
Kelong Cong, Debajyoti Das, Georgio Nicolas and Jeongeun Park

Panacea: Non-interactive and
Stateless Oblivious RAM

1

Recap on Oblivious Random Access
Memory (ORAM)

• Client-Server Scenario
• The client stores a database encrypted by a key they control on a remote

untrusted server.
• The client would like to request the server to perform a read or a write

operation on any data element.

3

Setting the Stage

• The server performs the requested operation and returns the targeted data
element without knowing any of the following:

• Whether the client requested a Read or a Write operation
• Which data element was targeted by the client
• What is the content of any stored data element

4

ORAM Security Properties

• The client encrypts each element in the database with a randomized symmetric-key
encryption scheme.

• For each access, the client does the following:
1. Requests the whole database
2. Decrypts the db
3. Does whatever they want with the data
4. Re-encrypts the db and sends it back to the server.

• Since encryption is randomized, the Server would not know which element was
targeted by the client, nor whether the client performed a read or a write operation.

5

Simple Solution

• The client might not have enough storage available to download the entire
database locally.

• It is not efficient (bandwidth-wise) to download the entire database if the client
needed to access only a small number of elements.

• It could take some time to decrypt then re-encrypt the entire database on a
client without much computational resources.

• The client has to maintain a dynamic state because of the randomized
encryption scheme in order to be able to decrypt.

• ORAM schemes try to solve these problems in a more efficient manner.

6

Problems with the Simple Solution

7

Bandwidth Blowup
• The ratio of communication cost required by ORAM to that of

performing the same operation in plaintext

Some Important Properties 1/3

8

Stateful ORAM
• The client maintains a dynamic state

which is updated after every number
of queries to the server

Some Important Properties 2/3

9

Stateful ORAM
• The client maintains a dynamic state

which is updated after every number
of queries to the server

Some Important Properties 2/3

Stateless ORAM
• The client only needs to maintain

static data (keys, or hashes of
indices) that are computed once
during the setup

• No need to synchronise state, or for
writeable client storage

10

Interactive ORAM
• The client and the server perform

multiple rounds of interaction before
the server can return the final result or
update the database

Some Important Properties 3/3

11

Interactive ORAM
• The client and the server perform

multiple rounds of interaction before
the server can return the final result or
update the database

Some Important Properties 3/3

Non-Interactive ORAM
• The client can send their query and

then do nothing
• The query would contain everything

that the server needs to respond and
update the database

12

Classical Model
• The client performs all the

computation
• The server only stores data and

sends it back on demand

• Lower bound of Ω(𝑙𝑜𝑔(𝑛)) proven
in 1996 by Goldreich and Ostrovsky

ORAM Models

13

Classical Model
• The client performs all the

computation
• The server only stores data and

sends it back on demand
• Bandwidth blowup lower bound of
Ω(𝑙𝑜𝑔(𝑛)) proven in 1996 by
Goldreich and Ostrovsky

ORAM Models

Server-Computation Model
• The server contributes to the

computation which guarantees security
• Less load on the client
• Constant bandwidth overhead first

achieved by Circuit ORAM (with tight
assumptions)

• State of the art was Onion ORAM
(theoretical result) leveraging HE for a
smaller overhead with looser
assumptions

14

Previous ORAM Schemes

Stateful and Interactive
• Tree-based database structures

- Circuit ORAM (Wang et. al, 2014)
- Onion ORAM (Devadas et al.)
- PathORAM (Stefanov et al., 2013)…

• Hierarchical database structures
- (Ostrovsky, 1992)

15

Circuit ORAM Ostrovsky’s Hierarchical ORAM

Image credit: https://www.slideshare.net/AshutoshSatapathy4/oram

https://www.slideshare.net/AshutoshSatapathy4/oram

• Tree-based data structure
• Client maintains a position map which

maps every element to a path to a leaf
node from the tree

• Client requests all blocks in a given path
(O(𝑙𝑜𝑔2(𝑁)), decrypts it and operates on
the data

• There is a shuffling procedure involved
which updates the position map

• Client returns updated nodes to the
server

PathORAM (Stefanov et al., 2013)

Image credit: https://research.kudelskisecurity.com/2020/04/22/an-introduction-to-oblivious-ram-oram/

https://research.kudelskisecurity.com/2020/04/22/an-introduction-to-oblivious-ram-oram/

• FHE-based
• Tree-based structure
• Stateful and Non-Interactive* (*: technically still interactive)

• Non-Interactive and the first to provide non-theoretical constant bandwidth
overhead in the “Online” phase

• However requires:
• The client to maintain a dynamic state
• An expensive interactive “offline” eviction phase after a fixed number of queries

with non-constant bandwidth blowup
• Writes to occur only after eviction

17

Onion Ring ORAM (Chen et. al, 2019)

• We think it’s interesting to have an ORAM scheme that is completely Stateless
and Non-Interactive, with Constant Bandwidth Blowup

• Previous schemes demand that the client:
• Performs intensive computations (ex. During the eviction phase)
• Maintains a dynamic state (ex. Positions of elements after shufffling)
• Interacts with the server before being able to write to the db
• Transfers a lot of data

• A cloud-based password manager wouldn’t be quite nice to use if it requires
such properties

Some Caveats

Our Proposed ORAM Scheme

• Pros
• We can leverage FHE for a much simpler design
• Constant bandwidth overhead
• Stateless and non-interactive
• No offline phase
• Does not require a powerful client (can run on a phone)
• Open source implementation: https://github.com/KULeuven-

COSIC/Panacea
• Cons

• Linear computational complexity

20

Our ORAM Scheme: Panacea

https://github.com/KULeuven-COSIC/Panacea
https://github.com/KULeuven-COSIC/Panacea

21

Simple Stateless and Non-Interactive ORAM

22

Homomorphic Demultiplexing

L0 L1 L7...

23

Response Calculation

• We make use CMUX(c, a, b)
• Define as CMUX(Enc(0), a, b) = b, CMUX(Enc(1), a, b) = a

• For j in 0..n
1. temp = CMUX(op, data, dj); // output data if it's a
write

2. dj = CMUX(Lj, temp, dj); // output temp when at index a

25

Update Step

1. Client encrypts a query and sends it
2. Server performs:

1. Homomorphic Demultiplexing (compute the unit vector)
2. Response Calculation (the inner product)
3. Responding to the client

3. Client receives the response and decrypts it
4. Server performs the Update Step (to write to the database)

26

Summary So Far

1. Client encrypts a query and sends it: O(log n) comm.
2. Server performs:

1. Homomorphic Demultiplexing (compute the unit vector): O(n)
2. Response Calculation (the inner product): O(n)
3. Responding to the client: O(1) comm.

3. Client receives the response and decrypts it: O(1)
4. Server performs the Update Step (to write to the database): O(n)

27

Summary So Far

28

But We Can Do Better

• Some applications may wish to query multiple elements at a time
• e.g., retrieving a lot of data to run analysis

• Running the protocol above many times is not ideal
• Our batched design uses probabilistic batch codes

• This was never done in ORAM due to consistency issues, which we fix!

29

Batching Queries - Setup

• We use a probabilistic batch code
(PBC) where every element is
mapped to 3 locations

• Let k be the batch size
• Let B = 1.5k as the number of

columns in the encoded table
• Ideally, the same item should not be

mapped to the same column more
than once

• The goal of the client is to perform
one access for each column

30

Batching Queries - Query creation

• Client makes B = 1.5k queries to the
server using cuckoo hashing

• We use k=256, B=384, h=3 to
achieve 2-40 failure probability

0 1

h1(0)

B0 B1 B5...

h1(3) h2(3)

0
1
2
3
4
5
6
7 = a (index to query)

31

Batching Queries - Server computation

• Server performs the basic Panacea protocol for every column (in parallel!)
• Demultiplexing, response calculation, response

• Client decrypts the response and finds the k responses that it is interested in
• Server performs the update
• But there will be consistency issues!

32

Consistency Issue

• Suppose client wants to update d0

• It would need to update three locations
• So it is no longer a batched query!
• Goal: if client updates d1,0, the server

should figure out how to also update
d2,0 and d5,0

34

Consistency Correction Algorithm
d1,0 • (1 - L1,0 • op1 - L2,0 • op2 - L5,0 • op5) +
(d1,0 • L1,0 • op1 + d2,0 • L2,0 • op2 + d5,0 • L5,0 • op5)

L57
L54
L50
L53

0 if we're writing, else d1,0

The latest data if we're writing

The expression outputs the latest
data if there is a write in any of the
three positions and then it is
copied to d1,0, d2,0 and d5,0

at most one L is Enc(1)

• Implementation in Rust based on the concrete-core library (TFHE)
• Computation time in seconds required by the server for database of size n,

batch size 𝑘 = 256 (ie 384 queries with 128 dummies)

35

Some Numbers

36

More Numbers
• Top table:

Cost of storing the database

• Bottom table:
Server compute time and cost for
processing one batch of queries

• Real numbers from Google Cloud
• Batched Scenario (256 elements)

Thank you :-)
ia.cr/2023/274

38

https://ia.cr/2023/274

