booms used, the behavior is similar. The
peaks in response remains under -120 and -60 dB and between 1 and 100 Hz. The most relevant variation
is caused by the change in damping coefficient, affecting the height of the peak. This analysis leads to the
conclusion that the processes used for deriving the controller can be applied to these different cases with
a similar resulting performance, if they are applicable to cases with low damping coefficient. The effect of
changes in the parameters in relation to the height (h) and frequency (f) of the peak in response are: 1) ↑
E I →↑ f ;∼ h, 2) ↑ kd →∼ f ;↑ h, 3) ↑ ρ→↓ f ;↑ h, and 3) ↑ L →↓ f ;↑ h.

5.4. Robust control
A more accurate title for this chapter would be ’analysis of some particular tools developed within the scope of
robust control (i.e. H2 and H∞), in relation to the case of study’. It is not the intention of the author to dive into
the mathematical derivations leading to these methods, nor to provide with a global explanation in relation
with robust control theory. For this, the reader is referred to [19], which was found extremely useful to gain an
understanding on the basic ideas behind robust control as well as the multiple tools that have been developed
based in this approach.

Essentially, robust control aims to incorporate the uncertainties of a system in the design of the control
system, ensuring stability and a level of performance. These uncertainties include, for example, uncharac-
terized external disturbances and errors due to simplifications in the model. There are multiple methods to
describe these uncertainties (e.g. small-gain approach and Lyapunov method) and several tools to develop the
controller based on the description of the uncertainties (e.g. H2 and µ-synthesis). Only the methods and tools
used in this study are explained, more complete explanations can be found at [19].

In relation to this project, there are two main aspects in which the ADCS could benefit from using a robust
control approach. First of all, it allows reaching a higher certainty w.r.t. the stability of the system. This is
not trivial, as the system is not fully observable. A priori the only measurements are related to the attitude
variables (sun vector and angular rate), while the actual plant of the system includes also variables linked
to the deformation of the booms. With the set of sensors proposed in table 2.5, these last variables are not
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obtainable. Furthermore, the only actuation the controller can provide is a torque in the central part of the
structure. The stability of the system could be proven by applying robust control methods (e.g. H∞) to the
actual system. However, these methods are applied, for the sake of simplicity, to a linearization of the system
around the operating point. Therefore, this should not be considered a ’prove’ of the stability of the system,
but rather an indication of it.

The other potential advantage of using this approach is that it enables to easily target certain frequencies in
the response of the system. This means that the controller can be designed to minimized the vibrations due to
the natural modes of the system, without the need of having an estimation on the deformation of the booms.
This is possible because the controller derived using this approach contains a more extensive knowledge of
the dynamics of the plant.

Therefore, throughout this study, robust control tools and methods are used to design an ADCS system
aiming to: 1) comply with the mission requirements, 2) minimize the effect of the flexibility in the attitude
variables and 3) lead to a stable system. Additional benefits that approaching the problem from a robust con-
trol perspective could have are: 1) optimizing the performance of the controller while maintaining the stability
and 2) studying the limits of the stability of the system w.r.t. variation of the system’s parameters (e.g. using a
µ-synthesis approach). These possibilities have not been implemented. The rest of this section covers first the
design of a plant over which the robust control tools and methods can be applied and then introduces the two
ADCS design proposed (i.e. H2 and H∞), studying their performance.

5.4.1. Generic configuration
In this section, the system to be controlled is defined, including the specifications on outputs and inputs as
well as internal dynamics and external disturbances. Potential manipulations on the signal in order to increase
the performance in relation with certain aspects (e.g. minimization of the vibrations) are also explained.

In this project, MATLAB built-in functions are used, when possible, to implement the robust control meth-
ods. These built in functions required the system to be controlled to be defined in a certain way. This generic
configuration is shown in figure 5.12. In this figure, w is the external disturbance, z the output to be reduced
by the controller, y contains the measurements and u the control command. P is the plant targeted by the
controller, including the uncertainties to be studied which can be added, for example, as shown in figure 5.10.
K is the controller, which aims to minimize the effect of the disturbances (w) in the output signal (z). It is to be
highlighted that K is not a constant matrix, as it was in the previous control design (based in an LQR approach),
but an additional linear plant (linear time invariant system). Finally, W is a weighting function, equivalent to
W in figure 5.1. Each of this components of the system are further explained, in relation with the case of study,
below.

Figure 5.12: Generic configuration of the closed plant [14].

The external disturbances (w) contain the torque and, optionally, force disturbances. For simulation pur-
poses these are modeled as white noise with a frequency of 0.01 s−1 and power 1. Within the plant (P) the
external disturbance are escalated by a factor of 1e-5, linked to the actual external disturbances exerted in the
spacecraft. The output signal (z) contains the pointing error, the angular rate error and the control torque.
Each magnitude is scaled and amplified in a different way by the weighting function (W). These differences
are explained in detail later in this section. W.r.t. the measurement signal, the set of sensors used is assumed
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to be able to provide an estimation on the pointing (w.r.t. the sun) and angular rate errors. Even though this
signal is called measurements, it actually contain an estimation of the control variables. This estimation is
initially assumed perfect.

The control command (u) is defined by signal y and controller K. Inside the plant (P) three modifications
are done over the control command in order to simulate the magnetorquer behavior: 1) limit in the maxi-
mum torque in each axis to 5e-4 Nm (aiming to address the limitation in maximum dipole), 2) a duty cycle is
imposed in the signal, with a period of 5 seconds and a pulse width of 90%, and 3) the time constant of the
magnetorquer, characterizing the behavior of the signal, has been set in 0.05 seconds. These assumptions do
not include the local underactuation due to the interaction with the magnetic field.

The controller (K) is derived implementing robust control theory. It consists on a linear MIMO (multiple
input-multiple output) system with 5 inputs (measurements) and 3 outputs (control command). The plant
(P) of the system is the linearization of the flexible model around the operating point (error signal equal to
zero). The deformations of the booms in the linearization point are assumed to be zero. The linearization is
performed numerically, as described in section 5.2.2.

Among the most relevant decisions influencing this controller’s derivation and its performance is the def-
inition of the weighting function (W) for the output signal. This function defines the importance given by the
controller to the response of the system to error in each control variable at each which is the signal the con-
troller targets. The objectives of this weighting function, in the case studied, are two: 1) determine the relative
weight of the error in the pointing orientation and angular rate, w.r.t. the control effort (control torque), and
2) graduate the importance given to damping the vibrations induced by the vibrations of the booms. The first
objective is met based in the gains computed iteratively for the LQR controller (see appendix B). The second
objective is considerably more complex, as it aims to obtain a controller which is able to damp high-frequency
vibrations maintaining a certain performance at low frequencies. In order to be able to do this, the weighting
functions need to amplify the output signal z at certain frequencies, e.g. using a band-pass filter. It can be
deduced that there are two qualitatively different approaches to define W:

• Constant gain for each signal. The pointing, angular rate and control torque error are scaled with gains
that represent the importance they are given from a control perspective. This is done in a similar way as
when deriving the LQR controller.

• Define the gain as a function of the frequency. The gain is designed as a transfer function, amplifying the
signal at those frequencies in need of a more strict control.

Both approaches are implemented and the resulting controllers studied. In relation with the constant
gains, their values are assigned in relation to the LQR controller. When the gains are defined as function of
the frequency, they have the form shown in expression 5.18. In this expression, W0 is the value of the constant
gain assigned to that variable, a is a scalar multiplying t f and t f is a transfer function. This transfer function
was defined so that it: 1) amplifies the response in the frequencies of the first natural modes of the system (i.e.
from 10 to 100 Hz.) and 2) has a low impact in the response at low frequencies (below 1 Hz.) and at high fre-
quencies (above 1000 Hz). The actual selection of these ranges of frequencies depends on the natural modes of
the plant that is targeted by the controller. The two conditions that are to be fulfilled by the transfer functions
drive the decision to use a band-pass filter or order 4.

W (s) =W0(1+at f (s)) (5.18)

In figure 5.13, the transfer function between the disturbance signal (w) and the output signal (z) in the
absence of controller is presented for various values of the parameter a (see expression 5.18). In this figure,
only the first pointing error signal (see figure 5.7), is included. The rest of the signals in the output signal are
shown in figure I.1 in appendix I. The effect of the frequency dependent weighting functions can be clearly
noticed and has the behavior desired. These frequency-dependent weighting functions are only applied to the
angular rate and pointing errors, and not to the control command. The gains for the control command are
initially assumed constant.

After the two options regarding the definition of the weighting functions (block W in figure 5.12 have been
defined, two main strategies for deriving the robust controller are studied. These strategies are based in mini-
mizing two different norms: H2 and H∞. The particularities of each approach are explained in the subsections
that follows. The theoretical expressions shown are taken from [19]. No uncertainties in the parameters of the
system (e.g. bending stiffness of the booms) are accounted for, thus, only nominal plant is analyzed.
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Figure 5.13: Effect of different weight functions in the error signal. In expression 5.18, a is the number in the legend.

5.4.2. H2 norm
The controller derived using this approach aims to minimize the norm shown in expression 5.19, where Tr is
the trace of the matrix and ω the frequency. G is the transfer function between disturbances (w) and output
(z) signals (see figure 5.12). It is to be highlighted that the plant of the system (P) contained in this figure is the
linearized flexible plant. It can be observed that the aim of this controller is to minimize the response over all
frequenciesThe MATLAB built-in function that is used to derive the controller which minimizes this norm is
h2syn.

||G||2 =
√

1

2π

∫ ∞

−∞
Tr [G∗( jω)G( jω)]dω (5.19)

Among the options for the weighting function (W) described in the previous section (section 5.4.1), only
constant gains are used in the derivation of this controller. As mentioned, this gains are related to those used
in the initial LQR controller, being approximately their square root. The numerical values of these gains are: 1)
pointing error: 0.07, 2) angular rate error: 100 and 3) command torque: 300.

In figure 5.14 (extended in figure I.2, appendix I), the resulting closed plant is compared to that resulted
of the use of the LQR controller. This comparison is done based in the transfer functions between the inputs
and output shown in figure 5.7, taking into account that the controller (K) is in one case the one resulting from
minimizing the H2 norm and in the other the previous LQR controller. As expected, the performance of the H2

controller, with the error gains defined, is considerably similar to that of the LQR based controller.

Figure 5.14: Comparison of the performance of H2 and LQR controller. Responses in the left, difference in response in the right.

5.4.3. H∞ norm
In this case, the norm to be minimized is shown in expressions 5.20 (for SISO systems) and in 5.21 (for MIMO
systems), with u being the input vector. The single input - single output version (SISO) is shown in order to
show in a comprehensive way that this norm aims to minimized the maximum response in frequency, reducing
the peaks in response. The derivation of the robust controller is done using the MATLAB function hinfsyn,
using an LMI-based (linear matrix inequalities) algorithm. Similarly as in section 5.4.2, the transfer function G
is that shown in figure 5.12.

||G||∞ = sup
ω

|G( jω)| (5.20)

||G||∞ = sup
u∈Cm ;||u||≤1

||Gu||∞; ||Gu||∞ = sup
ω

||G( jω)u||2 (5.21)
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For the derivation of this controller, both strategies presented in relation with the weighting function are
implemented: 1) constant gains and 2) frequency-dependent gains. The constant gains were found iteratively
and are the following: 5e-3 for the pointing error, 1e1 for the angular rate error and 1e2 for the control torque.
The frequency dependent weighting functions were already introduced in relation with equation 5.18. In or-
der to reduce the numerical complexity of obtaining the controller (K), which is computed via the MATLAB
function hinfsyn, the plant (P) targeted is the linearization of the flexible plant taking into account only the
first mode of the booms. The parameters of the booms are the nominal ones.

In the following results, four different controllers are studied and compared: 1) the H2 controller explained
in the previous section, 2) an H∞ controller computed using constant weighting function, 3) an H∞ controller
computed using a weighting function as the one shown in expression 5.18, with parameter a equal to 106.5,
and 4) same as 3 but with a equal to 108.

Figure 5.15 (extended in figure I.3, appendix I), contains the response of the close plants resulting of imple-
menting these 4 different controller. The inputs and outputs of the transfer functions shown are those in figure
5.7. Figure in the left cover a broad range of frequencies while the figure in the right zooms in the responses
at the frequencies close to the natural frequencies of the system. In this analysis the damping coefficient is
reduced to 1% of its value in order to evaluate the performance of the controller in worse conditions.

Figure 5.15: Comparison of the performance of robust controllers computed with different error weighting functions ( f (s) = a f0(s), where
a is the number in the legend) and LQR controller.

Several conclusions can be extracted from comparing the different controllers analyzed in figure 5.15. First
of all, when comparing the behavior of the close plant with the H2 controller and with H∞ using a constant
weighting function, it can be observed that both controllers have a considerably similar performance. Further
analyses showed that the H∞ controller derived in this manner is able to slightly increase the performance
of the H2 controller at low frequencies. However, neither of these two controllers is affecting the peaks in
response at high frequency. The reason for this is that, even with really low damping coefficients, these peaks
are considerably lower than those at lower frequencies, related to the rigid dynamics (see figure 5.9). As the
controller is derived based in the H∞ norm, it focuses in minimizing the maximum response over frequency,
and leaves the response at high frequencies untouched.

Having concluded that the H∞ derived with constant error weighting functions is not targeting the vibra-
tions at high frequencies, the consequences of adding frequency-dependent weighting functions is studied. It
can be observed in figure 5.15, that an amplification of the response at higher frequencies generates a higher
control effort in this area. This is a direct consequence of the implementation of a controller based in the H∞
norm, which aims to reduce the highest peaks in response. The two controllers obtained with this approach
(i.e. Hinf 1e6.5 and Hinf 1e8) are able to reduce considerably the peak in response over at the natural frequen-
cies. Increases in the relative weight of the band pass filter (i.e. increases in the parameter a in expression 5.18),
lead to a higher reduction in the magnitude of these peaks. However, it is also to be pointed out that, as more
control effort in invested in high frequency vibrations, there is a decrease in the performance of the controllers
at low frequencies.

As previously mentioned, the controller (K) was obtained taking into account only one mode. In analy-
ses shown before, the plant (P) to be controlled also includes only the first mode and, thus, the effect of this
limitation are not visible. In order to study the potential problem that this may pose, the performance of the
controllers (the four controllers in figure 5.15) over a more accurate flexible plant, including the 5 first modes,
is studied. The behavior of the close plant is shown in figure 5.16, and more extensively in figure I.4 in appendix
I. It can be seen that the peak reduction is considerably similar to that shown in figure 5.15 and no negative
consequences are noticeable. Furthermore, the peaks linked to higher modes are also reduced.

Based in this first analysis it would seem that increasing the amplification of the error signal at high fre-
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Figure 5.16: Analysis shown in figure 5.15, including the first 5 modes.

quencies is always contributing to minimize the response at high frequencies and, thus, the vibrations of the
structure. However, there are two main negative consequences of increasing it in excess: 1) the performance
at low frequencies is decreased, implying that the ADCS design is not able to fulfill the mission requirements,
and 2) the closed system becomes unstable. This last drawback is caused by the controller, which is a linear
system on its own, becoming unstable. The stability of three different controllers computed using the H∞
approach is studied in figure 5.17, by studying the location of their poles. These controllers are computed in
the same way as those in figure 5.15, but with changes in the coefficients of the weighting function. This way,
one controller is computed with constant gains (constant) and the other two with the component frequency
dependent component ( f (s)) of the weighting function scaled multiplying it by 106 (F1e6) and 107 (F1e7).

Figure 5.17: Pole placement for the controller derived based on different error weighting functions. f (s) = a f0(s), where a is the number
in the legend, 0 in the constant case.

It can be observed that in the case with the highest amplification at high frequencies (F1e7), the controller is
not stable. This is not noticeable in a bode analysis, where it performance is increased, but creates a divergence
when implemented over the actual plant in the time domain. Of the controllers shown in figure 5.15, the
controller labeled as F1e8 is unstable.

It can be concluded that the vibrations appearing in the pointing and angular rate errors due to the natural
frequencies of the system can be targeted and controlled using an H∞ approach. However, this control strategy
can also be linked to a decrease in the performance of the controller w.r.t. the mission requirements.

5.4.4. H∞ vs. H2
It has been seen in the previous analyses in the frequency domain that the H∞ controller was able to reduce
the vibrations in the booms and in the attitude variables. In this section this capability is further analyzed,
comparing it to the performance of the H2 controller. These analyses are conducted in the time domain.
The variables used to study the behavior of the close plant and to measure the performance of the controller
are: 1) measurement signal, related to the rigid motion, 2) control torque, linked to the control effort, and 3)
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deformation of the booms, related to the flexible motion. Three main analyses are presented throughout this
section, listed below. In all of these analyses the damping coefficient is defined as 0, in order to evaluate the
worst case scenario.

• Comparison between H2 and H∞ (weighting functionF1e65) controllers, in the absence of force distur-
bances.

• Influence of higher modes. This measures the influence that simplifications of the model when comput-
ing the controller have over its performance.

• Comparison between H2 and H∞ (weighting functionF1e65) controllers, with force disturbances. The
force disturbances cause a decoupling between the vibrations of the booms and of the attitude variables.

• Comparison between H2 and H∞ in relation to the mission requirements, when integrated into the sim-
ulation environment described in chapter 3.

First of all, the performance of the H2 and H∞ controllers previously described is analyzed. For the rest of
the section the H2 controller will be referred to as H2 and the H∞ controller as H∞, in order to simplify the text.
It is also to be remember that, due to the similarity between the perfomance of H2 and the LQR controller, the
conclusions of this analysis can be extrapolated to comparing H∞ with the LQR controller.

Figure 5.18: Comparison of the measurement signal for H∞ (blue) and H2 (red)

Figure 5.18 shows the evolution of the measurement’s signal and the control torque, for both H2 and H∞. It
is to be highlighted that the duration of the simulations shown in this figure (25 seconds) is not enough to draw
any conclusions in the behavior of the controller at low frequencies. Therefore, these results are only used to
provide an insight on the degree of damping achieved in relation to the vibrations of the structure. The long
term variation of the error signal is studied in later figures. It can be noticed that the short term oscillations in
the angular rate are highly reduced by the use of H∞. However, in order to reduce these oscillations, the con-
trol effort increases and the oscillations in the control signal are noticeable higher. Furthermore, the response
of the control signal to the error related with the rigid motion (i.e. without taking into account the short term
vibrations) appears to be linked to a lower gain in the H∞. This can be noticed in the fact that similar varia-
tions in the error signal lead to considerably higher variations in the control command with H2 than with H∞.
This could lead to slightly longer times needed for reaching the operating point and to a decrease in pointing
accuracy.
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Regarding the evolution of the deformations on the booms (shown in figure 5.19 for boom 1 and in fig-
ure I.5, appendix I, for the 4 booms), it can be seen that H∞ is considerably efficient in actively damping the
vibrations of the booms. However, it is to be highlighted that this analysis is run in the absence of force distur-
bances. The consequence for this is that the vibrations appearing in the booms are, to a great extent, visible
in the measurements (pointing error and angular rate). This enables the controller, with only information on
these variables and capable only of exerting a control torque, to damp those vibrations. A more generalized
case where this assumption is not considered is studied in a later analysis.

Figure 5.19: Comparison of the the boom deformation for H∞ (blue) and H2 (red)

The second analysis performed focuses in analyzing if there are any consequences of using a simplified
plant when deriving the controller. As previously explained, the robust controllers have been obtained using a
flexible plant with only the first flexible mode of the booms. In this analysis, one of controller (H∞) is applied
over a flexible plant which considered the first 5 modes. This analysis is similar to the one shown in figure
5.16. Only the evolution of the control command is analyzed (see figure 5.20), as it is assumed to be enough to
characterize the vibrations of the error variables. It can be seen in that figure that low-amplitude fast oscilla-
tions in the control command appear and remain in the system longer than the low frequency vibrations. This
means that the controller is less efficient when reducing this vibrations. However, it is to be taken into account
that this analysis is performed over the assumption of zero damping coefficient. This is never the real case,
and even a considerably small damping coefficient will damp these high frequency oscillations considerably
faster.

Figure 5.20: Control torque for Kv controller, for 1 mode (red) and 5 modes (blue).

Previously it was mentioned that, in a simplified case with only torque disturbances, the vibration of the
booms was also minimized by H∞. The analysis presented in figure 5.21 goes beyond that simplified case
introducing also force disturbances. It can be seen that the active damping is still successful regarding the
oscillations in angular rate. However, the vibrations of the booms are only partially damped. This is caused by
the introduction (by the disturbance forces) of vibration modes in the booms that are not represented in the
measurement signal, composed by pointing and angular rate errors. As this modes can’t be measured (with the
current set of sensors), it is not possible to actively damp them. The possibility of having additional sensors
and actuators in order to avoid this situation is presented in the next section.

Additionally, a longer term analysis on the evolution of the measured error is run for the three controllers
developed so far: LQR approach, H2 and H∞ (see figure I.6 in appendix I). In can be observed that the be-
havior of the closed plant is considerably similar under the action of the three controllers, showing only small
deviations over 1 hour. The H2 and the LQR based controller are particularly similar.

The final analysis performed over this two controllers, H2 and H∞, is conducted over an integration of
them on the simulation environment. The objectives of this analysis are mainly two: 1) address the compli-
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Figure 5.21: Evolution of measurements and boom deformation under the action of disturbance force and torque for H∞ (blue) and H2
(red).

ance of the controllers with the mission requirements and 2) study the performance of the controllers w.r.t the
vibrations caused by the flexibility of the booms. Part of this analysis is included in appendix I. Figure 5.22
shows the evolution of the pointing error under both controller for the same initial conditions. It can be con-
firmed that the H∞ requires more time to reach the operating point and that the long term pointing error is
increased.

Figure 5.23 shows the evolution of the deformation of boom 1 for both H2 and H∞. It can be seen that,
even thought H∞ is not able to completely damp the vibrations, these are one order of magnitude lower than
when H2 is used. Considering that the damping coefficient is zero and that no information regarding the
deformation of the booms is available, this is considered a good achievement. The deformation of the rest of
the booms is included in appendix I, figures I.9 and I.8, and the same behavior can be observed.

Finally, figure 5.24 shows the evolution of the z-axis component of the angular rate using both H2 and
H∞. When using H∞ no vibrations are noticeable, while when using H2 this variable is constantly oscillating
(mainly due to the duty cycle of the magnetorquer). It is to be highlighted that this oscillation is consider-
ably higher than in previous analyses run using an LQR controller, mainly due to the value of the damping
coefficient (0). The evolution of the angular rate during a more extended time is shown in appendix I, figure
I.7.
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Figure 5.22: Evolution of the pointing error during the pointing phase, using H∞ and H2.

Figure 5.23: Evolution of the deformation in boom 1, using H∞ and H2.

Figure 5.24: Evolution of the angular rate error, using H∞ and H2.
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5.5. Non-linear controller
Throughout this section, the design of the ADCS is faced from a conceptually different perspective. This per-
spective differs from that of the previous designs in two main aspects: 1) the controller retains the non-linearity
of the equations of motion, and 2) the analysis of the control problem, and, thus, the derivation of the con-
troller, is based in analytical dynamics. These aspects are only briefly explained in this section, and the reader
is encouraged to go to [29] for a more detailed explanation of this approach, known as the Udwadia-Kalaba
approach.

This approach to the ADCS design is based in the existing parallelism between analytical dynamics and
control theory described in [29]. This paper derives a generic formulation to compute the forces that act over
a constrained system. This formulation leads to a control rule that makes the system follow the constrained
motion without actual constraints. The different ways in which a constrained system and a controlled system
are related can be seen in table 5.1.

Constrained system Controlled system Equation
Unconstrained system ↔ Uncontrolled plant 5.22

Constrained system ↔ Controlled system 5.23
Constraints ↔ Trajectory requirements 5.24

Gauss principle ↔ Control cost 5.25
Constraint force ↔ Control force 5.26

Table 5.1: Relation between constrained and controlled systems.

Starting from an uncontrolled system of the form shown in equation 5.22, the objective is to derive a control
force (see Qc in equation 5.23) such that the constrains shown in equation 5.24 are met. In these equations,
q is the state vector, Q is a vector which contains both internal and external forces (or torques) faced by the
system and M is the mass matrix (i.e. linking ’forces’ and ’accelerations’). Matrix A and vector b need to
be derived from the trajectory requirements (or guidance instructions). The method to obtain this terms (as
explained in [29]) consists in deriving the initial constrain (e.g. angular rate equal to zero) w.r.t time until the
double derivative of the state vector (e.g. angular acceleration) appear in the equation. The intermediate terms
are also kept in the equation, to enable convergence from ’positions’ that do not comply with the trajectory
requirements. The resulting equation is then converted into as expression of the form shown in equation 5.24.
This process is further explained in next section (section 5.5.1).

M(q, t )q̈ =Q(q, q̇ , t ) (5.22)

M(q, t )q̈ =Q(q, q̇ , t )+Qc (q, q̇ , t ) (5.23)

A(q, q̇ , t )q̈ = b(q, q̇ , t ) (5.24)

After obtaining all this terms (M, A, b and Q), the generalized Gauss’s principle is used as a cost function.
The Gauss principle states that: from all possible constraint forces (Qc) that satisfy the constraints (equation
5.24), Nature chooses in each instant of time the one minimizing the cost function shown in expression 5.25
(with the weighting matrix (N) equal to the mass matrix (M)). As it may be necessary to use a weighting ma-
trix that is not the mass matrix (e.g. due to non ideal constraints or limitations in the control actuation), the
generalized Gauss principle is used. This ’generalization’ is explained in detail in [29] and allows defining an
arbitrary weighting matrix N> 0.

J (t ) = [Qc (q, q̇ , t )]T N (q, t )[Qc (q, q̇ , t )] (5.25)

The expression of the constraint (control) force minimizing this cost function, at every instant, is presented
in [29] and can be seen in equation 5.26. In this equation, a is an estimation of q̈ based in the knowledge
of Q (internal and external forces). It can be seen in the description of the derivation of the controller, that
no linearization or any other simplification of the equations of motion of the system are required (i.e. the
controller can contain the actual dynamics of the plant). Another important aspect to be taken into account is
that adding complex constrains (trajectory requirements) to the system is relatively easy.

Qc = K e =−N−1M−1 AT [A(M N M)−1 AT ]+(Aa −b) (5.26)
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As can be seen in equation 5.26, the main matrices and vectors to be determined in order to compute the
control command are: M, Q, A, b and N. These terms are related to the assumptions made over the equations
of motion and to the control objectives. In this regard, two main options can be clearly distinguished: 1) using
the ’rigid’ equations of motion and 2) using the ’flexible’ equations of motion. The constraints, or control
objectives, are linked to the requirements of the mission and to additional requirements (e.g. reduce vibration
of the booms). The rest of this section covers these two implementations of the control approach and their
performance in relation to the case of study.

5.5.1. Rigid approach
In this section the non-linear control approach previously introduced is applied to the rigid equations of mo-
tion. This implementation is useful not only to study the performance of the resulting controller, but also as
an example of how this control approach can be applied over a system. Two main steps are explained: 1) the
definition of the system and 2) the derivation of the constraints.

The dynamics of the plant that is targeted by the controller include only the rigid motion of the satellite,
particularly the attitude of this spacecraft. The uncontrolled motion (equivalent to expression 5.22), can be
expressed in this particular case as shown in equation 5.27, where MoI is the moment of inertia, α the angular
acceleration and T the torque. Therefore, the mass matrix (M) is equal to the moment of inertia, the vector Q
is the sum of external and internal torques and the vector q̈ is the angular acceleration.

MoIα= Ti nt +Text (5.27)

The next step is related to deriving the constraints (guidance instructions). As explained in previous sec-
tions, there are two main constrains to be imposed over the motion of the satellite during the pointing stage: 1)
pointing direction and 2) angular rate. The expressions for these two constraints are shown in equation 5.28,
where s is the sun vector in the body reference frame, ω the angular rate and g states for guidance.

1) s − sb = 0; 2) ω−ωg = 0; (5.28)

The expressions used to define these constraints are not unique, and have a considerable impact in the
performance of the resulting controller. As the quaternion is not fully known in the case studied, and in order
to improve the performance of the final controller, expression 1 in 5.28 has been rewritten incorporating two
assumptions. The first one is that the axis that needs to be aligned is the rotation axis (sg = ωg /|ωg |). The
second one is that the controller is implemented so that the desired angular velocity (wg ) is reached consid-
erably faster than the pointing direction (ωg ≈ω). These assumptions lead to the following expression for the
constrain: ωi × si = 0. It needs to be taken into account when deriving the controller that this constraint has
two equilibrium points.

It can be observed that in order to obtain an expression as the one shown in 5.24, both constraints need
to be derived w.r.t. time. The intermediate derivations are kept as part of the final expression (multiplied
by constants ci ) to address initial conditions not fulfilling the constrains and a potential lack of knowledge
regarding the external torque. The final expressions can be written as shown in expressions 5.29 (1) and 5.30
(2). Sub-index i states for inertial reference frame and the absence of it indicates body fixed reference frame.
The ± in expression 5.29 is defined by the angle between ω and s being higher or lower than 90◦, in order to
avoid the equilibrium point at 180◦ angle. This way, when ω · s < 0 the system goes away from the nearest
equilibrium point (180◦) and when ω · s > 0 the system evolves towards the nearest equilibrium point (0◦). α is
the angular acceleration.

αi × si ± c1(wi × si ) = 0 → α× s ± c1(w × s) = 0; (5.29)

α+ c2(w −wg ) = 0; (5.30)

The option to add an additional constraint, taking into account that there is a direction (i.e. direction of
the local magnetic field) in which no control torque can be applied has also been added. This constraint is
imposed by ensuring that the angular acceleration (α) in the direction of the magnetic field (m) is that of the
unconstrained system (a) (see expression 5.31). The weight of this constraint can be scaled using parameter
c3.

c3[m · (MoIα)−m · (MoI a) = 0]; (5.31)
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Having defined the controller from a theoretical perspective, it was first implemented for simplified cases,
in order to gain a deeper understanding of its behavior, and then in the actual ADCS simulator. From the first
set of implementations, two main characteristics of the controller can be derived:

• Huge increase in performance when implementing a feed-forward strategy based on an accurate knowl-
edge of the external (i.e. disturbances) and internal forces. In its absence, the speed of the controller
needs to be considerably increased to maintain the performance.

• Overlap of constraints is automatically dealt with by the controller, and poses no additional problem if
they are consistent. However, the number of constrains is directly related to the size of the matrix that
needs to be inverted, so the less the better the speed of the controller.

After this initial analysis, the controller is implemented in the simulation environment and its perfor-
mance analyzed throughout the rest of the section. The constants previously mentioned are defined as: c1 =
0.01;c2 = 0.1;c3 = 1. First of all, the performance for different initial conditions (different orbits and initial
attitude/angular rate) has been studied (see figures 5.25 and, in appendix K, K.1).

Figure 5.25: Evolution of the pointing error for 10 different initial conditions (angular rate and attitude). Stowed configuration. h: 600 km,
i: 97 deg,Ω: 0.

From these results, it can be seen that the controller derived meets the performance requirements, 10 de-
grees pointing accuracy. A first comparison with the performance of the LQR controller (see section 3.2.1) does
not give any clear difference in the long term performance. However, it appears that the non-linear controller
is able to reach the desired configuration considerably faster than the LQR controller. Even though it may seem
that the implementation of different weights in the cost function of the LQR controller could lead to a faster
convergence to the operating point, all efforts in this direction have led to unstable controllers. A further com-
parison with the results shown in appendix D confirms that the operating point can be reached faster and give
another interesting result. It seems that the pointing accuracy for the most critical cases (those with a highest
amplitude on the periodic oscillation of the pointing error) is considerably improved.

In order to be able to confirm these differences in performance, it is necessary to conduct further analyses,
applying both controllers over the same cases and initial conditions. Two examples are shown, one in which
the LQR controller is able to achieve a considerably high accuracy and one where this accuracy is close to the
requirements. In the first case (figure 5.26), it can be observed that, as previously indicated, the performance
of both controllers is considerably similar in the long term and that the non-linear controller allows reach-
ing faster the operating point. The second case (figure K.2, in appendix K) shows an increase in the pointing
accuracy of almost 6 degrees. This can be explained by two main factors: 1) the limitations of the magnetic
torque are included when optimizing the cost function of the non-linear controller, 2) the LQR controller de-
signed relies on a discrete number of points (two in our case) and its accuracy depends on the proximity of
the state vector to those points and 3) the objective angular rate (which is meant to be progressively increased
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once close enough to the orientation desired) is maintained at 0.01 rad/sec instead of 0.0175 rad/sec, as the
condition for increasing it is not met.

Figure 5.26: Evolution of the pointing error under LQR and non-linear controllers. Deployed configuration. h: 600 km, i: 60 deg,Ω: 0.

To evaluate the relative importance of each source of error, further analyses are conducted. The results are
shown in appendix K. The effect of increasing the spin of the satellite progressively is proven to be a limitation
for the pointing accuracy (see figure K.3) if the final spin is not reached. This way, an increase in the guidance
angular rate has the effect of improving the stability of the pointing axis w.r.t. external disturbances, increas-
ing the pointing accuracy. It is to be highlighted that, for the same angular rate command, the non-linear
controller still improves the pointing accuracy by 1 degree in both cases shown in figure K.3, from a maximum
angular error of over 5 degrees to less than 4 degrees. It can also be noticed that, while the non-linear controller
allows a more accurate pointing, the oscillations of the angular rate have a higher amplitude. However, as these
oscillations do not interfere with the requirements of the mission, this is not considered a relevant drawback.
Finally, even though the convergence to the operating point has been found to be faster for the non-linear
controller in most cases, there are still certain initial conditions which can lead to a similar convergence rate
(see case 1 in figure K.3).

Additionally, the effect in the performance of adding the limitation on the control torque to the controller is
studied over a series of cases (see figure K.4, appendix K). This figure compares the pointing error throughout
time with and without adding this limitation in the computation of the controller. It can be observed that
adding it has a positive effect, reducing the pointing error during 80% of the time for most cases and during 70
% for all cases. Leaving out 10% of the data in each side, the improvement in the pointing accuracy is between
-0.2 and 0.8 degrees, which is considered a positive result.

5.5.2. Flexible approach
Up to now the proposed designs for the ADCS have been based in a considerably limited knowledge of the
state of the plant, i.e. only the sun vector and the angular rate can be estimated. This means no information
about the variables linked to the flexible motion (i.e. the deformation of the booms). This leads to limitations
w.r.t. having a controller able to actively damp the vibrations of the booms. This can be noticed for example
in the inability of the H∞ controller to completely damp these vibrations, as they also contain modes that are
not visible in the attitude variables.

These limitations are, a priori, not linked with the ADCS requirements, as the vibrations in the attitude
variables can be damped with information about them. However, as the vibration of the booms is also targeted,
the potential solutions to deal with this limitation by estimating the complete state vector are studied. Possible
methods of obtaining this estimation are briefly introduced in appendix J.

This section aims to design a controller combining the knowledge gained in relation with the plant (flexible
equations of motion) and the non-linear approach introduced at the beginning of this chapter. There are three
main decisions to be made when designing a controller based in this control concept: 1) which definition of
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the dynamics of the plant to use, 2) which constraints to impose and 3) over which coordinates can the control
be exerted. Regarding 1, two main options are considered: 1) rigid plant (see previous section 5.5.1) and 2)
flexible plant (see equation 5.32, for further information go to chapter 4). Two aspects w.r.t. the feasibility of
using the dynamics of the flexible plant to derive the controller are critical. The first one is the observability of
the state vector, the deformation of the booms needs to be estimated. The second one is the computational
power available, as the derivation of the controller becomes increasingly complex (see equation 5.26) and a
considerable increase in computational speed would be needed for real time applications.

M = M(q(t )); Q =Qext − [Ṁ(q, q̇ , t )q̇(t )− 1

2
(
∂M(q, t )

∂q
q̇(t ))T q̇(t )+K q +F q̇ +R] (5.32)

In relation to the definition of the constrains, four constrains have been considered. The first three were
already introduced in the previous section and are linked to the angular rate, pointing direction and torque
generation. The forth one aims to reduce the vibration of the booms, and is expressed as shown in equation
5.33, where qi contains the deformation of the booms in the different axes and modes taken into account.

q̇i = 0; → q̈i + c5q̇i = 0; i = 1,2, ...,n (5.33)

Finally, w.r.t. the actuation possibilities, two options are considered: 1) using only a torque to control the
spacecraft attitude (as it has been done in previous sections), and 2) introducing also a force in order to cope
with vibrations decoupled from the attitude variables. The limitation on the control actuation is introduced
in the controller derivation via a matrix N as shown in equations 5.25 and 5.26. It is important to highlight
that, while this matrix N minimizes the control actuation over certain coordinates, it does not reduce it to zero.
Therefore, this condition needs to be added outside the controller. The force command is not define directly
by the the output of the non-linear controller equations, as it needs to be processed in order to avoid steady
terms and provide only oscillatory forces. This is done by subtracting the moving average of the signal. More
sophisticated methods to process this signal are left to further analyses, in which more detail specifications of
potential actuators to be used are expected to be available. The constant c5, in equation 5.33, is also directly
connected to the actuator specifications, influencing the convergence rate of the constrain and, therefore, the
peaks in the commanded control force.

Two controllers have been derived, with different performance objectives driving different decisions in the
options previously described. The first controller do not target actively the vibrations caused by the flexibility
of the system. Therefore, this controller is derived using the flexible equations of motion combined with the
three constraints used in the previous section (expressions 5.29,5.30 and 5.31), and the only possible actuation
is a control torque. The second controller aims to reduce the vibration of the booms by introducing an addi-
tional constraint (expression 5.33) and assuming a control force (in the central part of the satellite) can also be
exerted. Throughout the rest of the section, the performance of these controllers (for now on controllers 2 and
3) is compared with that presented in the previous section (section 5.5.1), which was derived using the rigid
equations of motion (controller 1). This performance is studied in relation with three aspects:

• Pointing accuracy achievable.

• Short term oscillations in the rigid motion variables, particularly in the angular rate.

• Deformation of the booms.

In figure 5.27, the first of these aspects is evaluated. In can be seen that controllers 2 and 3 have almost
the same performance w.r.t. the pointing error. The accuracy reached with these controllers decreases con-
sidereable w.r.t that obtained with controller 1 (using the rigid equations of motion). This may be caused by
the fact that the controllers using the flexible equations of motion estimate the needed control torque based in
the moment of inertia of the rigid part of the satellite. This moment of inertia is one order of magnitude lower
than the total moment of inertia. Furthermore, the ellipsoids of inertia of the rigid part and of the total part are
not proportional. This drawback of using the flexible equations of motion to derive the controller has not been
solved. It is to be highlighted, however, that the pointing accuracy is still complying with the requirements of
the mission (10 degrees).

The second analysis focuses on the short term vibrations induced in the angular rate due to the interaction
between the magnetorquer’s duty cycle and the flexibility of the system. The results of this analysis are shown
in figures 5.28 and, in appendix K, K.5. The effect of the flexible motion on the rigid motion of the structure is
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Figure 5.27: Evolution of the pointing error under non-linear controller with different specifications. Deployed configuration. h: 600 km,
i: 97 deg,Ω: 0.

here clearly visible, though considerably limited. It can be seen that both controller 2 and 3 damp the vibra-
tions on this variable faster than controller 1. This damping appears to be driven not by additional constrains
or actuation capabilities, but by a more complete knowledge on the dynamics and state of the plant, as this is
the only difference between controllers 1 and 2. It is to be taken into account that both in the constraint re-
lated to pointing orientation (expression 5.29) and in that related to the spin of the spacecraft (expression 5.30),
the condition of angular acceleration equal to zero is imposed. The oscillations of the angular rate variables
influence this acceleration, as, even though they have low amplitude, their frequency is high.

Figure 5.28: Analysis of the short term oscillations of the angular rate under non-linear controller with different specifications. Deployed
configuration. h: 600 km, i: 97 deg,Ω: 0.

In relation with the vibration of the booms, several types of oscillations are expected. First of all, as the
plant is initialized without been in equilibrium with the external disturbances, initial vibrations caused by the
sudden exertion of these disturbances are expected. Once these vibrations have been damped, the external
disturbances vary slowly over time (with the exception of eclipses), generating long term oscillations. These
low frequency oscillations are not targeted by any of the controllers. There are also high frequency vibrations,
linked to two main sources: 1) magnetorquer duty cycle and 2) sudden variation in the solar pressure due to
the immersion or coming out of an eclipse.

In order to analyze the vibrations produced by the external disturbance related with eclipses, the defor-
mations of the booms in the z-axis are studied. This axis is selected because it is the axis aligned with the sun
vector in the operating point. The evolution of this variable, using the three different controllers mentioned,
is shown in figures 5.29 and, in appendix K, K.6. It can be seen that controller 3 is able to damp the vibrations
appearing after coming in or out of an eclipse. This is mainly due to the additional constrain over the deforma-
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tion of the booms and is only possible due to the exertion of a control force. An example of the force needed
is shown in figure 5.31. Controller 2 has a better performance than controller 1, but still radically lower than
controller 3.

Figure 5.29: Analysis of the evolution of the boom’s deformations under non-linear controller with different specifications. Z-axis. De-
ployed configuration. h: 600 km, i: 97 deg,Ω: 0.

In order to analyze the vibrations caused by the magnetorquer duty cycle, the deformations in the x and
y axes are analyzed. This is done in order to minimize the appearance of vibrations linked to the eclipses.
The results are included in figures 5.30 and, in appendix K, K.7. In those figures it is possible to see that there
are long term oscillations in the deformation of the booms, which are, as previously mentioned, linked to
the change in the external disturbances. Regarding the high frequency vibrations, it can be seen that both
controllers 2 and 3 have a better performance than controller 1 regarding damping them. This was expected
from the results shown in figure 5.28.

Figure 5.30: Analysis of the evolution of the boom’s deformations under non-linear controller with different specifications. X,Y-axes.
Deployed configuration. h: 600 km, i: 97 deg,Ω: 0.

Finally, some comments on the control force allowed in controller 3 are made. The force command re-
sulting from the implementation of the non-linear control approach explained is manipulated to extract the
steady terms. This is done by subtracting the moving average. However, more sophisticated methods can also
be applied, depending the necessities of the actual actuator to be used. It is mainly used to minimize the vi-
brations related to eclipses. An example of the control force generated after going out of an eclipse is shown
in figure 5.31 (extended in appendix K, K.8). The damping of the vibrations is considerably fast, of the order of
seconds, which means that the magnitude of the force could be lowered considerably and still actively damp
these vibrations. It can also be seen that the force is exerted mainly in the z-axis direction, as expected due to
the alignment of this axis w.r.t the sun.
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Figure 5.31: Analysis of the control force exerted over the spacecraft by controller 3. X-axis (blue), Y (red) and Z (yellow). Deployed
configuration. h: 600 km, i: 97 deg,Ω: 0.

5.6. Controllers’ implementation
At this stage of the project, several ADCS designs have been defined and their performances studied. There are,
however, two main areas that the analyses performed do not cover. First of all, the analyses where performed
over the ideal case, meaning that the controller has access to both the real values of the variables measured
(ideal sensors) and to the real specifications of the plant (e.g. moment of inertia). This is never the real case.
Additional analysis to evaluate how the performance of each controller would be on a more realistic situation
are, therefore, to be run. The second area still to be studied includes the needs of each controller in relation
with the rest of the ADCS. This topic has been already mentioned, but not covered in detail. It includes as-
pects such as sensors needed, computational cost and control frequency. These aspects change enormously
depending on the controller and, therefore, deserve a more detailed analyses.

5.6.1. Sensibility
The most common strategy to study the sensibility of the performance of the ADCS design to errors in the
system’s parameters, is to conduct a Monte Carlo analysis. This analysis is based in defining the distributions
that these parameters follow (e.g. normal distribution with standard deviation x and centered in the nominal
value). Then the case (simulation) is run a large number of times, analyzing the distribution of the results. In
each run the parameters of the system are obtained again, according to their distribution. For the case studied
here, the available time and computational resources prevent from using this approach. This is mainly because
the performance of the controller is linked to the long term evolution of the variables (i.e. pointing accuracy)
and, therefore, each run takes a considerable amount of time. It is also important to highlight that this analysis
aims only to give an initial idea of the sensibility of the controller, not to study it in detail.

It was decided then to use a deterministic approach, based on a sampling grid. This way, errors in the spec-
ifications of the system where defined, and their consequences over the performance studied. This approach
allows investing a lower amount of computational and time resources. On the other hand, a Monte Carlo
analysis would, most probably, allow a more complete an accurate analysis. In addition to the study of how
different errors in the structure’s model affect the performance of the controllers, they behavior w.r.t. noise in
the measurements is also studied. Four controller are evaluated: 1) LQR controller, 2) H∞ controller, 3) non-
linear controller based in rigid equations of motion and 4) non-linear controller based in flexible equations of
motion and including a control force. The sensibility analysis is composed of:

• Effect of errors related with the moment of inertia in the pointing accuracy.

• Effect of noise in the measurements in the pointing accuracy.

• Effect of errors related to the booms specifications in the damping effectiveness.

• Effect of noise in the damping effectiveness.

Figure 5.32 shows the effect of a 5% error in the estimation of the different terms of the moment of inertia
when using the LQR controller. Additional cases are added in appendix L, figure L.4. It can be seen that the
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difference in performance is considerably small, less than 1 degree, and that the sensibility is higher for errors
in the z-axis component of the moment of inertia. Furthermore, the results lead to the conclusion that this
difference is not dependent in the initial conditions and it has an oscillatory nature.

Figure 5.32: Difference in the pointing accuracy due to errors in the estimation of the moment of inertia. LQR controller.

Those conclusions (i.e. higher sensibility w.r.t the z-axis component, oscillatory nature and independence
from initial conditions) are also applicable for the non-linear rigid controller (see figure L.1 in appendix L).
However, the system appears to be more sensible to errors using this controller (non-linear rigid) than with
the LQR controller.

In relation with the non-linear flexible controller and with the controller based in the H∞ norm, the total
moment of inertia is not an input for the controller, so errors in this variable are not directly measurable. The
total moment of is computed from the moment of inertia of the central part of the satellite combined with the
moment of inertia of the booms. The moment of inertia of the booms depends on their deformation, length
and linear density. Therefore, the analysis is performed considering errors in: 1) the moment of inertia of the
central part, 2) the length of the booms and 3) the density of the boom. The results are shown in figure L.2
(flexible non-linear) and L.3 (H∞) in appendix L. In both cases the effect of the error in the moment of inertia
of the central part of the satellite is not particularly relevant. This was expected, as their relative weight of the
central part of the satellite in the total moment of inertia is considerably low (≈ 10%). The parameter with a
highest sensibility is the length of the booms, followed by its density. The error is still bounded and becomes
considerably small after some time, being independent from the initial conditions and with an oscillatory
behavior.

As a second step of the sensibility analysis, the effect of introducing noise in the measurements (which, as
mentioned, are ideal in the previous analyses), is studied. Initially, only the effect over the pointing accuracy
is studied. The characterization of the noise is based in the sensors’ data included in table 2.5. In figure 5.33,
the effect of noise on the performance of the LQR controller is shown over a number of cases. It can be seen
that at initial times the error induced is considerable, due to the high noise of the coarse sun sensors. Once the
spacecraft is oriented towards the sun, which then falls into the field of view of the fine sun sensor, the effect of
noise is considerably reduced. This is also the case for the non-linear rigid and flexible controllers (see figures
L.5 and L.6 in appendix L.

The effect of noise in the performance of the controller based in the H∞ norm is, however, devastating.
With this controller, the plant does not converge to the operating point, i.e. the satellite is not pointed towards
the sun with any meaningful accuracy. For understanding this, the methods used to derived this controller
need to be understood. As mentioned in section 5.4.3, for deriving this controller the weight of the response at
high frequencies in the cost function is amplified. In the presence of noise, the controller shifts a considerable
control effort towards damping non-existing vibrations in the booms, leading to complete loss in performance
(see figure 5.34). A potential solution for this problem would be to add an additional weighting function,
reducing the importance of high-frequencies in the error signal. This solution has not been applied within this
report.

After studying the sensibility of the system w.r.t. the mission requirements (i.e. pointing accuracy), the
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Figure 5.33: Difference in the pointing accuracy due to the addition of noise to the measurements. LQR controller. 7 different cases.

effect of errors and noise in the reduction achieved in relation with the vibrations of the structure is studied.
This effect is evaluated in relation to the damping achieved in the vibration of the booms. Therefore, only the
controllers targeting these vibrations are analyzed, i.e. H∞ and non-linear flexible controller. The variable (U)
is used to study the sensibility of the controller to these parameters. This variable is related to the potential
energy of the booms and is expressed as shown in expression 5.34, where ui is the deformation of boom i at its
tip.

U (t ) =
4∑
i

u2
i (t ) (5.34)

In relation with the non-linear flexible controller, 8 different cases are studied: 1) using the non-linear rigid
controller, 2) nominal case, 3) adding noise, 4-5) error in the length of the boom, 6-7) error in the bending
stiffness of the boom and 8) limiting the available knowledge of the controller. It is to be highlighted that the
noise is only introduced in the sensors included in table 2.5, i.e. the information regarding the deformation
of the booms is ideal. This simplification would need to be reassessed after the sensors to be used to measure
these deformations are defined. Case 8 consists in using a controller which only has access to the first mode,
over a plant containing the first two modes. The results are shown in figure 5.35 and in figure L.7 (appendix L).

It can be concluded that this controller is not particularly sensible to the variables studied. For all cases
studied, the vibrations are highly damped (w.r.t the rigid controller) independently of the estimation error. This
damping is particularly noticeable when the control torque is low (i.e. once the operating point is reached).
At the beginning the controller focuses more in reaching the operating point than in damping, but still the
vibration is reduce considerably.

The results of performing this same analysis over the H∞ controller can be seen in figure L.8. It can be
observed that the mayor decrease in performance (higher U) is linked to the addition of noise. With this noise,
the vibrations are of a similar order as when using a controller based in the rigid equations of motion. It
is also noticeable, that the controller is more sensible to errors that increase the natural frequencies of the
system (decrease in the length of the booms (L-) and increase in the bending stiffness (EI+)) than to those that
decreases these frequencies (L+ and EI-).

These analyses in the sensibility of the controllers have identified one mayor problem in relation with
one of the controller, the one based in the H∞ norm. A solution for this challenge is also proposed from a
conceptual perspective. In relation with the rest of controllers, the errors and noise analyzed are not a mayor
threat to the performance of the controllers.
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Figure 5.34: Difference in the pointing accuracy due to the addition of noise to the measurements. H∞ controller.

5.6.2. Feasibility
The other aspect that needs to be studied in relation with each of the controllers proposed, is whether it is
feasible to implement this controller in an actual satellite and at what cost. This is evaluated, only from a
qualitative perspective, based in three factors:

1. Computational cost associated to computing the control command.

2. Controller time step needed.

3. Sensors and actuators needed.

The computational cost of the LQR controller is considerably low, as constant gains, obtained beforehand,
are used. The restrictions on the controller time step are not strict. As no intention of damping the flexible
vibrations is needed, the lowest frequency that the controller needs to deal with is linked to the angular rate
of the satellite, which is considerably low. The sensors and actuators needed are those described in section
3, and are those that are nominally included in the design of the GoSolAr mission. This controller can be
implemented relatively easy and no relevant problem are expected in this regard.

In relation with those controller based on robust control (i.e. H∞ and H2), the computational cost is con-
siderably higher. This is because the control command is not based in the use of fixed gains but it consists in a
linear time invariant system. The computational cost can be linked to the order of this linear plant. Therefore,
the objective is to reduce the order of the controller as much as possible without losing performance. This is
done using two approaches based in two MATLAB functions, see example in appendix H.

• minreal, which "eliminates uncontrollable or unobservable state in state-space models, or cancels pole-
zero pairs in transfer functions or zero-pole-gain models".

• reduce, which reduces the order of the system based on the Hankel singular values.

In relation to the minimum frequency needed for each controller, it can be derived from its natural fre-
quencies. This way, for example, the controllers shown in figure 5.15 have the following maximum natural
frequencies: Constant weight: 3.7e4 Hz, F1e65: 1.7e3 Hz, and F1e8: 3.68e3 Hz. It can be seen that even without
aiming to reduce the response at high frequencies, the controller operates at high frequencies. A common
approach to reduce this frequency is to increase the cost of the control torque for high frequencies, in a similar
way as it was done with the error weighting functions. However, the implementation of this approach has not
provided any benefit, as the frequencies remain on the same range or the performance drops dramatically.

The sensors and actuators needed do not change w.r.t. the LQR controller. These controllers can be im-
plemented relatively easy and no relevant problem are expected in this regard. It can be concluded that these
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Figure 5.35: Difference in the pointing accuracy and in the vibration of the booms (U) due to errors in the estimation of bending stiffness
(EI) and length of the booms (L) and limitation in control information (N=1 only first mode available). Non-linear flexible controller.

controllers (H∞ and H2) require an increase in the computational power available and a huge increase in the
control frequency.

The non-linear controllers based in the approach presented at [29] both require an increase in the compu-
tational power needed w.r.t. the LQR controller. This increase is caused by the need to conduct a mathematical
operation (including an inverse of a matrix) for each control step. The matrix to be inverted is, logically, con-
siderably smaller for the case where the rigid equations of motion are considered. The control frequency is
linked to the eigen frequencies of the equations of motion considered, being these considerably lower than
the frequency needed by the robust controllers. It is also to be mentioned that, in case a feedforward includ-
ing external disturbances can be accurately implemented, the need of a high frequency controller decreases.
W.r.t. the sensors and actuators needed, the rigid controller operates with the set already defined, while the
flexible approach requires to have an estimation of the deformation of the booms. Additionally, the capability
of exerting a control force can be added.

5.7. Conclusions
In light of the results and analyses presented throughout this chapter, a conclusion in relation to the research
objective can be drawn: the effect of the flexibility in a satellite with a large thin flexible structure can be
minimized by the derivation and implementation of an appropriate ADCS design. This does not mean that it
is convenient to implement this kind of designs to every mission, as it is possible that the effect of flexibility
does not interfere with the mission requirements and the implementation of these designs comes always at a
price. This cost can differ greatly from one controller to another, including, for example, the need of additional
sensors or a higher computational power. Some comments are now made on the most relevant aspects of each
of the ADCS designs proposed.

In relation with the GoSolAr mission, the consequences of the flexibility of the structure appear to be lim-
ited (see section 5.1.1) and, as expected from the revised literature, the flexibility does not pose an additional
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threat to attitude requirements of the mission. This is mainly because of the separation between the different
frequencies involved: external disturbances, natural modes and controller frequencies (within the controller
both the actuators, i.e. magnetorquer, and the computations are considered). It is necessary to highlight that,
even though the flexibility does not affect the complying with the mission requirements, the vibrations added
to the system may pose a structural problem (e.g. fatigue in joints between the booms and membrane or
central part of the satellite).

It is also to be taken into account that the natural frequencies studied are those of the simplified flexible
model of the spacecraft. Therefore, the influence of the membrane in the natural frequencies of the system is
not considered. Numerical estimations from previous DLR’s studies draw values around 0.3 Hz, which changes
significantly the quantitative results. Further analyses are needed in order to address this issue.

From a generic approach, it can be concluded that the effect of the flexibility influences the behavior of
the structure in three main ways: 1) external disturbances (e.g. sudden change in solar pressure) generate a
vibration in the booms, which is then transmitted to the rigid variables, 2) variations in the control torque or
force (e.g. due to the magnetorquer duty cycle) generate a vibration in the booms, transmitted then to the
rigid variables, and 3) the control process frequency is such that in interacts with this vibrations in the rigid
variables, amplifying them. Examples of 1 and 2 are shown in section 5.1.2, while 3 is considered to be out
of the scope of this work. The nature of this vibrations (i.e. amplitude, frequency and damping) is affected
by the properties of the structure (i.e. bending stiffness, damping coefficient and length and density of the
booms). However, it is to be pointed out that several analysis were conducted, changing these parameters
and obtaining the same qualitative behavior, i.e. the long term behavior remains unaffected by the flexibility.
Needless to say, if these parameters change dramatically, further analyses need to be performed. For structures
as the one analysed, the effect of the flexibility is mainly a challenge for missions with either a requirement of
highly accurate pointing accuracy stable throughout time, or a limitation in the the vibration of the booms.

W.r.t. the controller based in an LQR approach, its main advantages are its low complexity and the low
computational power it requires. In relation to the case of study, i.e. the GoSolAr mission, this controller is
able to fulfill the ADCS requirements. Regarding the effect of the flexibility of the structure, is clear that it is not
damping in any way the vibrations that appear in the system. This can pose a problem in cases where these
vibrations interfere with the objectives/requirements of the mission.

Two additional control approaches have been studied, one based in robust control and the other one in
the relation between constrained and controlled systems, from the perspective of analytical dynamics [29].

From the existing methods related to robust control, two were selected, based in the minimization of H∞
and H2 norms. The H2 controller developed does not shown any particular advantage w.r.t. the LQR con-
troller. The H∞ controller, in the other hand, proved to be able to minimize the vibrations linked to flexible
modes which are visible in the attitude variables (e.g. angular rate). This reduces the overall vibrations of the
booms as well as enables a better pointing stability. Nonetheless, the pointing accuracy decreases, as part of
the control effort is reallocated from minimizing the pointing error to damping the vibrations of the system.
The implementation of this ADCS design does not require substantial change in the hardware used, as no ad-
ditional sensors and actuators are needed. However, the computational cost increases considerably and can
become a killer requirement.

The control approach proposed in [29] is not as well known as the two robust control methods just ex-
plained, and fewer implementations of this control strategy can be found in the existing literature. However,
it shows a great potential in several ways: 1) the control command is based in the actual equations of motion,
without simplifications, 2) relative easy implementation of complex constrains and 3) direct integration of a
feed-forward component, if needed. This feed-forward was not implemented in the case of study as no real
time estimation of the external disturbances is expected, but can play a major role improving the accuracy in
other missions.

This approach is applied in two different ways. In the first one, the equations of motion considered are
those of the rigid body. Logically, in this approach the vibrations of the system are completely ignored, as they
were in the LQR controller. However, the resulting controller has a better performance than the LQR controller,
reaching the operating point faster and remaining in that point within a higher accuracy. No relevant disad-
vantages were found to the implementation of this controller, as the computation cost remains low and no
additional sensors or actuators are needed. Therefore, this is considered (a priori) an improvement w.r.t. the
LQR controller for cases the flexibility does not play a relevant role.

The other alternative is implementing the control approach over the flexible equations of motion. This has
two main drawbacks: 1) the computational cost increases, as a square matrix with the size of the state vector
(including deformations of the booms) needs to be inverted at each control step, and 2) the deformation of the
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booms needs to estimated. In order to estimate these variables additional sensors are needed. However, the
controller obtained is able to reduce enormously the effect of the flexibility. Similarly to the H∞, the pointing
accuracy decreases.

Two main lines of work starting from these results can be distinguish. The first one is related with defining
and implementing additional ADCS designs. Particularly promising options are: 1) use of the H∞ norm in
combination with a non-linear plant (e.g. [15]), 2) design of an actuator able to provide with a control force
such as the one needed by controller 3 in section 5.5.2, and 3) study further possibilities in relation with the
control approach proposed in [29]. The second line of work consists in testing the controllers proposed over
simple flexible structures (e.g. single candeliver boom). This would enable to analyze their performance and
to identify and address any problem that may appear during the implementation in real time and over a real
plant.
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6
Conclusions and recommendations for

future work

The aim of this chapter is to give a complete overview of the work performed during the thesis, highlighting
the most relevant results in relation to the research objective (enunciated below) and to the research questions
(see section 1.3). It also includes several ideas for future work.

The research objective is to contribute to the development of attitude control concepts applicable to large
thin flexible structures in space. This aim is achieved by evaluating the performance of different control concepts
applied to this type of structures. This evaluation is based initially in existing literature, evolving then into
simulations in a MatLab/Simulink environment.

6.1. Conclusions
The close relation between the project and the GoSolAr mission provides with a realistic case of study of a
spacecraft using this type of structure. The relevant properties and requirements of this case of study (re-
search question 1) were defined in collaboration with the rest of the team working in the GoSolAr project.
After defining the case of study, the use of the simulation tools already developed by DLR allowed to move fast
towards the innovation elements in the research (i.e. modeling of flexible structures and attitude controller
designs targeting flexible structures).

Before going through the results and conclusions over those two major topics, some aspects of the analysis
shown in section 3, which does not takes into account the flexibility of the plant, are worth mentioning. That
analysis, which contains the answer to research question 2, pointed out some challenges in relation to the case
of study and, more generally, to the control of LTFSs (large thin flexible structures). W.r.t. a generic LTFS, two
main challenges are identified: 1) strict size and mass restrictions for the actuators, when compared to the
moment of inertia and size of the deployed structure, and 2) increase in the disturbance torques due to an
increase in the moment of inertia and effective area. In the particular case of study evaluated, the first chal-
lenge is translated into a limitation in the length of the magnetorquer, so that it fits in the central part of the
satellite. The effective area in the membrane plane increases two orders of magnitude after deployment and
the moment of inertia one order of magnitude, increasing the disturbances. Furthermore, in the case of study
the distance between the center of mass and pressure increases considerably after deployment (see figure 2.1),
contributing also to the increase in the torque disturbances. An additional challenge, for the particular ADCS
design proposed in the case of study, is using only a magnetorquer to control the attitude of the satellite. This
leads to a locally under-actuated spacecraft, in which no control torque can be applied in the direction of the
local magnetic field. Even thought this initial analysis assumes the spacecraft is a rigid body (i.e. neglecting
the effect of the flexibility of the structure), it helped to identify different aspects in which the structural par-
ticularities of LTFSs can affect the design and performance of the ADCS. These aspects can have, depending
on the specifications of the mission, a higher importance than the flexibility of the structure.

Research question 3 is answered throughout chapter 4, where a methodology for integrating the flexibility
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of a structure into the equations of motion is explained and implemented for a particular case. This method
is based in the use of Lagrange’s equations combined with the approach known as assumed modes method,
which is based in decomposing the flexible motion into a series of flexible modes. The implementation of this
methodology over a particular structure gives a step-by-step example on how this approach can be used to ob-
tain a meaningful model of a flexible structure. This modeling approach leads to a definition of the equations
of motion of the object containing both the flexible and the rigid motion of the structure. These equations, in
combination with the simulation environment, give an insight in the behavior of LFTSs in space. This way, for
example, the duty cycle of the magnetorquer and the interaction with the solar pressure before and after going
through an eclipse are identified as sources of vibrations for the satellite. Even though the process to derive
these equations is mathematically and conceptually complex, the final plant obtained is relatively simple and
of low order. This allows to use the model to derive attitude controllers targeting not only the rigid motion of
the spacecraft but also the effect of the flexibility. The most relevant challenge or limitation of this modeling
approach is the availability of a suitable combination of shape functions and generalized coordinates. This
combination should be able to accurately describe the continuous flexible structure using a discrete number
of coordinates, related to flexible modes. In the structure studied, the only flexible elements are booms, which
lowers the difficulty of finding this combination but also lowers the final accuracy. In is also to be taken into
account that the inherent mathematical complexity of the derivations and assumptions, require that the final
equations of motion obtained are verified.

The derivation of a model that integrates the flexibility of a structure into its equations of motion is a huge
step forward in relation to the research objective. It allows to evaluate, both qualitatively and quantitatively,
the effect that the flexibility has in the dynamics of an LTFS as well as the interaction of the ADCS system with
the flexible modes of the system. Furthermore, it provides with the knowledge and tools to define an ADCS
design able to reduce the negative effects of the flexibility. In relation to the GoSolAr mission, it was soon con-
cluded that the flexibility of the satellite’s structure does not pose a threat to the mission requirements. The
limited size of the structure (5x5m2) leads to a system with natural frequencies that do not overlap with the
frequencies of the external disturbances or of the control. The relatively lenient pointing accuracy require-
ment (10 degrees) is, thus, not threaten by the flexibility of the satellite. Therefore, for this particular mission,
a conventional ADCS design is able to comply with the mission requirements, which can be met with the set
of sensors and actuators described in section 2.

Research question 4 is answered in three steps, explained in chapter 5: derive controllers (4a), analyse each
controller’s performance (4b) and study each controller’s requirements (4c). The controllers derived are based
in three main control approaches: linear-quadratic regulator (LQR) approach, robust control approach (i.e.
minimization of H2 and H∞ norms) and analytical dynamics approach (i.e. Udwadia-Kalaba approach). The
LQR controller was the first one used, due to its relative simplicity. The controllers based on robust control
theory were then seen as a potential solution to redirect the controller towards damping the natural modes of
the structure. Finally, the approach based in analytical dynamics was used due to its capability of integrating
the knowledge of the equations of motion of the structure into the controller. The analyses performed over
the different controllers derived from those three approaches lead to the conclusion that the effect of the flex-
ibility can be minimized, i.e. the vibrations of the structure can be damped. However, it comes at the cost of
lowering the performance of the ADCS in other area (e.g. pointing accuracy). Regarding the particular findings
w.r.t. the ADCS designs evaluated, one main conclusion can be drawn: there is not one ADCS design which
is optimal for all missions. The difference in requirements of each controller is not trivial, as aspects as the
computational power required or the set of sensors and actuators needed can vary considerably. Therefore,
each combination of mission requirements and available sensors, actuators and computational power leads
to a different optimal design for the controller. For example, for the GoSolAr mission the optimum control
solution (of those studied) appears to be the analytical dynamics controller derived from the rigid equations
of motion (see section 5.5.1). However, in case rotation wheels are used (i.e. avoiding local under-actuation
and the influence of the magnetorquer duty cycle) and enough computational power is available, the H∞ con-
troller could become the optimal one (see section 5.4.3). A more extreme case is one in which the ’cost’, in
terms of additional sensors and actuators and computational power, is not a critical issue and the vibration of
the system needs to be minimized against all disturbances (e.g. eclipse). In this case the best option may be
the analytical dynamics controller based in the flexible equations of motion (see section 5.5.2) could lead to a
better performance, as it uses a more complete model of the plant.
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The fact that each mission should be analyzed in detail before choosing which controller is most convenient,
does not mean that the results presented in this report are inconclusive or that research question 4 is not an-
swered. Rather the opposite, those results are a consistent basis to be used to make that choice, giving an
understanding of the performance and requirements of each of the designs evaluated. This is aligned with
the research objective, in the sense that multiple attitude control concepts are developed and evaluated w.r.t.
large thin flexible structures in space, proving that the effect of the flexibility can be minimized and gathering
knowledge and qualitative and quantitative data regarding potential ADCS designs.

Summing up, the two major achievements presented on this work are: 1) a process of integrating the flexi-
bility of a structure (i.e. satellite) into its equations of motion, verified and giving coherent and meaningful
results, and 2) an analysis of the performance and requirements of different designs of attitude controllers,
accounting also for the effect of the flexibility of the structure.

6.2. Recommendations for future work
In this last section of the report, several ideas for future work in relation to the research are introduced. These
ideas are those the student think most relevant and interesting. Nevertheless they are not the only possibilities
and the reader is encouraged to use his/her expertise and imagination to find additional paths. The ideas here
presented are only briefly introduced and no detailed technical discussions are included. There are two tasks
that are considered particularly promising, having the potential to push the research considerably forward.
These task are:

• Integrate the membrane into the analytical equations of motion.

• Test, experimentally, the different controllers here designed.

Several possibilities for integrating the membrane into the flexible model are considered in section 4.3. The
most accurate would be applying the same procedure used for modelling the flexibility of the booms but this
time with the membrane. The main difficulty facing when trying to do this is finding a set of generalized coor-
dinates and shape functions able to accurately convert the continuous problem into a discrete one. This is not
a trivial problem and would require an in-depth research. However, once (if) this set is found, the derivation
of the model would be quite similar to the one shown in chapter 4, which can, therefore, be used as a guideline.

Throughout the research presented in this report, several controllers are designed and evaluated. However,
this evaluation is based purely in simulations, no experimental tests were conducted. Testing the controllers
over the actual structure of the satellite would be considerably difficult and expensive and, therefore, it is not
the option proposed by the author. However, testing the controller over a simple flexible structure (e.g. single
boom) would allow gaining a deeper understanding on the challenges that their implementations present (e.g.
control frequency) as well validate the methodology followed. A relatively simple set-up that could be used for
this testing consists on: 1) single boom, with all properties well known, 2) attached (candeliver) to an element
to which forces and torques can be applied, 3) with sensors to estimate the deformation of the boom, e.g.
piezoelectric sensors. The last condition is due to the fact that for testing some of the controllers it is necessary
to know the deformation of the boom.
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A
Simulator strucuture

Figure A.1 shows the structure of the simulink environment used throughout the project. This is based in
the Attitude control system simulator for Compact Satellite (CS) developed by the German Aerospace Center
(DLR). Further explained in chapter 3.

Figure A.1: Simulink model.
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B
Tunning weights used in LQR controller.

Figure B.1 shows the long term performance of LQR’s controllers computed based in different cost matrices.
In order to decide which gains to use, three main aspects are taken into account:

1. Long term pointing error. Low relative weights (pointing error w.r.t. angular rate error) make difficult to
accurately follow the motion of the sun in the inertial Earth reference frame.

2. Time to convergence to the operating point. Both low and high relative weights increase this parameter,
the first due to a lower importance of the pointing error and the second due to the constrains existing
over the control torque.

3. Constant errors in the control variables.

Mentioned in chapter 3.
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Figure B.1: Evolution of pointing error and angular rate for different weights of the pointing error (5 cases per weight).

90



C
Altitude limitations

The figures shown here are used for studying the altitude limitation of the mission in chapter 3. Figure C.1
contains an estimation of the deorbiting time for several cases, changing: 1) the launching date (affecting the
solar cycle and, thus, the atmospheric density), 2) the success of the deployment (changing the structure of
the spacecraft) and 3) the area of the membrane. Figure C.2 shows the detumbling phase of the satellite for
different altitudes and for the deployed configuration. Figure C.3 shows the pointing phase of the satellite for
different altitudes for the deployed configurations.

Figure C.1: Deorbiting profiles launching at solar minimum (1996) and maximum (2014). Initial altitude 550 km.
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Figure C.2: Study of the detumbling stage for altitudes between 650 and 800 km. Rigid plant. B-dot controller. 3 initial conditions per case.
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Figure C.3: Study of the pointing stage for altitudes between 400 and 800 km. Rigid plant. LQR controller. 2 initial conditions per case.
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D
Analysis of different orbits

The figures contained in this appendix are used for studying potential limitations in the inclination of the orbit
due to the locally underactuated satellite (magnetorquers) in chapter 3. Figure D.1 contains the evolution of
the angular rate during the detumbling phase. Figure D.2 contains the evolution of the pointing error during
the pointing phase.

Figure D.1: Study of the detumbling stage for different inclinations and right ascensions of the ascending node. Rigid plant. B-dot con-
troller. h: 600km.
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Figure D.2: Study of the pointing stage for different inclinations and right ascensions of the ascending node. Rigid plant. LQR controller.
h: 600km.
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E
Interaction with eclipse and

magnetorquer’s duty cycle

The figures shown in this appendix expand the analysis presented in section 5.1.2, explaining the effect of
the flexibility in the dynamics of the spacecraft. Figures E.1 and E.2 show the vibration of the booms due to
eclipses. Figures E.3 and E.4 show the vibration of the booms induced by the magnetorquer duty cycle and the
way this vibration is transferred to the angular rate.

Figure E.1: Zoom in of figure 5.5
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Figure E.2: Vibration of the booms due to entering or coming out an eclipse.
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Figure E.3: Zoom in of figure 5.6
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Figure E.4: Interaction of the flexible structure (booms) with the control torque (magnetorquer).
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F
Verification of boom model. Example.

The figures in this appendix are related to the verification of the analytical model of a single candeliver boom,
which is performed as a previous step to verifying the complete model of the spacecraft (see section 4.4). The
response of both the analytical (Lagrange) and numerical (Simscape) models are studied for different number
of modes (Lagrange) and elements (Simscape).

Figure F.1: Comparison of the responses of Lagrange equations and simscape model. Number of modes: 1-10. Number of elements:
1-20.I.
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Figure F.2: Comparison of the responses of Lagrange equations and simscape model. Number of modes: 1-10. Number of elements:
1-20.II.
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G
Verification of flexible plant.

The figures included in this analysis support the analysis shown in section 4.4.2, which aims to verify the ana-
lytical flexible model of the satellite. This is done comparing the evolution of: 1) position (r), 2) velocity (v), 3)
attitude quaternion (T), 4) angular rate and 5) deformation of the booms at their tip (u1 to u4). The difference
w.r.t. the case shown in section 4.4.2 are:

• Case 1: absence of external disturbances.

• Case 2: static external disturbances (instead of periodic).

• Case 3: initial conditions equal to zero.

• Case 4: different initial conditions and external disturbances.

Figure G.7 shows the numerical model built in MATLAB Simscape to verify the analytical model (derived
in chapter 4). This model consists in 4 boom attached (candeliver) to a central body. Each boom has a variable
number of elements (defined as an input) which are attached to each other using a joint. The rotation of these
joints is linked to an elastic coefficient (K) and dissipation coefficient (kd), related to the mechanical properties
of the booms. The specific simulink elements used can be seen in figure G.7.
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Figure G.1: Comparison of the evolution of the deformation of the booms using analytical (right) and numerical (left) models. Case 1: no
external disturbances.

Figure G.2: Comparison of the evolution of the deformation of the booms using analytical (right) and numerical (left) models. Case 2:
steady external disturbances.
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Figure G.3: Evolution of the state variables, as resulting from the analytical model. Case 3: zero initial conditions

Figure G.4: Evolution of the state variables, as resulting from the numerical model. Case 3: zero initial conditions
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Figure G.5: Evolution of the state variables, as resulting from the analytical model. Case 4: different disturbances and initial conditions

Figure G.6: Evolution of the state variables, as resulting from the numerical model. Case 4: different disturbances and initial conditions

106



Figure G.7: Schematic view of the model built in MATLAB/Simscape for verification purposes.
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H
Reducing order of robust controller.

Example.

For reducing the order of the controller two main steps are taken. First of all, the function minreal is used
to keep only controllable and observable states and to cancel pole-zero pairs. In this case, the order of the
controller is not reduced by this function. It can be observed in figure H.1 that the initial controller does
not have any extra mode when compared to Minreal. Secondly, based in the Hankel singular values, several
reduction of order are considered. In this case 4 different reduction are considered, ending with controllers of
25, 17, 11 and 8 orders. The difference between this controller is then studied in the frequency domain (see
figure H.2). In this case the results show that there are considerable differences at low frequencies and small
differences at high frequencies. The objective of the reduction is, however, to choose the lowest order possible
maintaining a highly similar behavior. In this case the controller chosen would be, most probably, the one of
order 25.

Figure H.1: Hankel singular values on the successive order reductions of the controller.
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Figure H.2: Bode analysis of the successive order reductions of the controller.
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I
Extended results. Robust control.

The figures in this appendix extend the analyses shown in section 5.4 in relation to the derivation and evalua-
tion of controllers based in robust control theory. Figures I.1 to I.4 contain analyses in the frequency domain.
These figures show the response in frequency of the error or measurements signal w.r.t. external torque dis-
turbances, extending figures already explained in section5.4. Figures I.5 to I.9 compare the performance of the
controller base in H2 and that based in H∞ in the time domain, focusing on: the deformation of the booms,
the angular rate and the pointing error.

Figure I.1: Effect of different cost functions in the error signal. f (s) = a f0(s), where a is the number in the legend. Extended figure 5.13.
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Figure I.2: Comparison of the performance of H2 and LQR controller. Responses in the left, difference in response in the right. Extended
figure I.2.
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Figure I.3: Comparison of the performance of robust controllers computed with different error weighting functions ( f (s) = a f0(s), where
a is the number in the legend) and LQR controller. Extended figure 5.15.
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Figure I.4: Analysis shown in figure 5.15, including the first 5 modes. Extended figure 5.16

Figure I.5: Comparison of the the boom deformation for H∞ (blue) and H2 (red). Extended figure 5.19.
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Figure I.6: Evolution of measurements under the action of disturbance force and torque for H∞ (red), H2 (blue) and LQR (black) con-
trollers.

Figure I.7: Evolution of the angular rate error during the pointing phase, using H∞ and H2.
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Figure I.8: Evolution of the deformation in the booms, using H2.

116



Figure I.9: Evolution of the deformation in the booms, using H∞.
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J
Extend state vector’s estimations

In order to enable actively damping the vibration of the booms, the possibility of using an extended state vector
was considered. This vector would include an estimation of the deformation of the booms. This appendix give
a brief (conceptual) introduction to some of the possibilities that can lead to this extended vector.

There are several options for estimating the complete state vector, including the decomposition of the
bending deformation between the deformation modes. These options are depicted in figure J.1 and will be
briefly discussed here. On a top level, there are two main options: direct and indirect estimation. Direct
estimation involves the use of sensors measuring the variables to be estimated, while indirect involves the
use of information regarding other the external and internal disturbances in combination with a model of the
dynamics. Within direct estimation the number of sensors and their characteristics is the main aspect to be
considered. Regarding indirect estimation, it is necessary to defined the model which is to be used. The main
pros and cons of each possibility are pointed out below.

Figure J.1: Options for obtaining a more complete estimation of the state vector.

• Direct estimation. Additional weight and hardware complexity, proportional to the number of sensors.
Each additional sensor along the length of the boom allows to estimate an additional mode. The number
of sensors would therefore depend on the accuracy requirements. Regarding the type of sensor to be
used, accelerameters seem to be the most logical choice due to their low weight and cost.

• Indirect estimation. Requires a fair estimation of the disturbance forces. Defining an initial condition
is not trivial and requires a period with relatively stable external and internal forces and torques. When
using a linearized model its validity is limited to the surroundings of the linearization point but the
computational cost decreases considerably.

The most promising option appears to be to position one accelerometer in the tip of each boom, leading
to an estimation of the deformation at the tip of the boom.
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K
Extended results of non-linear controller

The figures contained in this section extend the results of the non-linear controller based in the Udwadia-
Kalaba approach (see section 5.5). Figure K.1 shows the evolution of the pointing error for different initial
conditions. Figures K.2 and K.3 compare the non-linear controller to the LQR controller. Figure K.4 analyses
the improvement in the pointing error distribution when the constraint in the torque (magnetorquer) is intro-
duced into the controller. Figure K.5 shows the evolution of the angular rate, pointing out the vibrations due
to the magnetorquer duty cycle. Figure K.6 shows the deformation of the booms in the Z-axis with different
degrees of zoom and figure K.7 in the X and Y axes. Finally, figure K.8 shows the force generated (by one of the
long linear controllers) in order to damp the vibrations due the eclipses.

Figure K.1: Evolution of the pointing error for 9 different initial conditions (angular rate, attitude and Ω). Deployed configuration. h: 600
km, i: 97 deg.
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Figure K.2: Evolution of the pointing error under LQR and non-linear controllers. Deployed configuration. h: 550 km, i: 97 deg,Ω: 0.

Figure K.3: Additional comparison based in figure K.2. h: 600 km, i: 60 deg,Ω: 0.
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Figure K.4: Consequences of adding the constrain on the torque (expression 5.31)

Figure K.5: Analysis of the short term oscillations of the angular rate under non-linear controller with different specifications. Deployed
configuration. h: 600 km, i: 97 deg,Ω: 0. Extended figure 5.28
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Figure K.6: Analysis of the evolution of the boom’s deformations under non-linear controller with different specifications. Z-axis. Deployed
configuration. h: 600 km, i: 97 deg,Ω: 0. Extended figure 5.29
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Figure K.7: Analysis of the evolution of the boom’s deformations under non-linear controller with different specifications. X,Y-axes. De-
ployed configuration. h: 600 km, i: 97 deg,Ω: 0. Extended figure 5.30
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Figure K.8: Analysis of the control force exerted over the spacecraft by controller 3. X,Y-axes. Deployed configuration. h: 600 km, i: 97 deg,
Ω: 0. Extended figure 5.31
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L
Extended results of the sensibility analysis

The figures included in this appendix contains the additional results of the sensibility analysis explained in
section 5.6.1. Figures L.1 to L.4 show the differences that appear in the pointing error due to errors in the
moment of inertia (and related variables) for the different controllers studied. Figures L.5 to L.6 study this
same difference but caused by noise in the measurements. Figures L.7 and L.8 focus in the difference in the
vibration of the booms (i.e. analysing effectiveness of the active damping) due to errors in difference variables
(e.g. bending stiffness) and noise.

Figure L.1: Difference in the pointing accuracy due to errors in the estimation of the moment of inertia. Non-linear rigid controller. 2
different initial conditions.
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Figure L.2: Difference in the pointing accuracy due to errors in the estimation of the moment of inertia of the central part of the satellite
and in the length and linear density of the booms. Non-linear flexible controller. ae states for linear density. 2 different initial conditions.

Figure L.3: Pointing accuracy and difference in the pointing accuracy due to errors in the estimation of the moment of inertia of the central
part of the satellite and in the length and linear density of the booms. H∞ controller. ae states for linear density.
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Figure L.4: Difference in the pointing accuracy due to errors in the estimation of the moment of inertia. LQR controller. 7 different initial
conditions. Additional cases in relation with figure 5.32.
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Figure L.5: Difference in the pointing accuracy due to the addition of noise to the measurements. Non-linear rigid controller. 2 different
cases.

Figure L.6: Difference in the pointing accuracy due to the addition of noise to the measurements. Non-linear flexible controller. 2 different
cases.
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Figure L.7: Zoom in figure 5.35.
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Figure L.8: Difference in the pointing accuracy and in the vibration of the booms (U) due to errors in the estimation of bending stiffness
(EI) and length of the booms (L) and limitation in control information. H∞ controller.
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