Recursive filtering in
Halide

Dillon Sharlet, Google



Description

e Recursive filter for a 1D signal
y,=(1-A)y +AX

where X is input, y is output, A is the filter coefficient



Description

e Recursive filter for a 1D signal
=1 -A)yn_1 + A X

where X is input, y is output, A is the filter coefficient

e Example applied to a delta function

X = .




Description

e Recursive filter for a 1D signal
=1 -A)yn_1 + A X

where X is input, y is output, A is the filter coefficient

e Example applied to a delta function

X = .




Description

e Recursive filter for a 1D signal
=1 -A)yn_1 + A X

where X is input, y is output, A is the filter coefficient

e Example applied to a delta function

X = .




Description

e Recursive filter for a 1D signal
=1 -A)yn_1 + A X

where X is input, y is output, A is the filter coefficient

e Example applied to a delta function

X = .




Description

e Recursive filter for a 1D signal
=1 -A)yn_1 + A X

where X is input, y is output, A is the filter coefficient

e Example applied to a delta function

n= 4

u
!




Description

e Recursive filter for a 1D signal
=1 -A)yn_1 + A X

where X is input, y is output, A is the filter coefficient

e Example applied to a delta function

- Crrrrs




Description

e Recursive filter for a 1D signal
=1 -A)yn_1 + A X

where X is input, y is output, A is the filter coefficient

e Example applied to a delta function

n= 6

X = .*
y= [




Description

e Recursive filter for a 1D signal
=1 -A)yn_1 + A X

where X is input, y is output, A is the filter coefficient

e Example applied to a delta function

|
y= . B

10



Description

e Recursive filter for a 1D signal
=1 -A)yn_1 + A X

where X is input, y is output, A is the filter coefficient

e Example applied to a delta function

n= 8

v

o
y = T

11



Description

e Recursive filter for a 1D signal
=1 -A)yn_1 + A X

where X is input, y is output, A is the filter coefficient

e Example applied to a delta function

n= 9

= !
y = [

12



Description

e Recursive filter for a 1D signal
=1 -A)yn_1 + A X

where X is input, y is output, A is the filter coefficient

e Example applied to a delta function

n= 10

v

o
y = W |

(K



Description
e Recursive filter for a 1D signal
y,=(1-A)y +AX

where X is input, y is output, A is the filter coefficient

e Example applied to a delta function

o
y = W |

14



Description

e To apply this recursive filter to an image,

apply it four times:
a. Up and down the columns
b. Right and left across the rows

15



Reductions

e To implement this algorithm:

o Need to reference output at previous pixel to
compute current output

e This cannot be done with a pure definition
e \We can do this with update stages and

RDomS

o RDom (Reduction Domain) provides a serial loop
o Can have dependencies between loop iterations

16



Multi-stage Funcs

f(x, y) = X +y;
f(x, @) += 5;

Funcs can have multiple stages

We call the additional ones
“‘update” stages

They run in sequence

17



f(x, y) = X +y;
f(x, @) += 5;

They can use arbitrary index
expressions on the left-hand-side

18



f(x, y) = X + Vy; They can recursively load values
f(x, @) += 5; defined by the previous stage

// f(x, @) = f(x, 0) + 5;

19



(X, y) = x +y;
f(x, @) +=5;
f.vectorize(x, 8);

They are scheduled
Independently

20



f(x, y) = X +y;
f(x, 0) += 5;
f.vectorize(x, 8);
f.update(0)
.unroll(x, 2);

They are scheduled
Independently

21



(X, y) = X +Yy;
f(x, @) +=5;

for y:
for Xx:
FIx,y]

X +Yy

22



f(x, y) = x +y;
f(x, @) += 5;

for y:
for x:
flx,y] = x +y
for Xx:
f[x,0] = f[x,0] + 5;

23



(X, y) = x +y;
RDom r(1, 10);
f(x, @) += f(x, r);

An update stage can be a
reduction over some domain

“RDom”

24



f(x, y) = x +y;
RDom r(1, 10);
f(x, 0) += f(x, r);

This just throws an extra loop
around the loop nest for that
stage:

for r from 1 to 10:
for x:

f[x,0] = f[x,0] + f[x,r];

25



(X, y) = x +y;

RDom r(1, 10);

f(x, 0) += f(x, r);

f.update(0)
.unroll(r);

You can schedule RDom
variables

26



(X, y) = x +y;

RDom r(1, 10);

f(x, 0) += f(x, r);

f.update(0)
.reorder(r, x);

You can schedule RDom
variables

27



(X, y) = x +y;
RDom r(1, 10);

f(x, 0) += f(x, r);
f.update(0)

But only when we can prove
there’s no race condition or
change in meaning.

Halide’s promise:

Scheduling never changes the
results!

28



Generators

e Two ways to call Halide code

o JIT: Halide pipelines executed in the same process
they are defined in

o AOT: Halide pipelines compiled to object files (.o, .

obj) and linked into/called from another program via
C ABI (i.e. extern “C")

29



Generators

e Generators are C++ programs that, when run, produce
objects (.0, .0bj) and C headers (.h) containing compiled
pipelines

e Applications #include generated header files declaring
the functions, link to generated objects

e Pipeline functions are declared with arguments
corresponding to Param objects, including ImageParams

In buffer t objects.

o Holds pointer, element size and strides of each dimension of an image
o Halide never assumes ownership of the memory a buffer_t points to
30



Using Generators with Matlab

Generators can also be used within Matlab (or Octave)
via the mex library interface
Halide pipeline compiled with mat1lab target feature

defines a suitable mexFunction wrapper
o Validates and converts mxArray to buffer t (or scalar params)

mex halide Matlab function performs all the required
steps to build a mex library from a source file
containing a generator

31



Code!



Scheduling for locality

e 5o far, we've talked about some scheduling

operators
o vectorize, unroll, etc.

e \We've also briefly discussed compute at
e To significantly improve performance, we
need to use compute at to improve locality



compute root

f(x, y)
g(x, y)

X + VY; Here is a simple two stage
2%F(x, y); pipeline



compute _root

f(x, y) = x+y; This means compute all of f,
g(x, y) = 2*f(x, y); followed by all of g

f.compute root();
g.compute root(); Poor locality!



compute_root

f(x, y) = x +y;
g(x, y) = 2*f(x, y);
f.compute root();
g.compute root();

for f.y:

for f.x:
f[f.x,f.y]

for g.y:

for g.x:
glg-x,8.y]

f.x + f.y

2*f[g.x,8.Y]



compute at

f(x, y) = x +y;
g(x, y) = 2*¥f(x, y);
f.compute at(g, y);
g.compute_root();

“Compute f at each iteration
of y when computing g~

All stages of a Func share
the same compute at
location



compute at

f(x, y) = X + Vy; for g.y:
g(x, y) = 2*f(x, y); g.X:
f.compute_at(g, v); glg.x,g.y] = 2*f[g.x,8.y]

g.compute root();



compute at

f(x, y) = X + Vy; for g.y:
g(x, y) = 2*¥f(x, y); for f.x:
f.compute at(g, y); f[f.x,g.y] = f.x + g.y
g.compute root(); for g.x:

glg.x,g.y] = 2*f[g.x,g.y]



compute at

f(x, y) = x +y;
g(x, y) = 2*f(XJ y)3
f.compute at(g, x);
g.compute root();

for g.y:
for g.x:
glg.x,g.y] = 2*f[g.x,8.y]



compute at

f(x, y) = X + Vy; for g.y:
g(x, y) = 2*f(x, y); for g.x:
f.compute at(g, x); flg.x,g.y] = g.x + g.y

g.compute root(); glg.x,g.y] = 2*f[g.x,g.y]



lIR blur compute root visualization

Transpose

Legend:

ImageParam

Func

Transpose

Allocation

42



lIR blur locality schedule visualization

Transpose
Blury

43



lIR blur locality schedule visualization

Transpose
Blury

44



lIR blur locality schedule visualization

Transpose
Blury

45



lIR blur locality schedule visualization

Transpose
Blury

46



Code!

https://github.com/halide/CVPR2015/tree/master/RecursiveFilter



