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Description

e To apply this recursive filter to an image,

apply it four times:
a. Up and down the columns
b. Right and left across the rows
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Reductions

e To implement this algorithm:

o Need to reference output at previous pixel to
compute current output

e This cannot be done with a pure definition
e \We can do this with update stages and

RDomS

o RDom (Reduction Domain) provides a serial loop
o Can have dependencies between loop iterations
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Multi-stage Funcs

f(x, y) = X +y;
f(x, @) += 5;

Funcs can have multiple stages

We call the additional ones
“‘update” stages

They run in sequence
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f(x, y) = X +y;
f(x, @) += 5;

They can use arbitrary index
expressions on the left-hand-side
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f(x, y) = X + Vy; They can recursively load values
f(x, @) += 5; defined by the previous stage

// f(x, @) = f(x, 0) + 5;
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(X, y) = x +y;
f(x, @) +=5;
f.vectorize(x, 8);

They are scheduled
Independently

20



f(x, y) = X +y;
f(x, 0) += 5;
f.vectorize(x, 8);
f.update(0)
.unroll(x, 2);

They are scheduled
Independently
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(X, y) = X +Yy;
f(x, @) +=5;

for y:
for Xx:
FIx,y]

X +Yy
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f(x, y) = x +y;
f(x, @) += 5;

for y:
for x:
flx,y] = x +y
for Xx:
f[x,0] = f[x,0] + 5;
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(X, y) = x +y;
RDom r(1, 10);
f(x, @) += f(x, r);

An update stage can be a
reduction over some domain

“RDom”
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f(x, y) = x +y;
RDom r(1, 10);
f(x, 0) += f(x, r);

This just throws an extra loop
around the loop nest for that
stage:

for r from 1 to 10:
for x:

f[x,0] = f[x,0] + f[x,r];
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(X, y) = x +y;

RDom r(1, 10);

f(x, 0) += f(x, r);

f.update(0)
.unroll(r);

You can schedule RDom
variables
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(X, y) = x +y;

RDom r(1, 10);

f(x, 0) += f(x, r);

f.update(0)
.reorder(r, x);

You can schedule RDom
variables
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(X, y) = x +y;
RDom r(1, 10);

f(x, 0) += f(x, r);
f.update(0)

But only when we can prove
there’s no race condition or
change in meaning.

Halide’s promise:

Scheduling never changes the
results!
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Generators

e Two ways to call Halide code

o JIT: Halide pipelines executed in the same process
they are defined in

o AOT: Halide pipelines compiled to object files (.o, .

obj) and linked into/called from another program via
C ABI (i.e. extern “C")
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Generators

e Generators are C++ programs that, when run, produce
objects (.0, .0bj) and C headers (.h) containing compiled
pipelines

e Applications #include generated header files declaring
the functions, link to generated objects

e Pipeline functions are declared with arguments
corresponding to Param objects, including ImageParams

In buffer t objects.

o Holds pointer, element size and strides of each dimension of an image
o Halide never assumes ownership of the memory a buffer_t points to
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Using Generators with Matlab

Generators can also be used within Matlab (or Octave)
via the mex library interface
Halide pipeline compiled with mat1lab target feature

defines a suitable mexFunction wrapper
o Validates and converts mxArray to buffer t (or scalar params)

mex halide Matlab function performs all the required
steps to build a mex library from a source file
containing a generator
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Code!



Scheduling for locality

e 5o far, we've talked about some scheduling

operators
o vectorize, unroll, etc.

e \We've also briefly discussed compute at
e To significantly improve performance, we
need to use compute at to improve locality



compute root

f(x, y)
g(x, y)

X + VY; Here is a simple two stage
2%F(x, y); pipeline



compute _root

f(x, y) = x+y; This means compute all of f,
g(x, y) = 2*f(x, y); followed by all of g

f.compute root();
g.compute root(); Poor locality!



compute_root

f(x, y) = x +y;
g(x, y) = 2*f(x, y);
f.compute root();
g.compute root();

for f.y:

for f.x:
f[f.x,f.y]

for g.y:

for g.x:
glg-x,8.y]

f.x + f.y

2*f[g.x,8.Y]



compute at

f(x, y) = x +y;
g(x, y) = 2*¥f(x, y);
f.compute at(g, y);
g.compute_root();

“Compute f at each iteration
of y when computing g~

All stages of a Func share
the same compute at
location



compute at

f(x, y) = X + Vy; for g.y:
g(x, y) = 2*f(x, y); g.X:
f.compute_at(g, v); glg.x,g.y] = 2*f[g.x,8.y]

g.compute root();



compute at

f(x, y) = X + Vy; for g.y:
g(x, y) = 2*¥f(x, y); for f.x:
f.compute at(g, y); f[f.x,g.y] = f.x + g.y
g.compute root(); for g.x:

glg.x,g.y] = 2*f[g.x,g.y]



compute at

f(x, y) = x +y;
g(x, y) = 2*f(XJ y)3
f.compute at(g, x);
g.compute root();

for g.y:
for g.x:
glg.x,g.y] = 2*f[g.x,8.y]



compute at

f(x, y) = X + Vy; for g.y:
g(x, y) = 2*f(x, y); for g.x:
f.compute at(g, x); flg.x,g.y] = g.x + g.y

g.compute root(); glg.x,g.y] = 2*f[g.x,g.y]



lIR blur compute root visualization

Transpose
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Transpose
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lIR blur locality schedule visualization

Transpose
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lIR blur locality schedule visualization
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lIR blur locality schedule visualization
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lIR blur locality schedule visualization
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Code!

https://github.com/halide/CVPR2015/tree/master/RecursiveFilter



