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Hardware Acceleration with FPGA’s

EASY PROGRAMMING HIGH EFFORT

FLEXIBILITY EFFICIENCY

CHEAP EXPENSIVE



The innards of an FPGA

… x1000000! 



The innards of an FPGA

Interconnect, 
programmed 
by the user



Tiny circuit?

Look-up Table:

Any f: ℤ26 → ℤ2

Digital Signal Processor:

∗,+: ℤ218 × ℤ227 → ℤ248

Block RAM/ 
Ultra RAM

Small memory



FPGA’s and their surroundings

Connected to…

…or with embedded CPU



On to FHEW!
… now that you know all the blocks of an FPGA



FHEW algorithm:



Mert et al.’s NTT design

A number of Processing 
Elements (PE) in parallel

Best open-source 
area/throughput NTT 
design in 2021

Very modular design, 
designed for Lattice-based 
crypto, not for FHE



INTT SDD

NTT

* +



That was the plan…
2 big problems: data size too big (scheme problem),

and NTT design was for small chips (hardware problem)



Problem 1: Bootstrapping key is too large!

ACC: made up of 2 vectors of size N=1024

BootStrapping Key (BSK): 512*1024*2*23*2*2*4 values! 

a: vector of 512 values, indexes BSK, affects control



Problem 1: Bootstrapping key!

FHEW: 1.3 Gigabytes of 
bootstrapping key!

FPGA: 40 MB of memory

HBM: 8 GB @460 GB/s



Programming HBM = not easy!

Datapath design and debugging: 3 months

Making the HBM-interface work: 6 months and ongoing

The HBM interface must be efficient! 460 GB/s is not fast for 1.3 GB

The a-vector determines the indexing of the HBM interface

A naïve HBM interface will memory-bind you!



New paper!



Problem 2 (Hardware problem)

We are targeting high 
throughput on big chips

Mert’s design assumed 
relatively small chips (or 
lots of work per NTT)

We must compute lots of 
permutations



Results:

HW takes 17 ms (in simulation)

SW takes 137 ms



Future work:

Better NTT’s, designed for 
the parameter set of 
FHEW/TFHE/FINAL
(We can do much better 
than this, you will see…)

Use a scheme that 
doesn’t require handling 
>40 MB’s



…so much improvement still 
possible!

COSIC WEB COSIC PAPER
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