F5 Neutron LBaaSv2 L7 Content Switching

Introduction

The OpenStack community introduced initial support for L7 content switching for

Neutron LBaaS version 2 in the Mitaka release cycle. At present the F5 LBaaSv2 service provider
driver for Mitaka does not implement the neutron-lbaas APl to manage the L7 policies and

rules that are the basis for this feature. This document describes the differences between the
community L7 APl and the BIG-IP Local Traffic Manager implementation of layer 7 traffic
steering and how we can extend the F5 neutron-lbaas API to create, update and delete L7
policies and rules that would allow a user to manage virtual server traffic using the BIG-IP Local
Traffic Policies.

Background

L7 content switching takes its name from the OSI Model, Layer 7, or the application layer. As its
name implies switching decisions are based on the application data, or content, of request
traffic as it passes through the virtual server. The APl allows the operator to specify rules and
policies that define the conditions to match in the content, and the actions to execute when a
match is found. For more information about LBaaSv2 L7 content switching as proposed by

the community see:

o https://wiki.openstack.org/wiki/Neutron/LBaaS/I7
J http://specs.openstack.org/openstack/neutron-specs/specs/mitaka/lbaas-17-rules.html

Neutron LBaaSv2 API L7 Policies and Rules

In Neutron an L7 Policy is a collection of L7 rules associated with a Listener; it may also have an
association to a back-end pool. Policies describe actions that should be taken by the load
balancing software if all of the rules in the policy return true / match.

Policy Actions:
Valid L7 policy actions are one of:

* REJECT —The request is blocked and an appropriate response code is sent. The
HTTP request is not forwarded to a backend pool.

e REDIRECT_TO_POOL —The request is forwarded to a member in the redirect
pool.

e REDIRECT_TO_URL - The request is forward to the URL specified in the redirect
URL.

Policy Rules:

An L7 Rule is a single, simple logical test that returns either true or false. An L7 rule has a type, a
comparison type, a value, and an optional key that is used for certain rule types. Valid rule
types are defined by the following operands:

¢ HOST_NAME — The rule does a comparison to the hostname in the HTTP ‘Host’
header with the specified value parameter.

* PATH —The rule compares the HTTP URL to specified value parameter

* FILE_TYPE —The rule compares the file extension of the HTTP URI with the
specified rule value (e.g. ‘pdf’, ‘jpg’, etc.)

* HEADER -- The rule compares a HTTP header in the request, as specified by the
key parameter, with the value specified in the rule.

* COOKIE —The rule searches for the cookie, as specified by the key parameter,
and compares it to the rule’s value.

In addition to a rule type there are five comparison types that are applied to the rule’s operand
and compared with the rule value to determine if a match exists.

e STARTS_WITH — operand starts with string

e ENDS_WITH — operand ends with string

* EQUAL_TO — operand matches the string

* CONTAINS — operand contains a substring value

* REGEX —operand matches the provided regular expression.

Policy Logic
All the rules in an L7 policy must match before the associated action is executed. So if a policy
has a set of rules: Ry, Ry, ... Ry, and an action, A, then the following logic holds:

If (Rrand Ry and ... R,) then A

Policy rules can also be negated by using the —invert parameter when specifying the rules. For
example, the comparison type, EQUAL_TO can be transformed to NOT_EQUAL_TO, by specifying
—invert.

L7 policies are ranked by a position value and are evaluated according to their rank. The first
policy that evaluates to true is executed and all subsequent policies are skipped. Given a set of
n policies, where policy P, has a rank n and an action A,, the following logic holds:

If(Pl) then A1
Else if (P,) then A,

Else if (P,) then A,
Else:
Send request to default pool

F5 LBaaSv2 APl and LTM Policies and Rules

The Neutron L7 terminology does not directly align with the common vocabulary of BIG-IP Local
Traffic Manager. In the BIG-IP LTM, policies also have a set of rules, but it is the rules that

specify actions and not the policy. Also, policies attached to a virtual server on the BIG-IP are all
evaluated regardless of the truth of the associated rules. In addition to this difference the BIG-

IP policies have no ordinal, it is the BIG-IP rules that have this attribute. Because of these
confusing differences it is useful to attempt to define the terms as they apply to each domain.

Table 1 Neutron L7 to BIG-IP LTM

Neutron LBaaS L7 BIG-IP Local Traffic Manager
Policy Policy Rules
Policy Action Rule Action
Policy Position Rule Ordinal
Rule Rule Conditions

The BIG-IP LTM policy has a name, description, a set of rules, and a strategy on how those rule
should be evaluated. In fact, L7 policies in OpenStack are more akin to a collection BIG-IP LTM
policy rules that are evaluated with the ‘First match’ strategy.

The BIG-IP LTM rules have conditions, actions, and an ordinal and would need to be created
based on the L7 policy and rule attributes.

Neutron LBaaSv2 API L7 Rules Implementation

A combination of L7Policy and L7Rule elements will be mapped to TMOS traffic policies and in
the case of specific L7Rule compare_types, iRules.

The major reasons to implement LBaaS L7 Rules in TMOS traffic policies, instead of a pure iRule
implementation, are:

1) Performance, all L7 Rule types map directly to TMOS traffic policy match conditions:

L7Rule type = TMOS traffic policy match condition

Hostname HTTP Host

Path HTTP URI + path
FileType HTTP URI + extension
Header HTTP Header

Cookie HTTP Cookie

2) The LBaaS L7 Rules requirement that ‘the first L7Policy that returns a match will be executed’
directly maps to TMOS traffic policy execution strategy ‘first’.

3) Four of the five L7Rule compare_type values directly map to TMOS traffic policy rule
conditions:

L7Rule compare_type L7 —invert specified TMOS traffic policy rule match
condition

STARTS_WITH No begins with

STARTS_WITH Yes does not begin with

ENDS_WITH No ends with

ENDS_WITH Yes does not end with

EQUAL_TO No is

EQUAL_TO Yes is not

CONTAINS No contains

CONTAINS Yes does not contain

REGEX X No Direct Mapping

The REGEX comparison type is the only one that doesn’t map directly into the LTM rule
comparison types. In order to implement it we would have to push iRules to the BIG-IP. Itis
expected that this work would be the last feature added to the L7 solution.

4) All L7Policy actions map directly to TMOS traffic policy rule actions

L7Policy action = TMOS traffic policy rule action
Reject Reset traffic
RedirectToURL Redirect

RedirectToPool Forward traffic to pool

Since the L7 Rules are expected to match on each HTTP request, if a listener has an L7Policy
attached, the presence of a OneConnect profile on the corresponding TMOS virtual server must
be assured.

Initially, the support for Regex will not be available. Since there is a direct mapping of the other
compare types in Neutron to BIG-IP LTM, and regular expressions can in some cases be
expressed as the logical ‘OR’ of multiple string compares, we propose an initial implementation
of L7 Policies and Rules without regular expressions with the understanding that it will be
available as a feature in a future release.

Neutron LBaaSv2 APl Regex Implementation

The question comes in, what to do with the regex L7 Rule compare_type. The recommendation
is that the regex L7Policy actions map to an iRule that always gets applied if an L7 policy is
enabled on a Listener.

The iRule should have a conditional check for the presence of a well-known variable for the
corresponding L7 Rule compare_type. The well-known variable should be set using the TMOS
traffic policy set variable action for the request if a non-mapped compare_type is present. If the
variable is not set, no iRule logic should be implemented. Additionally the TMOS traffic policy
should set variables indicating the match type, the requested value, the desired action, and
optionally the desired action target to be used in the executed iRule logic.

The Regex iRule:

For the RegEx iRule, if the well know variable is present such that logic is executed, the presence
of the match type variable should checked and the correct iRule command be issued to obtain
the desired attribute to match and target action.

For the RegEx iRule it needs to be documented that the expression matching will be BRE
matching conforming to the iRule string matches_regex operator only. No pre-validation of the
regex expression requested will be done. The expression will be implemented directly in the
iRule. This can lead to iRule execution errors and TCP connection resets. Such errors and TCP
resets are a valid consequence to the tenant issuing invalid regex expressions.

Assumptions

BIG-IP regex for policy are BRE based

We will use the iRule tlc matches regex operator for the regex rule
BIG-IP supports all of the policy/rule directive

Python regex library is adequate for our conversions and validations

