

Improving and Automating BFV Parameters

 Selection: An Average-Case ApproachJune 20, 2023

Beatrice Biasioli, Chiara Marcolla, Marco Calderini, and Johannes Mono beatrice.biasioli@tii.ae

Motivation

This work arises from the practical need of using Homomorphic Encryption in a team project. We had to face the challenge of parameters selection in (leveled) FHE.

The problem is the noise growth. The error introduced in the encryption phase for security reasons grows as homomorphic operations are performed. In particular, it grows exponentially with multiplications.

To guarantee correctness, we need a large ciphertext modulus. However, a larger modulus also decreases the security level of the underlying scheme, requiring a larger polynomial degree at the cost of efficiency.

Our aim: an effective analysis the noise growth and a consequent a tight bound on the ciphertext modulus for correctness.

Our Contribution

■ We propose an average-case studio for the error growth in the BFV scheme. Our analysis differs from the previously proposed for other schemes in the computation of the homomorphic multiplication variance error, where we introduce a "correcting" function.

■ We show how to compute the ciphertext modulus with closed formulas for generic circuits.

■ We implemented an interactive tool for the parameter generation, extending the one of Mono et al. [13] for BGV. It combines their security formula with our theoretical findings.

Related works

- Recent works introduced the average-case analysis for the error growth for TFHE [4], CKKS [6] and BCV [14, 8].

■ The state-of-the-art in establishing theoretical bounds for the BFV scheme relies on the canonical norm [$5,10,7$], which often yields overly conservative bounds.

- Regarding automation of parameters selection, Bergerat et al. [3] proposed a framework for efficiently selecting parameters in TFHE-like schemes; Mono et al. [13] developed an interactive parameter generator for the leveled BGV scheme that supports arbitrary circuit models.

Security: the RLWE Problem

Let $f(x)$ be a monic irreducible polynomial and $\mathcal{R}=\mathbb{Z}[x] /\langle f(x)\rangle$.
Let $q>1$ be an integer, we denote $\mathbb{Z}_{q}=\mathbb{Z} \cap(-q / 2, q / 2]$ and \mathcal{R}_{q} the set of polynomials in \mathcal{R} with coefficients in \mathbb{Z}_{q}.
Let χ_{e} be an error distribution, usually a discrete Gaussian centered in 0 [1].
Let χ_{s} be any distribution.
The (Decisional) Ring Learning with Errors problem [12]:
Let $a \in \mathcal{R}_{q}$ arbitrary, sample $e \leftarrow \chi_{e}$ and $s \leftarrow \chi_{s}$ randomly.
The goal is distinguishing pairs $\left(a, b=[a s+e]_{q}\right)$ from random ones in \mathcal{R}_{q}^{2}.
The RLWE problem is presumed to be intractable [15].

Building a Scheme on top of RLWE: BFV $[9,11]$

The (Decisional) Ring Learning with Errors problem [12]:
Let $a \in \mathcal{R}_{q}$ arbitrary, sample $e \leftarrow \chi_{e}$ and $s \leftarrow \chi_{s}$ randomly.
The goal is distinguishing pairs $\left(a, b=[a s+e]_{q}\right)$ from random ones in \mathcal{R}_{q}^{2}.
Let $f(x)=x^{n}+1$ with n a power of 2 .
Let χ_{s} be a secret distribution, we consider the ternary distribution.
Key Generation. Sample $a \leftarrow \mathcal{U}_{q}, s \leftarrow \chi_{s}$ and $e \leftarrow \chi_{e}$.
Outputsk $=s$ and $\mathrm{pk}=(b, a)=\left([-a s+e]_{q}, a\right)$.
Let $t>1$ be an integer, called plaintext modulus, and $m \in \mathbb{Z}_{t}$.
Encryption(m, pk). Sample $e_{0}, e_{1} \leftarrow \chi_{e}, u \leftarrow \chi_{s}$. Output $\mathfrak{c}=(\mathbf{c}, q)$ with

$$
\mathbf{c}=\left(c_{0}, c_{1}\right)=\left(\left[\left\lfloor\frac{q}{t} m\right\rceil+b u+e_{0}\right]_{q},\left[a u+e_{1}\right]_{q}\right)
$$

Correctness

Key Generation \& Encryption(m, pk). $a \leftarrow \mathcal{U}_{q}, s, u \leftarrow \chi_{s}$ and $e, e_{0}, e_{1} \leftarrow \chi_{e}$.

$$
\mathrm{sk}=s, b=[-a s+e]_{q}, \mathfrak{c}=(\mathbf{c}, q), \mathbf{c}=\left(c_{0}, c_{1}\right)=\left(\left[\left\lfloor\frac{q}{t} m\right\rceil+b u+e_{0}\right]_{q},\left[a u+e_{1}\right]_{q}\right) \text {. }
$$

Decryption(c, sk). Receive $\mathfrak{c}=\left(\mathbf{c}, q_{\ell}\right)$. Output $\left[\left\lfloor\frac{t}{q_{\ell}}\left[c_{0}+c_{1} s\right]_{q_{\ell}}\right\rfloor\right]_{t}$.

Correctness:

$$
\frac{t}{q}\left[c_{0}+c_{1} s\right]_{q}=\frac{t}{q}\left(\frac{q m}{t}-\frac{[q m]_{t}}{t}+e u+e_{0}+e_{1} s+k q\right)=m+\nu_{\text {clean }}+k t
$$

for some $k \in \mathcal{R}$ and $\nu_{\text {clean }}=\frac{t}{q}\left(-\frac{[q m]_{t}}{t}+e u+e_{0}+e_{1} s\right)$.
The decryption is correct if and only if

$$
\left[\left\lfloor\frac{t}{q}\left[c_{0}+c_{1} s\right\rfloor_{q}\right]\right]_{t}=\left[m+\left\lfloor\nu_{\text {clean }}\right\rceil\right]_{t}=m
$$

i.e. when all the coefficients of $\nu_{\text {clean }}$ belong to $(-1 / 2,1 / 2]$.

Bound on the (Fresh) Error

The coefficients of $\nu_{\text {clean }}$ are well-approximated by identically distributed
Gaussians with mean $\mathbb{E}\left[\left.\nu_{c_{\text {clean }}}\right|_{i}\right]=0$ and variance

$$
\operatorname{Var}\left(\left.\nu_{\text {clean }}\right|_{i}\right) \approx \frac{t^{2}}{q^{2}}\left(\frac{1}{12}+n V_{e} V_{u}+V_{e}+n V_{e} V_{s}\right)
$$

For correct decryption with overwhelming probability, we bound the variance $\operatorname{Var}\left(\left.\nu_{\text {clean }}\right|_{i}\right) \leq \frac{1}{8 D^{2}}$. Indeed,

$$
\mathbb{P}\left(\left.\nu_{\text {clean }}\right|_{i} \in(-1 / 2,1 / 2] \forall i\right) \geq 1-n(1-\operatorname{erf}(D)) .
$$

Usually $D=6$, for $n=2^{13}, n\left(1-\operatorname{erf}(D)=2^{-42}\right.$.

Figure 0.1: $\mathrm{ks}_{\text {pval }}=0.5889 \geq 0.05$.

Characterization of the error

The important characteristics of $\nu_{\text {clean }}$ hold also after the performing of homomorphic operation. Let the invariant noise [10] be the "minimal" $\nu \in \mathbb{Q}[x] /\langle f(x)\rangle$ such that

$$
\frac{t}{q_{\ell}}\left[c_{0}+c_{1} s\right]_{q_{\ell}}=m+\nu+k t
$$

for some $k \in \mathcal{R}$. Then,
■ its coefficients are well-approximated by identical distributed Gaussians with mean $\mathbb{E}\left[\left.\nu\right|_{i}\right]=0$. Thus, the same probabilistic bound holds if $\operatorname{Var}\left(\left.\nu\right|_{i}\right) \leq \frac{1}{8 D^{2}}$.
■ we can always write $\nu=\sum_{\iota} a_{\iota} s^{\iota}$ such that $\operatorname{Var}\left(\left.\nu\right|_{i}\right)=\left.\sum_{\iota} \sum_{j=0}^{n-1} \operatorname{Var}\left(\left.a_{\iota}\right|_{j}\right) s^{\iota}\right|_{i-j} ^{2}$.
In the following, we show how do ν and $\operatorname{Var}\left(\left.\nu\right|_{i}\right)$ change depending on the main operations, without going into the details.

Additions \& Modulo Switch

Let $\nu=\sum_{\iota_{1}} a_{\iota_{1}} s^{\iota_{1}}, \nu^{\prime}=\sum_{\iota_{2}} a_{\iota_{2}}^{\prime} s^{\iota_{2}}$ be the noises of two ciphertexts $\mathfrak{c}, \mathfrak{c}^{\prime}$ computed independently.

Note that s is seen as a fixed vector, whose coefficients have zero mean and variance V_{s}. Hence, the errors are independent.

Addition($\left.\mathfrak{c}, \mathfrak{c}^{\prime}\right)$. The error resulting from the addition is $\nu+\nu^{\prime}$ and its coefficients variance is

$$
\operatorname{Var}\left(\left.\nu\right|_{i}\right)+\operatorname{Var}\left(\left.\nu^{\prime}\right|_{i}\right) .
$$

ModSwitch $\left(\mathfrak{c}, q_{\ell}^{\prime}\right)$. The resulting error is $\nu+\nu_{\mathrm{ms}}\left(q_{\ell}^{\prime}\right)$ with $\nu_{\mathrm{ms}}\left(q_{\ell}^{\prime}\right)$ independent of ν, then the variance is $\operatorname{Var}\left(\left.\nu\right|_{i}\right)+V_{\mathrm{ms}}\left(q_{\ell}^{\prime}\right)$ and, in particular,

$$
\operatorname{Var}\left(\left.\nu\right|_{i}\right)+\frac{B_{\mathrm{ms}}}{q_{\ell}^{\prime}} .
$$

Multiplication $[9,11]$

Let $\nu=\sum_{\iota_{1}=0}^{T_{1}} a_{\iota_{1}} s^{\iota_{1}}, \nu^{\prime}=\sum_{\iota_{2}=0}^{T_{2}} a_{\iota_{2}}^{\prime} s^{\iota_{2}}$ be the noises of two ciphertexts $\mathfrak{c}, \mathfrak{c}^{\prime}$ computed independently with modulus $q_{\ell}, q_{\ell}^{\prime}$, respectively, and $q_{\ell} \approx q_{\ell}^{\prime}$.

Multiplication(c, $\left.\mathfrak{c}^{\prime}\right)$. The error becomes
$\nu_{\mathrm{mul}}\left(q_{\ell}\right)=-\nu \nu^{\prime}+\nu \frac{t}{q_{\ell}^{\prime}}\left(c_{0}^{\prime}+c_{1}^{\prime} s\right)+\nu^{\prime} \frac{t}{q_{\ell}}\left(c_{0}+c_{1} s\right)+\frac{t}{q_{\ell}}\left(\varepsilon_{0}+\varepsilon_{1} s+\varepsilon_{2} s^{2}\right)$.
Initially, we assumed the coefficients of each polynomials are independent among each others, obtaining

$$
\begin{aligned}
\operatorname{Var}\left(\left.\nu_{\mathrm{mul}}\left(q_{\ell}\right)\right|_{i}\right)= & n \operatorname{Var}\left(\left.\nu\right|_{i}\right) \operatorname{Var}\left(\left.\nu^{\prime}\right|_{i}\right)+n \operatorname{Var}\left(\left.\nu\right|_{i}\right) \frac{t^{2}}{12}\left(1+n V_{s}\right)+ \\
& +n \operatorname{Var}\left(\left.\nu^{\prime}\right|_{i}\right) \frac{t^{2}}{12}\left(1+n V_{s}\right)+\operatorname{Var}\left(\left.\frac{t}{q_{\ell}}\left(\varepsilon_{0}+\varepsilon_{1} s+\varepsilon_{2} s^{2}\right)\right|_{i}\right) .
\end{aligned}
$$

However, we discovered that the result was an understimation.

The worst you will see today!

Let $\nu=\sum_{\iota_{1}=0}^{T_{1}} a_{\iota_{1}} s^{\iota_{1}}, \nu^{\prime}=\sum_{\iota_{2}=0}^{T_{2}} a_{\iota_{2}}^{\prime} s^{\iota_{2}}$, then

$$
\operatorname{Var}\left(\left.\nu_{\text {mul }}\left(q_{\ell}\right)\right|_{i}\right)=\left.n \sum_{\iota_{1}} \sum_{\iota_{2}} \operatorname{Var}\left(\left.a_{\iota_{1}}\right|_{i}\right) \operatorname{Var}\left(a_{\iota_{2}}^{\prime} \mid i\right) \sum_{j=0}^{n-1} s^{\iota_{1}+\iota_{2}}\right|_{i-j} ^{2}+\ldots
$$

While what we obtained from the previous formula, $n \operatorname{Var}\left(\left.\nu\right|_{i}\right) \operatorname{Var}\left(\left.\nu^{\prime}\right|_{i}\right)+\ldots$, is

$$
\left.\left.n \sum_{\iota_{1}} \sum_{\iota_{2}} \operatorname{Var}\left(\left.a_{\iota_{1}}\right|_{i}\right) \operatorname{Var}\left(\left.a_{\iota_{2}}^{\prime}\right|_{i}\right) \sum_{j_{1}=0}^{n-1} s^{\iota_{1}}\right|_{i-j_{1}} ^{2} \sum_{j_{2}=0}^{n-1} s^{\iota_{2}}\right|_{i-j_{2}} ^{2}+\ldots
$$

We want to estimate the ratio

$$
\frac{\left.\sum_{j=0}^{n-1} s^{\iota_{1}+\iota_{2}}\right|_{i-j} ^{2}}{\left.\left.\sum_{j_{1}=0}^{n-1} s^{\iota_{1}}\right|_{i-j_{1}} ^{2} \sum_{j_{2}=0}^{n-1} s^{\iota_{2}}\right|_{i-j_{2}} ^{2}}
$$

to get $\operatorname{Var}\left(\left.\nu_{\text {mul }}\left(q_{\ell}\right)\right|_{i}\right)$ from the simpliefied formula.

The "correcting" function f

We start analyzing computationally the average value of the particular case

$$
\frac{\left.\sum_{i=0}^{n-1} s^{\iota}\right|_{i} ^{2}}{\left.\left.\sum_{i_{1}=0}^{n-1} s\right|_{i_{1}} ^{2} \sum_{i_{2}=0}^{n-1} s^{\iota-1}\right|_{i_{2}} ^{2}},
$$

for $\iota \geq 2$. It is well-approximated by the function

$$
f(\iota)=-\frac{1}{e^{a \iota-b}}+c
$$

where a, b, c depend only on the ring dimension n and are computed with Python function
 curve_fit.
For $n=2^{13}, a=0.2240, b=2.4181$ and $c=8.8510$.

Variance estimation exploiting f

We define $g(\iota)=\prod_{i=0}^{\iota} f(i)$. It can be proven by induction that, for $\iota \geq 1$,

$$
\left.\sum_{i=0}^{n-1} s^{\iota}\right|_{i} ^{2} \approx\left(n V_{s}\right)^{\iota} g(\iota)
$$

It follows that

$$
\operatorname{Var}\left(\left.\nu_{\text {mul }}\left(q_{\ell}\right)\right|_{i}\right)=\left.n \sum_{\iota_{1}} \sum_{\iota_{2}} \operatorname{Var}\left(\left.a_{\iota_{1}}\right|_{i}\right) \operatorname{Var}\left(a_{\iota_{2}}^{\prime} \mid i\right) \sum_{j=0}^{n-1} s^{\iota_{1}+\iota_{2}}\right|_{i-j} ^{2}+\ldots
$$

can be approximated by

$$
\left.\left.n \sum_{\iota_{1}} \sum_{\iota_{2}} \operatorname{Var}\left(\left.a_{\iota_{1}}\right|_{i}\right) \operatorname{Var}\left(\left.a_{\iota_{2}}^{\prime}\right|_{i}\right) \sum_{j_{1}=0}^{n-1} s^{\iota_{1}}\right|_{i-j_{1}} ^{2} \sum_{j_{2}=0}^{n-1} s^{\iota_{2}}\right|_{i-j_{2}} ^{2} \frac{g\left(\iota_{1}+\iota_{2}\right)}{g\left(\iota_{1}\right) g\left(\iota_{2}\right)}+\ldots
$$

Bound on g

By monotonicity of f, we can prove that $\frac{g\left(\iota_{1}+\iota_{2}\right)}{g\left(\iota_{1}\right) g\left(\iota_{2}\right)} \leq \frac{g\left(T_{1}+T_{2}\right)}{g\left(T_{1}\right) g\left(T_{2}\right)}$. Therefore

$$
\begin{aligned}
\operatorname{Var}\left(\left.\nu_{\mathrm{mul}}\left(q_{\ell}\right)\right|_{i}\right) & \left.\left.\approx n \sum_{\iota_{1}} \sum_{\iota_{2}} \operatorname{Var}\left(\left.a_{\iota_{1}}\right|_{i}\right) \operatorname{Var}\left(\left.a_{\iota_{2}}^{\prime}\right|_{i}\right) \sum_{j_{1}=0}^{n-1} s^{\iota_{1}}\right|_{i-j_{1}} ^{2} \sum_{j_{2}=0}^{n-1} s^{\iota_{2}}\right|_{i-j_{2}} ^{2} \frac{g\left(\iota_{1}+\iota_{2}\right)}{g\left(\iota_{1}\right) g\left(\iota_{2}\right)}+\ldots \\
& \leq n \operatorname{Var}\left(\left.\nu\right|_{i}\right) \operatorname{Var}\left(\left.\nu^{\prime}\right|_{i}\right) \frac{g\left(T_{1}+T_{2}\right)}{g\left(T_{1}\right) g\left(T_{2}\right)}+\ldots
\end{aligned}
$$

Then

$$
\begin{aligned}
\operatorname{Var}\left(\left.\nu_{\mathrm{mul}}\left(q_{\ell}\right)\right|_{i}\right) & \leq n \operatorname{Var}\left(\left.\nu\right|_{i}\right) \operatorname{Var}\left(\left.\nu^{\prime}\right|_{i}\right) \frac{g\left(T_{1}+T_{2}\right)}{g\left(T_{1}\right) g\left(T_{2}\right)}+n \operatorname{Var}\left(\left.\nu\right|_{i}\right) \frac{t^{2}}{12}\left(1+n V_{s} f\left(T_{1}+1\right)\right)+ \\
& +n \operatorname{Var}\left(\left.\nu^{\prime}\right|_{i}\right) \frac{t^{2}}{12}\left(1+n V_{s} f\left(T_{2}+1\right)\right)+\frac{t^{2}}{12 q_{\ell}^{2}}\left(1+n V_{s}+\left(n V_{s}\right)^{2} f(2)\right)
\end{aligned}
$$

Closed formulas for Base Circuit

Finally, the first and last terms are negligible, then

$$
\operatorname{Var}\left(\left.\nu_{\mathrm{mul}}\right|_{i}\right) \approx \frac{t^{2} n^{2} V_{s}}{12}\left(\operatorname{Var}\left(\left.\nu\right|_{i}\right) f\left(T_{1}+1\right)+\operatorname{Var}\left(\left.\nu^{\prime}\right|_{i}\right) f\left(T_{2}+1\right)\right)
$$

Base Circuit:

$$
\begin{aligned}
V_{\ell} & \approx \frac{t^{2} n^{2} V_{s}}{12}\left(2 \eta V_{\ell-1}+V_{\mathrm{ms}}\right) f(\ell+1) \\
& \approx\left(A V_{\ell-1}+C\right) f(\ell+1) \\
V_{L-1} & \approx \frac{A^{L-2}\left(A B_{\text {clean }}+C\right) g(L)}{q^{2}}<1 / 8 D^{2} \\
q^{2} & \geq 8 D^{2} A^{L-2}\left(A B_{\text {clean }}+C\right) g(L)
\end{aligned}
$$

Results - Single Functions

We compare encryption, addition and multiplication of fresh ciphertexts through the noise budget, [16]

$$
-\log _{2}(2 \cdot\|\nu\|)=\log _{2}\left(\frac{1}{2}\right)-\log _{2}(\|\nu\|)
$$

n	Encryption				Addition				Multiplication			
	maximum value			mean exp	maximum value			mean exp	maximum value			mean exp
	can	our	exp		can	our	exp		can	our	exp	
2^{12}	26.5	32.0	32.7	35.4	86.0	91.5	92.1	94.9	57.0	65.1	65.9	68.7
2^{13}	25.5	31.5	32.2	34.9	85.0	91.0	91.6	94.4	55.0	63.6	64.3	66.2
2^{14}	24.5	31.0	31.5	34.4	84.0	90.5	91.1	93.9	53.0	62.1	62.8	65.7
2^{15}	23.5	30.5	31.0	33.9	83.0	90.0	90.5	93.4	51.0	60.6	61.2	64.2

Results - Base circuits

We consider Base circuits of depth 2 and 3 , taking $\eta=8$.

n	2 multiplications					3 multiplications				
	maximum value			mean value		maximum value			mean value	
	can	our	exp	our	exp	can	our	exp	our	exp
2^{12}	21.5	35.0	35.9	38.1	38.6	-	-	-	-	-
2^{13}	18.5	32.5	33.6	35.6	36.1	45.0	62.5	63.6	65.6	66.3
2^{14}	15.5	30.0	30.9	33.1	33.6	41.0	59.1	60.1	62.2	62.7
2^{15}	12.5	27.6	28.4	30.7	31.1	37.0	55.6	56.4	58.7	59.2

Results - Ciphertext

We compare the resulting bound on the ciphertext modulus.

n	2^{12}	2^{13}	2^{14}	2^{15}
can	75.0	79.0	83.0	87.0
our	56.7	60.2	63.7	67.2

Table 1: Comparison of $\log _{2}(q)$ in the Base Model circuit of depth 3 and $\eta=8$.

Parameter Generator

To make our work more valuable and approachable for practical purposes, we provide automated parameter generation implemented in Python and publicly available on GitHub ${ }^{1}$. We integrated our theoretical work for the BFV scheme in the tool of Mono[13]. The generator interactively prompts the user with a list of required and optional inputs, then outputs code snippets with the obtained parameters for multiple state-of-the-art libraries.

[^0]...Thankyou!

References I

[1] Martin R Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter, Satya Lokam, Daniele Micciancio, Dustin Moody, Travis Morrison, Amit Sahai, and Vinod Vaikuntanathan. Homomorphic encryption security standard. Technical report, HomomorphicEncryption . org, Toronto, Canada, November 2018.
[2] Martin R Albrecht, Benjamin R Curtis, Amit Deo, Alex Davidson, Rachel Player, Eamonn W Postlethwaite, Fernando Virdia, and Thomas Wunderer. Estimate all the \{ LWE, NTRU \} schemes! In International Conference on Security and Cryptography for Networks, pages 351-367. Springer, 2018.
[3] Loris Bergerat, Anas Boudi, Quentin Bourgerie, Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, and Samuel Tap. Parameter Optimization \& Larger Precision for (T) FHE. Cryptology ePrint Archive, 2022.

References II

[4] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Faster fully homomorphic encryption: Bootstrapping in less than 0.1 seconds. In international conference on the theory and application of cryptology and information security, pages 3-33. Springer, 2016.
[5] Ana Costache and Nigel P Smart. Which ring based somewhat homomorphic encryption scheme is best? In Cryptographers' Track at the RSA Conference, pages 325-340. Springer, 2016.
[6] Anamaria Costache, Benjamin R Curtis, Erin Hales, Sean Murphy, Tabitha Ogilvie, and Rachel Player. On the precision loss in approximate homomorphic encryption. Cryptology ePrint Archive, 2022.
[7] Anamaria Costache, Kim Laine, and Rachel Player. Evaluating the effectiveness of heuristic worst-case noise analysis in FHE. In European Symposium on Research in Computer Security, pages 546-565. Springer, 2020.

References III

[8] Anamaria Costache, Lea Nürnberger, and Rachel Player. Optimisations and tradeoffs for helib. In Topics in Cryptology-CT-RSA 2023: Cryptographers' Track at the RSA Conference 2023, San Francisco, CA, USA, April 24-27, 2023, Proceedings, pages 29-53. Springer, 2023.
[9] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption. IACR Cryptology ePrint Archive, 2012.
[10] Ilia Iliashenko. Optimisations of fully homomorphic encryption. PhD thesis, 2019.
[11] Andrey Kim, Yuriy Polyakov, and Vincent Zucca. Revisiting homomorphic encryption schemes for finite fields, 2021.
[12] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over rings. In Henri Gilbert, editor, Advances in Cryptology - EUROCRYPT 2010, pages 1-23, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

References IV

[13] Johannes Mono, Chiara Marcolla, Georg Land, Tim Güneysu, and Najwa Aaraj. Finding and Evaluating Parameters for BCV. Africacrypt, 2023.
[14] Sean Murphy and Rachel Player. A central limit approach for ring-Iwe noise analysis.
[15] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, pages 84-93, 2005.
[16] Microsoft SEAL (release 3.4). https://github.com/Microsoft/SEAL, October 2019. Microsoft Research, Redmond, WA.

tii.ae

[^0]: ${ }^{1}$ https://github.com/Crypto-TII/fhegen

