
Dillon Sharlet, Google

Recursive filtering in
Halide

Description

2

● Recursive filter for a 1D signal
yn = (1 - A) yn-1 + A xn

where x is input, y is output, A is the filter coefficient

Description

● Recursive filter for a 1D signal
yn = (1 - A) yn-1 + A xn

where x is input, y is output, A is the filter coefficient

● Example applied to a delta function

3

x =

y =

n = 0

Description

● Recursive filter for a 1D signal
yn = (1 - A) yn-1 + A xn

where x is input, y is output, A is the filter coefficient

● Example applied to a delta function

4

x =

y =

n = 1

Description

● Recursive filter for a 1D signal
yn = (1 - A) yn-1 + A xn

where x is input, y is output, A is the filter coefficient

● Example applied to a delta function

5

x =

y =

n = 2

Description

● Recursive filter for a 1D signal
yn = (1 - A) yn-1 + A xn

where x is input, y is output, A is the filter coefficient

● Example applied to a delta function

6

x =

y =

n = 3

Description

● Recursive filter for a 1D signal
yn = (1 - A) yn-1 + A xn

where x is input, y is output, A is the filter coefficient

● Example applied to a delta function

7

x =

y =

n = 4

Description

● Recursive filter for a 1D signal
yn = (1 - A) yn-1 + A xn

where x is input, y is output, A is the filter coefficient

● Example applied to a delta function

8

x =

y =

n = 5

Description

● Recursive filter for a 1D signal
yn = (1 - A) yn-1 + A xn

where x is input, y is output, A is the filter coefficient

● Example applied to a delta function

9

x =

y =

n = 6

Description

● Recursive filter for a 1D signal
yn = (1 - A) yn-1 + A xn

where x is input, y is output, A is the filter coefficient

● Example applied to a delta function

10

x =

y =

n = 7

Description

● Recursive filter for a 1D signal
yn = (1 - A) yn-1 + A xn

where x is input, y is output, A is the filter coefficient

● Example applied to a delta function

11

x =

y =

n = 8

Description

● Recursive filter for a 1D signal
yn = (1 - A) yn-1 + A xn

where x is input, y is output, A is the filter coefficient

● Example applied to a delta function

12

x =

y =

n = 9

Description

● Recursive filter for a 1D signal
yn = (1 - A) yn-1 + A xn

where x is input, y is output, A is the filter coefficient

● Example applied to a delta function

13

x =

y =

n = 10

Description

● Recursive filter for a 1D signal
yn = (1 - A) yn-1 + A xn

where x is input, y is output, A is the filter coefficient

● Example applied to a delta function

14

x =

y =

Description

● To apply this recursive filter to an image,
apply it four times:
a. Up and down the columns
b. Right and left across the rows

15

Input

Reductions
● To implement this algorithm:

○ Need to reference output at previous pixel to
compute current output

● This cannot be done with a pure definition
● We can do this with update stages and

RDoms
○ RDom (Reduction Domain) provides a serial loop
○ Can have dependencies between loop iterations

16

f(x, y) = x + y;

f(x, 0) += 5;

17

Funcs can have multiple stages

We call the additional ones
“update” stages

They run in sequence

Multi-stage Funcs

f(x, y) = x + y;

f(x, 0) += 5;

18

They can use arbitrary index
expressions on the left-hand-side

f(x, y) = x + y;

f(x, 0) += 5;

// f(x, 0) = f(x, 0) + 5;

19

They can recursively load values
defined by the previous stage

f(x, y) = x + y;

f(x, 0) += 5;

f.vectorize(x, 8);

20

They are scheduled
independently

f(x, y) = x + y;

f(x, 0) += 5;

f.vectorize(x, 8);

f.update(0)

 .unroll(x, 2);

21

They are scheduled
independently

f(x, y) = x + y;

f(x, 0) += 5;

22

for y:

 for x:

 f[x,y] = x + y

f(x, y) = x + y;

f(x, 0) += 5;

23

for y:

 for x:

 f[x,y] = x + y

for x:

 f[x,0] = f[x,0] + 5;

f(x, y) = x + y;

RDom r(1, 10);

f(x, 0) += f(x, r);

24

An update stage can be a
reduction over some domain
“RDom”

f(x, y) = x + y;

RDom r(1, 10);

f(x, 0) += f(x, r);

25

This just throws an extra loop
around the loop nest for that
stage:

for r from 1 to 10:

 for x:

 f[x,0] = f[x,0] + f[x,r];

f(x, y) = x + y;

RDom r(1, 10);

f(x, 0) += f(x, r);

f.update(0)

 .unroll(r);

26

You can schedule RDom
variables

f(x, y) = x + y;

RDom r(1, 10);

f(x, 0) += f(x, r);

f.update(0)

 .reorder(r, x);

27

You can schedule RDom
variables

f(x, y) = x + y;

RDom r(1, 10);

f(x, 0) += f(x, r);

f.update(0)

 .parallel(r);

ERROR: Potential
Race Condition

28

But only when we can prove
there’s no race condition or
change in meaning.

Halide’s promise:
Scheduling never changes the
results!

Generators

● Two ways to call Halide code
○ JIT: Halide pipelines executed in the same process

they are defined in
○ AOT: Halide pipelines compiled to object files (.o, .

obj) and linked into/called from another program via
C ABI (i.e. extern “C”)

29

Generators
● Generators are C++ programs that, when run, produce

objects (.o, .obj) and C headers (.h) containing compiled
pipelines

● Applications #include generated header files declaring
the functions, link to generated objects

● Pipeline functions are declared with arguments
corresponding to Param objects, including ImageParams
in buffer_t objects.
○ Holds pointer, element size and strides of each dimension of an image
○ Halide never assumes ownership of the memory a buffer_t points to

30

Using Generators with Matlab
● Generators can also be used within Matlab (or Octave)

via the mex library interface
● Halide pipeline compiled with matlab target feature

defines a suitable mexFunction wrapper
○ Validates and converts mxArray to buffer_t (or scalar params)

● mex_halide Matlab function performs all the required
steps to build a mex library from a source file
containing a generator

31

Code!

● So far, we’ve talked about some scheduling
operators
○ vectorize, unroll, etc.

● We’ve also briefly discussed compute_at
● To significantly improve performance, we

need to use compute_at to improve locality

Scheduling for locality

compute_root
Here is a simple two stage
pipeline

f(x, y) = x + y;

g(x, y) = 2*f(x, y);

compute_root
This means compute all of f,
followed by all of g

Poor locality!

f(x, y) = x + y;

g(x, y) = 2*f(x, y);

f.compute_root();

g.compute_root();

compute_root
for f.y:

 for f.x:

 f[f.x,f.y] = f.x + f.y

for g.y:

 for g.x:

 g[g.x,g.y] = 2*f[g.x,g.y]

f(x, y) = x + y;

g(x, y) = 2*f(x, y);

f.compute_root();

g.compute_root();

compute_at
“Compute f at each iteration
of y when computing g”

All stages of a Func share
the same compute_at
location

f(x, y) = x + y;

g(x, y) = 2*f(x, y);

f.compute_at(g, y);

g.compute_root();

compute_at
for g.y:

 for g.x:

 g[g.x,g.y] = 2*f[g.x,g.y]

f(x, y) = x + y;

g(x, y) = 2*f(x, y);

f.compute_at(g, y);

g.compute_root();

compute_at
for g.y:

 for f.x:

 f[f.x,g.y] = f.x + g.y

 for g.x:

 g[g.x,g.y] = 2*f[g.x,g.y]

f(x, y) = x + y;

g(x, y) = 2*f(x, y);

f.compute_at(g, y);

g.compute_root();

compute_at
for g.y:

 for g.x:

 g[g.x,g.y] = 2*f[g.x,g.y]

f(x, y) = x + y;

g(x, y) = 2*f(x, y);

f.compute_at(g, x);

g.compute_root();

compute_at
for g.y:

 for g.x:

 f[g.x,g.y] = g.x + g.y

 g[g.x,g.y] = 2*f[g.x,g.y]

f(x, y) = x + y;

g(x, y) = 2*f(x, y);

f.compute_at(g, x);

g.compute_root();

42

Input Blur y Transpose

ImageParam

Func

Allocation

Legend:

IIR blur compute_root visualization

Transpose Blur y

43

Transpose
Blur y

IIR blur locality schedule visualization

44

Transpose
Blur y

IIR blur locality schedule visualization

45

Transpose
Blur y

IIR blur locality schedule visualization

46

Transpose
Blur y

IIR blur locality schedule visualization

Code!
https://github.com/halide/CVPR2015/tree/master/RecursiveFilter

