
Hardware Acceleration for FHEW

Too much BS (Bootstrapping)

Jonas Bertels, Michiel Van Beirendonck, Furkan Turan, 
Ingrid Verbauwhede

May 2023,
FHE.ORG



Hardware Acceleration with FPGA’s

EASY PROGRAMMING HIGH EFFORT

FLEXIBILITY EFFICIENCY

CHEAP EXPENSIVE



The innards of an FPGA

… x1000000! 



The innards of an FPGA

Interconnect, 
programmed 
by the user



Tiny circuit?

Look-up Table:

Any f: ℤ26 → ℤ2

Digital Signal Processor:

∗,+: ℤ218 × ℤ227 → ℤ248

Block RAM/ 
Ultra RAM

Small memory



FPGA’s and their surroundings

Connected to…

…or with embedded CPU



On to FHEW!
… now that you know all the blocks of an FPGA



FHEW algorithm:



Mert et al.’s NTT design

A number of Processing 
Elements (PE) in parallel

Best open-source 
area/throughput NTT 
design in 2021

Very modular design, 
designed for Lattice-based 
crypto, not for FHE



INTT SDD

NTT

* +



That was the plan…
2 big problems: data size too big (scheme problem),

and NTT design was for small chips (hardware problem)



Problem 1: Bootstrapping key is too large!

ACC: made up of 2 vectors of size N=1024

BootStrapping Key (BSK): 512*1024*2*23*2*2*4 values! 

a: vector of 512 values, indexes BSK, affects control



Problem 1: Bootstrapping key!

FHEW: 1.3 Gigabytes of 
bootstrapping key!

FPGA: 40 MB of memory

HBM: 8 GB @460 GB/s



Programming HBM = not easy!

Datapath design and debugging: 3 months

Making the HBM-interface work: 6 months and ongoing

The HBM interface must be efficient! 460 GB/s is not fast for 1.3 GB

The a-vector determines the indexing of the HBM interface

A naïve HBM interface will memory-bind you!



New paper!



Problem 2 (Hardware problem)

We are targeting high 
throughput on big chips

Mert’s design assumed 
relatively small chips (or 
lots of work per NTT)

We must compute lots of 
permutations



Results:

HW takes 17 ms (in simulation)

SW takes 137 ms



Future work:

Better NTT’s, designed for 
the parameter set of 
FHEW/TFHE/FINAL
(We can do much better 
than this, you will see…)

Use a scheme that 
doesn’t require handling 
>40 MB’s



…so much improvement still 
possible!

COSIC WEB COSIC PAPER


	Slide 1
	Slide 2: Hardware Acceleration with FPGA’s
	Slide 3: The innards of an FPGA
	Slide 4: The innards of an FPGA
	Slide 5: Tiny circuit?
	Slide 6: FPGA’s and their surroundings
	Slide 7: On to FHEW!
	Slide 8
	Slide 10: Mert et al.’s NTT design
	Slide 11
	Slide 12: That was the plan…
	Slide 13: Problem 1: Bootstrapping key is too large!
	Slide 14: Problem 1: Bootstrapping key!
	Slide 15: Programming HBM = not easy!
	Slide 16: New paper!
	Slide 17: Problem 2 (Hardware problem)
	Slide 18: Results:
	Slide 19: Future work:
	Slide 20

