TFHE Functional bootstrapping over multiple inputs

Pierre-Emmanuel Clet, Aymen Boudguiga, Renaud Sirdey

Binary TFHE

Any boolean circuit can be built from a combination of additions and bootstrappings

Non-binary TFHE (base B>2)

Polynomial functions:

Can be computed with the usual homomorphic additions and multiplications **Univariate functions:**

Can be computed with a *functional/programmable* bootstrapping [Cle+22] **Multivariate functions:**

- Any function can be computed with the *tree-based method* from [GBA21]
- Specific functions can be computed with the *chaining method* from [GBA21]:
 - $\mathbf{c_1}$

 $\mathbf{c_2}$

Tree-based method

Tree-based method from [GBA21]:

- Depth grows with number of inputs
- Width grows with basis *B* and depth of tree

Noise variance: $\mathbf{d} \cdot \boldsymbol{\mathcal{E}}_{BR} + (\mathbf{d} - 1) \cdot \boldsymbol{\mathcal{E}}_{KS}^{TRLWE} + \boldsymbol{\mathcal{E}}_{KS}^{TLWE}$ $\boldsymbol{\mathcal{E}}_{\mathbf{BR}} = n \cdot \left((k+1)lN\vartheta_{\mathbf{BK}}(\frac{\mathrm{Bg}}{2})^2 + (1+kN) \cdot \frac{\mathrm{Bg}^{-2l}}{12} \right)$ $\boldsymbol{\mathcal{E}}_{\mathbf{KS}}^{\mathbf{TRLWE}} = N^2 \cdot \left(t \vartheta_{\mathbf{KS}} (\frac{\text{base}}{2})^2 + \frac{\text{base}^{-2t}}{12} \right)$ $\boldsymbol{\mathcal{E}}_{\mathbf{KS}}^{\mathbf{TLWE}} = N \cdot \left(t \vartheta_{\mathbf{KS}} (\frac{\text{base}}{2})^2 + \frac{\text{base}^{-2t}}{12} \right)$

(-) Low composability of deep trees due to output noise (-) Exponential computation time in number of inputs: $\mathcal{O}(B^d)$

(+) Composability can be improved with intermediary bootstrappings (+) Any function can be implemented with this method

Cd

Specific TRLWE Keyswitch

B-gates

Standard keyswitch keys: $\forall i \in [\![1,n]\!], j \in [\![1,t]\!], \frac{s_i}{\text{base}^j}$

Keyswitch noise: $n \cdot \left[N \right] \cdot \left(t \cdot \vartheta_{\mathbf{KS}}(\frac{\text{base}}{2})^2 + \frac{\text{base}^{-2t}}{12} \right)$ **Specific keyswitch key:** $\forall i \in [\![1, n]\!], j \in [\![1, t]\!], \sum_{k=0}^{\frac{N}{B}-1} \frac{s_i}{\text{base}^j} \cdot X^k$ **Keyswitch noise:** $n \cdot B \cdot (t \cdot \vartheta_{\mathbf{KS}}(\frac{\text{base}}{2})^2 + \frac{\text{base}^{-2t}}{12})$

Improvement:

Our specific key lowers the output noise by a factor $\frac{N}{R}$

		-		
ВШ	CIN		CU	IS

Performances

Use *B*-gates to create any logic circuit for any function with inputs in basis B (+) Better efficiency than binary TFHE: less operations thanks to the use of a larger decomposition basis B

Example: sorting 4 inputs in base B=8**Circuit**: bubble sort

Bg_{bit} N base_{bit} $\boldsymbol{\sigma}$ \mathbf{n}

References

Chaining method Multivariate

Bootstrapping

[LS11] Sergei Lozhkin and Alexander Shiganov. On a Modification of Lupanov's Method with More Uniform Distribution of Fan-out." In: Electronic Colloquium on Computational Complexity (ECCC) 18 (Jan. 2011), p. 130.

[GBA21] Antonio Guimarães, Edson Borin, and Diego F. Aranha. "Revisiting the functional bootstrap in TFHE". In: IACR Transactions on Cryptographic Hardware and Embedded Systems 2021.2 (Feb. 2021), pp. 229–253. doi: 10.46586/tches.v2021.i2.229-253. url: https://tches.iacr.org/index.php/TCHES/article/view/8793.

Circuit generation:

1st approach: Lupanov general circuit [LS11] (+) Low noise variance

(-) Exponential computation time: $\mathcal{O}(\frac{B^{d}}{d})$

2nd approach: implement dedicated circuits per functions

(+) Flexibility of circuits allows for better performances

(-) Need to craft efficient non binary circuit

 $4.1 \cdot 10^{-10}$ 1250204810152

Parameters' set $(\lambda = 128)$

Circuit	Tree-based method		
4.8s	94.8s		

Time in seconds with 4 inputs and B=8

[Cle+22] Pierre-Emmanuel Clet, Martin Zuber, Aymen Boudguiga, Renaud Sirdey, and Cédric Gouy-Pailler. Putting up the swiss army knife of homomorphic calculations by means of TFHE functional bootstrapping. Cryptology ePrint Archive, Paper 2022/149. https://eprint.iacr.org/2022/149.

[Chi+19] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.

"TFHE: Fast Fully Homomorphic Encryption Over the Torus". In: Journal of Cryptology 33 (Apr. 2019). doi: 10.1007/s00145-019-09319-x.

Contact: pierre-emmanuel.clet@cea.fr

