
SWEN326 - Assignment 2 Part 1 Dylan Kumar

downlords-faf-client

Built on IntellJ Ultimate Platform. Make sure to
import project as gradle project. Then had to go alt-9
(version control), and revert the deletion of XML
files for run configuration (as instructed on the
repo), because IntellJ automatically deletes them for
whatever reason. Lastly had to go to the right,
gradle, refresh (and if run tasks in native
dependencies if you get Uid error). Run ‘FAF Client

Prod’ and set the ‘class path of module’ if it isn’t already set. This video may help you (shows
setup of FAF): https://goo.gl/EDj26i

History:

The ‘downlords-faf client’ project began as a game launcher for the video game Supreme
Commander: Forged Alliance. The official support for the game ended by Gas Powered Games
(GPG) in 2009, and the multiplayer servers GPGnet were shut down in 2012 [1]. Many in the
Forged Alliance community still wished to support the development of the game, especially on
the multiplayer side. Forged Alliance Forever started from a community of people that wished to
do this. The original multiplayer client was first created in 2011. Forged Alliance Forever
projects continue to be updating regularly with a large supportive community. These include
community patches, new maps/mods, replays, live replays and much more [1]. Even new Game
modes and campaigns were made. On June 23, 2015 v0.5-alpha was released for ‘downlords-faf
client’[2]. This was a new Java client that was supposed to replace the old client written in
python. This new client lets you launch the game in a multiplayer lobby, features IRC chat, and
other features. The primary contributors to the project are ‘micheljung’ who started the project,
‘Cheyans’ and ‘axel1200’. The downlords-fav client has been licensed as an open source MIT
project. For the rest of this report the ‘downlords-faf client’ shall be referred to as the FAF Client
or just Client for simplicity.

Domain:

The FAF client’s primary domain is to
handle the multiplayer configuration side of
the video game, Supreme Commander:
Forged Alliance, as well as provide an
environment where users can connect with
each other. The FAF client allows you to

SWEN326 - Assignment 2 Part 1 Dylan Kumar

browse games that other users have started, and shows basic descriptive statistics such as the
map, title, number of players, mods, and host a game via the GUI. The games that you can join
can be private or public matches; with private matches requiring authentication via a shared
password to join the lobby. Once you join a lobby, Supreme Commander: Forged Alliance will
launch, presuming that you configured the installation directory in settings. You are still able to
use the FAF client without owning or having the game installed on your system.

The FAF client requires you to sign up for an account, and login to view this information. This
imposes a constraint that you have a valid email address, to be able to sign up for an account, and
an online internet connection so that you can play with others, as well as see data extracted from
requests to the API to Server.

The subdomains of the FAF client also include a leaderboard of the highest ranked multiplayer
users, information of the in games units such as pictures and statistics, a news board of
information about the client and community, as well as an IRC chat, and messaging client. The
IRC chat/messaging client allows users to communicate before they join a game. These are all
interactable elements in the GUI.

The FAF Client is limited to run on the Windows and Linux operating systems. Running it
requires the Unix Uid or Windows Uid to be installed; which
are native dependencies for the operating system you are
using and are installed through gradle or the Install4J
installer. The client requires that you have some way of
navigation (e.g. mouse) and way of inserting characters into
a GUI (e.g. keyboard, or on screen keyboard).

Component Architecture

FAF is split into three primary layers:
1) The Communication Layer; whose purpose is to

assess information from the Server and API.
2) The Service Layer; which provides functionality for

the various services such as games, players or maps
service

3) The UI Layer; which controls the GUI and visual
layout and display of the View.

The Communication layer consists of Assessors which query
the server for information. The job of the Accessors is to
communicate with external services; those being the FAF

SWEN326 - Assignment 2 Part 1 Dylan Kumar

REST API, and the FAF Server. Assessors understand how to talk to a specific server and what
function they offer. Each assessor is used by exactly one service, though a service may use
multiple assessors.

The Services then access this information through calls to the Accessors. The Service classes
handles data manipulation, such as the loading of information depending on preferences,
situation and their respective domain. Each Service provides the functionality of exactly one
domain. For instance, for the domain “maps” there is a MapService and for the domain
“players” there is a PlayerService. These services handle the functionality and data manipulation
of the FAF client, which are then fed into the Controllers which specify the users interaction with
the FAF client.

The Service Layer is made up of two layers: the Service Interface Layer, and the Service
Implementation Layer. Currently every Service implementation is implementing a Service
Interface, which is a blueprint of method declarations. In the majority of cases however, only one
object is implementing the particular Service causing redundancy as a particular Service often
only needs to do one type of thing; not multiple, whilst controllers are passing in these Services
in their constructor as their interface type, not implementation.

The Controllers are responsible for managing UI, and are part of the View. Each Controller has
one FXML file associated to it. FXML files are JavaFX markup files that handle the layout of the
View of the system. These FXML stylesheets represent the different graphical panes of the GUI.
The FXML stylesheets contain the layout, associated Controller, ID’s of the different GUI
elements such as textField’s, and other information relevant to the layout of the view. Interacting
with the user interface tells the controller to display user interface elements differently, and may
result in a GUI element such as a textField to have its value changed, which will then show up on
the View due to the associated ID. The Controllers make calls to the Services, and therefore
chooses what information to show on user intention and the information received from the
Service. Services do not depend on Controllers, while a Controller may depend (make calls to)
one or more services for functionality that it may require.

The FAF client uses Spring Boot to tie together the various components of the system together.
The Controllers are not actually being called anywhere ‘visibly’ in the code. Instead it looks at
the annotations of classes, for instance, the @component annotation for controllers and
@configuration for configuration files [3]. Spring Boot is a framework designed to reduce
boilerplate configuration and handle the life cycle of objects by automatically injecting
dependencies when needed, and allow for cleaner and more modular code. Using @component
tells Spring Boot to make those controllers Spring beans. Beans are objects that are managed by
the Spring IoC (inversion of control) container which handles the location and state of
dependencies when needed [4].

SWEN326 - Assignment 2 Part 1 Dylan Kumar

Spring Boot uses the annotation ‘@inject’ to automatically inject dependencies into the
constructor of the class. Dependencies are other objects that your class needs to function. This
means that code written with Spring Boot does not have many objects manually being created;
instead it takes them as a parameter in the constructor that are automatically injected in from
Spring Boot.

The Client can send messages through the ServerAccessor to login to server, and then host, join
games or start a game. The Server tells the client periodically the list of games that are available
and new messages and users from the chat. The API was built to offer more general services.
These would allow third party developers to make calls to the API to offer some other service or
integrate their service into FAF.

The Client can host a new game or join an existing game. When a user wishes to join a game, the
Client sends a request to the Server. If the Client is able to join the game, the Server sends the
connect data to the Client, such as the IP address of the host of the game, the Map, Mods to use,
as well as other game options. The
client uses this information to call the
game Supreme Commander: Forged
Alliance (fa.exe), and makes a new
process for the game (opens it), with a
set of command line arguments that
includes the IP address of the host.

After the game has begun, the Client
only forwards Server messages to the
Game and Game messages to the Server (such as if game options are changing in the Lobby).
Once the Game has ended, the Game sends the results to the Client, which forwards it to the
Server, and the Server stores it in the database. An example of this is shown in the diagram above
[5].

The in-game networking between users is managed by pre-existing code hardcoded into the
Game and is seperate from the Client.

Data Structures:

The main data structures are Collections such as Lists and Maps that are used to store
information that are to be displayed on the View. These Collections are populated from calls to
the API and Server made by the Accessors.The API and Server query an SQL database to retrieve
some of this information. The FAFApiAssessor assesses the FAF REST API over HTTP to get
non core services such as as Achievements, Map Upload, etc.

SWEN326 - Assignment 2 Part 1 Dylan Kumar

Once the Client has authenticated the user via OAuth 2.0, the Client can send or request any data
specified in the API, such as getting the Players Achievements, Maps, Mods, Replays, Players, or
uploading or downloading a map.

On the other hand, the FAFServerAssessor listens for new messages, handles the login of users to
the Client, searching for new games, adding and removing friends, and other server requests.

Some of these collections include lists of Players, Mods, Events and Leaderboards, that are
populated from queries to the Server or API from the Assessors (communication layer). These
are then stored in the Services, which handle the data processing. For instance, cookies are stored
in cookieServiceImpl which are a map of URI object
to List of HTTPCookie Object.

The FAF client uses internationalization to allow for
multiple languages and for GUI elements to adapt to
these languages. Separate style sheets have been made
for multiple languages for the different GUI elements
and text fields. These are handled by calls to an i18n
object, which handles the users preferences regarding
text and language. For the six currently implemented
languages there are .properties files in
resources/i18n/... that are associated to each language. The language is defaulted to look at
‘messages.properties’, otherwise separate .properties file for the specific language. This data
structure allows for a fast way to change elements in the View, whereby new languages to be
added easily.

[1]"History Of Supreme Commander - FA Forever Wiki", Wiki.faforever.com, 2018. [Online]. Available:
https://wiki.faforever.com/index.php?title=History_Of_Supreme_Commander. [Accessed: 11- May-
2018]

[2]"FAForever/downlords-faf-client", GitHub, 2018. [Online]. Available:
https://github.com/FAForever/downlords-faf-client/releases. [Accessed: 11- May- 2018]

[3]"Spring Framework Annotations - Spring Framework Guru", Spring Framework Guru, 2018. [Online].
Available: https://springframework.guru/spring-framework-annotations/. [Accessed: 11- May- 2018]

[4]"5. The IoC container", Docs.spring.io, 2018. [Online]. Available:
https://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/beans.html. [Accessed: 11-
May- 2018]

[5]"Developer Tutorial 1 - Architecture Basics", YouTube, 2018. [Online]. Available:
https://www.youtube.com/watch?v=lUUDdL05QAA. [Accessed: 11- May- 2018

