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● Recursive filter for a 1D signal
yn = (1 - A) yn-1 + A xn

where x is input, y is output, A is the filter coefficient
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Description

● To apply this recursive filter to an image, 
apply it four times:
a. Up and down the columns
b. Right and left across the rows
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Input



Reductions
● To implement this algorithm:

○ Need to reference output at previous pixel to 
compute current output

● This cannot be done with a pure definition
● We can do this with update stages and 

RDoms
○ RDom (Reduction Domain) provides a serial loop
○ Can have dependencies between loop iterations
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f(x, y) = x + y;

f(x, 0) += 5;
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Funcs can have multiple stages

We call the additional ones 
“update” stages

They run in sequence

Multi-stage Funcs



f(x, y) = x + y;

f(x, 0) += 5;
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They can use arbitrary index 
expressions on the left-hand-side



f(x, y) = x + y;

f(x, 0) += 5;

// f(x, 0) = f(x, 0) + 5;
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They can recursively load values 
defined by the previous stage



f(x, y) = x + y;

f(x, 0) += 5;

f.vectorize(x, 8);
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They are scheduled 
independently



f(x, y) = x + y;

f(x, 0) += 5;

f.vectorize(x, 8);

f.update(0)

 .unroll(x, 2);
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They are scheduled 
independently



f(x, y) = x + y;

f(x, 0) += 5;
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for y:

 for x:

  f[x,y] = x + y



f(x, y) = x + y;

f(x, 0) += 5;
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for y:

 for x:

  f[x,y] = x + y

for x:

 f[x,0] = f[x,0] + 5;



f(x, y) = x + y;

RDom r(1, 10);

f(x, 0) += f(x, r);

24

An update stage can be a 
reduction over some domain
“RDom”



f(x, y) = x + y;

RDom r(1, 10);

f(x, 0) += f(x, r);
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This just throws an extra loop 
around the loop nest for that 
stage:

for r from 1 to 10:

 for x:

  f[x,0] = f[x,0] + f[x,r];



f(x, y) = x + y;

RDom r(1, 10);

f(x, 0) += f(x, r);

f.update(0)

 .unroll(r);
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You can schedule RDom 
variables



f(x, y) = x + y;

RDom r(1, 10);

f(x, 0) += f(x, r);

f.update(0)

 .reorder(r, x);
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You can schedule RDom 
variables



f(x, y) = x + y;

RDom r(1, 10);

f(x, 0) += f(x, r);

f.update(0)

 .parallel(r);

ERROR: Potential 
Race Condition
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But only when we can prove 
there’s no race condition or 
change in meaning.

Halide’s promise: 
Scheduling never changes the 
results!



Generators

● Two ways to call Halide code
○ JIT: Halide pipelines executed in the same process 

they are defined in
○ AOT: Halide pipelines compiled to object files (.o, .

obj) and linked into/called from another program via 
C ABI (i.e. extern “C”)
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Generators
● Generators are C++ programs that, when run, produce 

objects (.o, .obj) and C headers (.h) containing compiled 
pipelines

● Applications #include generated header files declaring 
the functions, link to generated objects

● Pipeline functions are declared with arguments 
corresponding to Param objects, including ImageParams 
in buffer_t objects.
○ Holds pointer, element size and strides of each dimension of an image
○ Halide never assumes ownership of the memory a buffer_t points to
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Using Generators with Matlab
● Generators can also be used within Matlab (or Octave) 

via the mex library interface
● Halide pipeline compiled with matlab target feature 

defines a suitable mexFunction wrapper
○ Validates and converts mxArray to buffer_t (or scalar params)

● mex_halide Matlab function performs all the required 
steps to build a mex library from a source file 
containing a generator
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Code!



● So far, we’ve talked about some scheduling 
operators
○ vectorize, unroll, etc.

● We’ve also briefly discussed compute_at
● To significantly improve performance, we 

need to use compute_at to improve locality

Scheduling for locality



compute_root
Here is a simple two stage 
pipeline

f(x, y) = x + y;

g(x, y) = 2*f(x, y);



compute_root
This means compute all of f, 
followed by all of g

Poor locality!

f(x, y) = x + y;

g(x, y) = 2*f(x, y);

f.compute_root();

g.compute_root();



compute_root
for f.y:

 for f.x:

  f[f.x,f.y] = f.x + f.y

for g.y:

 for g.x:

  g[g.x,g.y] = 2*f[g.x,g.y]

f(x, y) = x + y;

g(x, y) = 2*f(x, y);

f.compute_root();

g.compute_root();



compute_at
“Compute f at each iteration 
of y when computing g”

All stages of a Func share 
the same compute_at 
location

f(x, y) = x + y;

g(x, y) = 2*f(x, y);

f.compute_at(g, y);

g.compute_root();



compute_at
for g.y:

 for g.x:

  g[g.x,g.y] = 2*f[g.x,g.y]

f(x, y) = x + y;

g(x, y) = 2*f(x, y);

f.compute_at(g, y);

g.compute_root();



compute_at
for g.y:

 for f.x:

  f[f.x,g.y] = f.x + g.y

 for g.x:

  g[g.x,g.y] = 2*f[g.x,g.y]

f(x, y) = x + y;

g(x, y) = 2*f(x, y);

f.compute_at(g, y);

g.compute_root();



compute_at
for g.y:

 for g.x:  

  g[g.x,g.y] = 2*f[g.x,g.y]

f(x, y) = x + y;

g(x, y) = 2*f(x, y);

f.compute_at(g, x);

g.compute_root();



compute_at
for g.y:

 for g.x:  

  f[g.x,g.y] = g.x + g.y

  g[g.x,g.y] = 2*f[g.x,g.y]

f(x, y) = x + y;

g(x, y) = 2*f(x, y);

f.compute_at(g, x);

g.compute_root();
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Transpose
Blur y

IIR blur locality schedule visualization
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IIR blur locality schedule visualization
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Code!
https://github.com/halide/CVPR2015/tree/master/RecursiveFilter


