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Motivation

This work arises from the practical need of using Homomorphic Encryption in a team project.
We had to face the challenge of parameters selection in (leveled) FHE.

The problem is the noise growth . The error introduced in the encryption phase for security
reasons grows as homomorphic operations are performed. In particular, it grows exponentially
with multiplications .

To guarantee correctness , we need a large ciphertext modulus . However, a larger modulus also
decreases the security level of the underlying scheme, requiring a larger polynomial degree at the
cost of efficiency.

Our aim: an effective analysis the noise growth and a consequent a tight bound on the ciphertext
modulus for correctness.
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Our Contribution

We propose an average-case studio for the error growth in the BFV scheme .
Our analysis differs from the previously proposed for other schemes in the
computation of the homomorphic multiplication variance error, where we
introduce a “correcting” function.

We show how to compute the ciphertext modulus with closed formulas for
generic circuits.

We implemented an interactive tool for the parameter generation, extending
the one of Mono et al. [13] for BGV. It combines their security formula with our
theoretical findings.

https://eprint.iacr.org/2023/600.pdf
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Related works

Recent works introduced the average-case analysis for the error growth for
TFHE [4], CKKS [6] and BGV [14, 8].

The state-of-the-art in establishing theoretical bounds for the BFV scheme
relies on the canonical norm [5, 10, 7], which often yields overly conservative
bounds.

Regarding automation of parameters selection, Bergerat et al. [3] proposed
a framework for efficiently selecting parameters in TFHE-like schemes;
Mono et al. [13] developed an interactive parameter generator for the leveled
BGV scheme that supports arbitrary circuit models.
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Security: the RLWE Problem

Let f(x) be a monic irreducible polynomial andR = Z[x]/⟨f(x)⟩.
Let q > 1 be an integer, we denoteZq = Z ∩ (−q/2, q/2] andRq the set of
polynomials inRwith coefficients inZq .
Letχe be an error distribution, usually a discrete Gaussian centered in 0 [1].
Letχs be any distribution.

The (Decisional) Ring Learning with Errors problem [12]:
Let a ∈ Rq arbitrary, sample e← χe and s← χs randomly.
The goal is distinguishing pairs (a, b = [as+ e]q) from random ones inR2

q .

The RLWE problem is presumed to be intractable [15].
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Building a Scheme on top of RLWE: BFV [9, 11]

The (Decisional) Ring Learning with Errors problem [12]:
Let a ∈ Rq arbitrary, sample e← χe and s← χs randomly.
The goal is distinguishing pairs (a, b = [as+ e]q) from random ones inR2

q .

Let f(x) = xn + 1withn a power of 2.
Letχs be a secret distribution, we consider the ternary distribution.

Key Generation. Sample a← Uq , s← χs and e← χe.
Output sk = s and pk = (b, a) = ([−as+ e]q, a).

Let t > 1 be an integer, called plaintext modulus, andm ∈ Zt.
Encryption(m,pk). Sample e0, e1 ← χe,u← χs. Output c = (c, q)with
c = (c0, c1) =

([⌊ q
tm

⌉
+ bu+ e0

]
q
, [au+ e1]q

)
.
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Correctness

Key Generation & Encryption(m,pk). a← Uq , s, u← χs and e, e0, e1 ← χe.
sk = s, b = [−as+ e]q , c = (c, q), c = (c0, c1) =

([⌊ q
tm

⌉
+ bu+ e0

]
q
, [au+ e1]q

)
.

Decryption(c, sk). Receive c = (c, qℓ). Output
[⌊

t
qℓ
[c0 + c1s]qℓ

⌉]
t
.

Correctness:
t

q
[c0 + c1s]q =

t

q

(
qm

t
− [qm]t

t
+ eu+ e0 + e1s+ kq

)
= m+ νclean + kt

for some k ∈ R and νclean = t
q

(
− [qm]t

t + eu+ e0 + e1s
)

.
The decryption is correct if and only if[⌊

t
q [c0 + c1s]q

⌉]
t
= [m+ ⌊νclean⌉]t = m,

i.e. when all the coefficients of νclean belong to (−1/2, 1/2].
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Bound on the (Fresh) Error

The coefficients of νclean are well-approximated by identically distributed

Gaussians with meanE[νclean|i] = 0 and variance

Var(νclean|i) ≈ t2

q2
( 1
12 + nVeVu + Ve + nVeVs).

For correct decryption with overwhelming probability, we
bound the varianceVar(νclean|i) ≤ 1

8D2 . Indeed,

P
(
νclean|i ∈ (−1/2, 1/2]∀i

)
≥ 1− n(1− erf(D)).

UsuallyD = 6, forn = 213,n(1− erf(D) = 2−42. Figure 0.1: kspval = 0.5889≥ 0.05.
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Characterization of the error

The important characteristics of νclean hold also after the performing of homomorphic operation.
Let the invariant noise [10] be the “minimal" ν ∈ Q[x]/⟨f(x)⟩ such that

t

qℓ
[c0 + c1s]qℓ = m+ ν + kt

for some k ∈ R. Then,
its coefficients are well-approximated by identical distributed Gaussians with meanE[ν|i] = 0.
Thus, the same probabilistic bound holds ifVar(ν|i) ≤ 1

8D2 .

we can always write ν =
∑

ι aιs
ι such thatVar(ν|i) =

∑
ι

∑n−1
j=0 Var(aι|j)sι|2i−j .

In the following, we show how do ν andVar(ν|i) change depending on the main operations,
without going into the details.
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Additions & Modulo Switch

Let ν =
∑

ι1
aι1s

ι1 , ν ′ =
∑

ι2
a′ι2s

ι2 be the noises of two ciphertexts c, c′ computed
independently.

Note that s is seen as a fixed vector, whose coefficients have zero mean and varianceVs. Hence,
the errors are independent.

Addition(c, c′). The error resulting from the addition is ν + ν ′ and its coefficients variance is

Var(ν|i) + Var(ν ′|i).

ModSwitch(c, q′ℓ). The resulting error is ν + νms(q
′
ℓ)with νms(q

′
ℓ) independent of ν, then the

variance isVar(ν|i) + Vms(q
′
ℓ) and, in particular,

Var(ν|i) + Bms
q′ℓ

.
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Multiplication [9, 11]

Let ν =
∑T1

ι1=0 aι1s
ι1 , ν ′ =

∑T2
ι2=0 a

′
ι2s

ι2 be the noises of two ciphertexts c, c′ computed
independently with modulus qℓ, q′ℓ, respectively, and qℓ ≈ q′ℓ.

Multiplication(c,c′). The error becomes
νmul(qℓ) = −νν ′ + ν t

q′ℓ
(c′0 + c′1s) + ν ′ t

qℓ
(c0 + c1s) +

t
qℓ
(ε0 + ε1s+ ε2s

2).

Initially, we assumed the coefficients of each polynomials are independent among each others,
obtaining

Var(νmul(qℓ)|i) =nVar(ν|i)Var(ν ′|i) + nVar(ν|i)
t2

12
(1 + nVs)+

+ nVar(ν ′|i)
t2

12
(1 + nVs) + Var

( t

qℓ
(ε0 + ε1s+ ε2s

2)|i
)
.

However, we discovered that the result was an understimation.
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The worst you will see today!

Let ν =
∑T1

ι1=0 aι1s
ι1 , ν ′ =

∑T2
ι2=0 a

′
ι2s

ι2 , then

Var(νmul(qℓ)|i) = n
∑
ι1

∑
ι2

Var(aι1 |i)Var(a′ι2 |i)
n−1∑
j=0

sι1+ι2 |2i−j + . . .

While what we obtained from the previous formula, nVar(ν|i)Var(ν ′|i) + . . . , is

n
∑
ι1

∑
ι2

Var(aι1 |i)Var(a′ι2 |i)
n−1∑
j1=0

sι1 |2i−j1

n−1∑
j2=0

sι2 |2i−j2 + . . .

We want to estimate the ratio ∑n−1
j=0 s

ι1+ι2 |2i−j∑n−1
j1=0 s

ι1 |2i−j1

∑n−1
j2=0 s

ι2 |2i−j2

to getVar(νmul(qℓ)|i) from the simpliefied formula.
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The “correcting” function f

We start analyzing computationally the average value of the particular case∑n−1
i=0 sι|2i∑n−1

i1=0 s|2i1
∑n−1

i2=0 s
ι−1|2i2

,

for ι ≥ 2. It is well-approximated by the function

f(ι) = − 1

eaι−b
+ c,

where a, b, c depend only on the ring dimension
n and are computed with Python function
curve_fit.

Forn = 213, a = 0.2240, b = 2.4181 and c = 8.8510.
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Variance estimation exploiting f

We define g(ι) =
∏ι

i=0 f(i). It can be proven by induction that, for ι ≥ 1,

n−1∑
i=0

sι|2i ≈ (nVs)
ιg(ι).

It follows that

Var(νmul(qℓ)|i) = n
∑
ι1

∑
ι2

Var(aι1 |i)Var(a′ι2 |i)
n−1∑
j=0

sι1+ι2 |2i−j + . . .

can be approximated by

n
∑
ι1

∑
ι2

Var(aι1 |i)Var(a′ι2 |i)
n−1∑
j1=0

sι1 |2i−j1

n−1∑
j2=0

sι2 |2i−j2

g(ι1 + ι2)

g(ι1)g(ι2)
+ . . .
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Bound on g

By monotonicity of f , we can prove that g(ι1+ι2)
g(ι1)g(ι2)

≤ g(T1+T2)
g(T1)g(T2)

. Therefore

Var(νmul(qℓ)|i) ≈ n
∑
ι1

∑
ι2

Var(aι1 |i)Var(a′ι2 |i)
n−1∑
j1=0

sι1 |2i−j1

n−1∑
j2=0

sι2 |2i−j2

g(ι1 + ι2)

g(ι1)g(ι2)
+ . . .

≤ nVar(ν|i)Var(ν ′|i)
g(T1+T2)

g(T1)g(T2)
+ . . .

Then

Var(νmul(qℓ)|i) ≤ nVar(ν|i)Var(ν ′|i)
g(T1+T2)

g(T1)g(T2)
+ nVar(ν|i)

t2

12

(
1 + nVsf(T1+1)

)
+

+ nVar(ν ′|i)
t2

12

(
1 + nVsf(T2+1)

)
+

t2

12q2ℓ

(
1 + nVs + (nVs)

2f(2)
)
.
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Closed formulas for Base Circuit

Finally, the first and last terms are negligible, then

Var(νmul|i) ≈
t2n2Vs

12

(
Var(ν|i)f(T1 + 1) + Var(ν ′|i)f(T2 + 1)

)
.

Base Circuit:

Vℓ ≈
t2n2Vs

12

(
2ηVℓ−1 + Vms

)
f(ℓ+ 1)

≈ (AVℓ−1 + C)f(ℓ+ 1)

VL−1 ≈
AL−2(ABclean + C)g(L)

q2
< 1/8D2

q2 ≥ 8D2AL−2(ABclean + C)g(L)
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Results - Single Functions

We compare encryption, addition and multiplication of fresh ciphertexts through the noise
budget, [16]

− log2(2 · ||ν||) = log2
(
1
2

)
− log2(||ν||).

Encryption Addition Multiplication

maximum value mean maximum value mean maximum value mean
n can our exp exp can our exp exp can our exp exp

212 26.5 32.0 32.7 35.4 86.0 91.5 92.1 94.9 57.0 65.1 65.9 68.7
213 25.5 31.5 32.2 34.9 85.0 91.0 91.6 94.4 55.0 63.6 64.3 66.2
214 24.5 31.0 31.5 34.4 84.0 90.5 91.1 93.9 53.0 62.1 62.8 65.7
215 23.5 30.5 31.0 33.9 83.0 90.0 90.5 93.4 51.0 60.6 61.2 64.2
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Results - Base circuits

We consider Base circuits of depth 2 and 3, taking η = 8.

2 multiplications 3 multiplications

maximum value mean value maximum value mean value
n can our exp our exp can our exp our exp

212 21.5 35.0 35.9 38.1 38.6 - - - - -
213 18.5 32.5 33.6 35.6 36.1 45.0 62.5 63.6 65.6 66.3
214 15.5 30.0 30.9 33.1 33.6 41.0 59.1 60.1 62.2 62.7
215 12.5 27.6 28.4 30.7 31.1 37.0 55.6 56.4 58.7 59.2
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Results - Ciphertext

We compare the resulting bound on the ciphertext modulus.

n 212 213 214 215

can 75.0 79.0 83.0 87.0
our 56.7 60.2 63.7 67.2

Table 1: Comparison of log2(q) in the Base Model circuit of depth 3 and η = 8.
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Parameter Generator

To make our work more valuable and approachable for practical purposes, we provide automated
parameter generation implemented in Python and publicly available on GitHub 1. We integrated
our theoretical work for the BFV scheme in the tool of Mono[13]. The generator interactively
prompts the user with a list of required and optional inputs, then outputs code snippets with the
obtained parameters for multiple state-of-the-art libraries.

1https://github.com/Crypto-TII/fhegen
20
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. . . Thank you!
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