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Task-agnostic self-modeling machines
Robert Kwiatkowski1* and Hod Lipson2,3

A robot modeled itself without prior knowledge of physics or its shape and used the self-model to perform tasks 
and detect self-damage.

We humans are masters of self-reflection. We 
form a mental picture of ourselves by revis-
iting past experiences and use that mental 
image to contemplate future scenarios. Our 
mental self-image contains information about 
our body configuration in physical space. Our 
self-image also gives us the ability to link future 
actions with likely sensations. Your mental 
self-image allows you to imagine yourself 
walking on the beach tomorrow, smelling the 
ocean and feeling the sand under your feet.

An accurate self-image will be key to allow-
ing robots to learn and plan internally without 
resorting to costly training in physical reality 
for each new task. The ability to self-simulate 
can create an illusion of one-shot learning, 
whereas in actuality, adaptation involves incre-
mental learning or planning inside an internal 
self-image. A self-image can also be used to 
identify and track damage, wear, or growth.

Humans likely acquire their self-image 
early in life and adapt it continuously (1). 
However, most robots today cannot gen-
erate their own self-image. Although recent 
advances in machine learning have allowed 
robots to become increasingly adept at un-
derstanding the world around them, when 
it comes to understanding themselves, most 
robots today still rely on a hard-coded simu-
lator (2,3). These designer-provided simula-
tors are laborious to construct and invariably 
become outdated.

As an alternative to self-modeling, many 
robotic systems do without a model altogether 
by using end-to-end training for a specific 
task, applying techniques such as model-free 
reinforcement learning (4). Such task-specific 
learning may be good for narrow artificial 
intelligence (AI) but lacks the generality and 
transferability required for robots capable of 
continuously learning new tasks through-
out their lives.

Here, we suggest that, because the robot 
itself is persistent across multiple tasks, there 

is strong incentive to extract a self-model and 
then reuse that self-model repeatedly to learn 
new tasks. Moreover, by separating the self 
from the task, every future experience can be 
used to refine a common self-model, leading 
to continuous self-monitoring.

Early adaptive control methods also at-
tempted to tune parameters of a fixed an-
alytical self-model (5). We previously used 
evolutionary algorithms to find the mor-
phology most consistent with the robot’s re-
corded action-sensation pairs (6), but both 
approaches make many assumptions. A key 
question remained: Can a robot create a self-
model with no prior knowledge?

First, we chose a physical robot with four 
coupled degrees of freedom. The robot re-
corded action-sensation pairs by moving 
through 1000 random trajectories (Fig. 1, 
step 1). Actions correspond to four motor 
angle commands and sensations correspond 
to the absolute coordinate of the end effec-
tor. This step is not unlike a babbling baby 
observing its hands. The entire captured 
dataset is provided in (7).

Importantly, when a robot’s motors are 
commanded to achieve some target angles, 
they do not necessarily reach those angles due 
to hysteresis, self-collision, structural flexi-
bility, and other effects. Therefore, a high-
fidelity self-model must capture not just the 
direct geometric transformations from the 
robot’s base to the end effector, but an im-
plicit relationship between current positions, 
new motor commands, past positions, and 
past motor commands.

We used deep learning to train a self-
model (Fig. 1, step 2). Using the acquired 
self-model, the robot could apply a simple 
planning strategy to accomplish a variety of 
tasks. We tested the performance of the ro-
bot on two separate tasks: a pick-and-place 
task and a handwriting task (Fig. 1, step 3), 
both in open and in closed loop.

Closed-loop control allows the robot to 
recalibrate its actual position between each 
step along the trajectory by using positional 
sensor feedback. In contrast, open-loop con-
trol involves carrying out a task based en-
tirely on the internal self-model, without any 
external feedback, like reaching for your nose 
with eyes closed. This test is also frequently 
used to test human cerebellar dysfunction 
such as dysmetria (8).

We ran multiple tests with both explicit 
and implicit representations. Explicit mod-
els capture the relationship between motor 
commands and end-effector position but 
cannot handle self-collision. Implicit mod-
els capture the sequential relationship be-
tween state-action pairs and thus are more 
general. In open-loop tests where planning was 
completed successfully, the median distance 
between the physical effector and the target 
was 4.3 cm. In closed loop, the self-model 
achieved a median physical error of 0.6 cm, 
an error lower than the accuracy between the 
analytical model and the physical robot. The 
explicit model achieved a median accuracy of 
0.65 cm. These results suggest that acquired 
self-models would be able to successfully exe-
cute internal planning and learning on par 
with a conventional simulator.

The second test involved a combination 
of subtasks and gripper actuations. The ro-
bot used its self-model to plan how to pick 
and deposit nine red balls, each 20 mm in 
diameter. In closed loop, the self-models 
had sufficient accuracy and consistency to 
execute a pick-and-place task with precision 
similar to analytical forward kinematics. 
The open-loop pick rate was 44%, whereas 
the place rate was 100% of successful picks, 
and most failures were a result of the plan-
ner, not of the self-model.

To demonstrate that the same self-model 
could be used for other tasks without addi-
tional task-specific retraining, we performed 
a second task involving simple handwriting 
with a marker. This task was used for quali-
tative assessment only.

We concluded by replacing one of the ro-
bot arms with a longer and slightly deformed 
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part as a proxy for unanticipated morpholog-
ical damage (Fig. 1, step 4). The robot was 
able to detect the change and retrain the self-
model using 10% additional data (Fig. 1, 
step 5). The new self-model allowed the robot 
to resume its original pick-and-place task with 
little loss of performance (Fig. 1, step 6).

Robotics research has historically split be-
tween two camps: model-predictive control 
and model-free learning. We propose a hybrid 
where machine learning acquires a self-model 
that is then reused to perform planning or 
learning internally. This way, data collected 
in the course of any task can help refine the 
self-model and thus transfer to other tasks.

Self-imaging will be key to allowing ro-
bots to move away from the confinements 
of so-called narrow AI toward more general 
abilities. We conjecture that this separation 
of self and task may have also been the evo-
lutionary origin of self-awareness in humans.
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Fig. 1. Self-model gen-
eration, usage, and adap-
tation. An outline of the 
self-modeling process from 
data collection to task plan-
ning. (Step 1) The robot 
recorded action-sensation 
pairs. (Step 2) The robot 
used deep learning to cre-
ate a self-model consistent 
with the data. (Step 3) The 
self-model could be used 
for internal planning of two 
separate tasks without any 
further physical experimen-
tation. (Step 4) The robot 
morphology was abruptly 
changed to emulate damage. 
(Step 5) The robot adapted 
the self-model using new 
data. (Step 6) Task execu-
tion resumed.

C
R

E
D

IT
: A

. K
IT

TE
R

M
A

N
/S

C
IE

N
C

E
 R

O
B

O
TI

C
S

 by guest on January 31, 2019
http://robotics.sciencem

ag.org/
D

ow
nloaded from

 

http://robotics.sciencemag.org/cgi/content/full/4/26/eaau9354/DC1
https://arXiv:1707.06347
https://github.com/rjk2147/Task-Agnostic_Self-Modeling_Machines
https://github.com/rjk2147/Task-Agnostic_Self-Modeling_Machines
https://arXiv:1405.7705
https://arXiv:1802.07461
https://arXiv:1804.06318
https://arXiv:1412.3555
https://arXiv:1502.03167
https://arXiv:1412.6980
http://robotics.sciencemag.org/


Task-agnostic self-modeling machines
Robert Kwiatkowski and Hod Lipson

DOI: 10.1126/scirobotics.aau9354
, eaau9354.4Sci. Robotics 

ARTICLE TOOLS http://robotics.sciencemag.org/content/4/26/eaau9354

MATERIALS
SUPPLEMENTARY http://robotics.sciencemag.org/content/suppl/2019/01/28/4.26.eaau9354.DC1

REFERENCES

http://robotics.sciencemag.org/content/4/26/eaau9354#BIBL
This article cites 3 articles, 1 of which you can access for free

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the 

 is a registered trademark of AAAS.Science Robotics
American Association for the Advancement of Science. No claim to original U.S. Government Works. The title 
New York Avenue NW, Washington, DC 20005. 2017 © The Authors, some rights reserved; exclusive licensee 

(ISSN 2470-9476) is published by the American Association for the Advancement of Science, 1200Science Robotics 

 by guest on January 31, 2019
http://robotics.sciencem

ag.org/
D

ow
nloaded from

 

http://robotics.sciencemag.org/content/4/26/eaau9354
http://robotics.sciencemag.org/content/suppl/2019/01/28/4.26.eaau9354.DC1
http://robotics.sciencemag.org/content/4/26/eaau9354#BIBL
http://www.sciencemag.org/help/reprints-and-permissions
http://www.sciencemag.org/about/terms-service
http://robotics.sciencemag.org/



