Faster TFHE Bootstrapping with Block Binary Keys

Changmin Lee ${ }^{1}$, Seonhong Min ${ }^{2}$, Jinyeong Seo ${ }^{2}$, Yongsoo Song ${ }^{2}$
${ }^{1}$ Korea Institute for Advanced Study, Seoul
${ }^{2}$ Seoul National University, Seoul

Fully Homomorphic Encryption

- Fully Homomorphic Encryption (FHE) supports arbitrary function evaluation on encrypted data.
- Various Applications: privacy preserving machine learning, private information retrieval, private set intersection ...

Learning with Errors

- The most efficient FHEs to date are built on Learning with Errors (LWE) problem and its ring-variant Ring-LWE (RLWE).
- LWE: $(\mathbf{a}, b) \approx_{c} \mathcal{U}\left(\mathbb{Z}_{q}^{n+1}\right)$
- $\mathbf{a} \leftarrow \mathcal{U}\left(\mathbb{Z}_{q}^{n}\right), \mathbf{s} \in \mathbb{Z}^{n}, e \leftarrow$ small dist' over \mathbb{Z}
- $b=-\langle\mathbf{a}, \mathbf{s}\rangle+e(\bmod q)$
- RLWE: $(a, b) \approx_{c} \mathcal{U}\left(R_{q}^{2}\right)$
- Variant of LWE over $R_{q}=R / q R$ where $R=\mathbb{Z}[X] /\left(X^{N}+1\right)$
- $a \leftarrow \mathcal{U}\left(R_{q}\right), s \in R, e \leftarrow$ small dist' over R
- $b=-a \cdot s+e(\bmod q)$
- FHE schemes based on LWE/RLWE
- BGV / BFV / CKKS
- TFHE / FHEW

TFHE description

- FHE scheme that supports bits operations (NAND, AND, OR...).
- Secret Key:
- LWE secret $\mathbf{s}=\left(s_{1}, \ldots, s_{n}\right)$
- RLWE secret $t=\sum_{i=1}^{N} t_{i} X^{i-1}$
- Vectorized secret $\mathbf{t}=\left(t_{1}, \ldots, t_{N}\right)$
- All keys are sampled from binary distribution
- Encoding: $m \in\{-1,1\} \mapsto \mu=\frac{q}{8} m \in \mathbb{Z}_{q}$
- Decoding: $\begin{cases}1 & \text { if } \mu>0 \\ -1 & \text { otherwise }\end{cases}$
- Encryption: $c=(b, \mathbf{a}) \in \mathbb{Z}_{q}^{n+1}$ for $\mathbf{a} \leftarrow \mathcal{U}\left(\mathbb{Z}_{q}^{n}\right), e \leftarrow$ small dist., $b=-\langle\mathbf{a}, \mathbf{s}\rangle+\mu+e$.
- Decryption: $b+\langle\mathbf{a}, \mathbf{s}\rangle=\mu+e$

Homomorphic Gate Evaluation

- Each bit operation consists of the following pipeline:

- Linear Combination : The linear combination corresponding to a Boolean gate is evaluated.
- ex) NAND : $c=\left(\frac{q}{8}, \mathbf{0}\right)-c_{1}-c_{2}$
- output ciphertext contains a large noise e.
- Bootstrapping : Reduces the size of noise for further evaluation.
- ex) $\|e\|<\frac{q}{8} \rightarrow\left\|e^{\prime}\right\|<\frac{q}{16}$

TFHE Bootstrapping

- Blind Rotation : Homomorphically computes the decryption circuit on the exponent of X i.e., $X^{b+\langle\mathbf{a}, \mathbf{s}\rangle}$.
- Need Blind Rotation Key: RGSW encryptions of $s_{i}(1 \leq i \leq n)$
- Sample Extract: Extract the constant term of the plaintext from the resulting RLWE ciphertext.
- Key-Switching : Switch the dimension of the LWE ciphertext.
- Need Key-Switching Key: Gadget encryptions of $t_{i}(1 \leq i \leq N)$

Our Contribution

Motivation: Most FHE schemes (BGV/FV/CKKS) make an additional assumption on key structure to obtain better efficiency.

- BGV/FV : Small noise growth in homomorphic multiplication.
- BGV/CKKS : Small depth for bootstrapping.

Our Result: We adapt similar approach to accelerate TFHE bootstrapping.
(1) Faster Blind Rotation

- Sample LWE key from block binary key distribution
- Reduce the number of FFT operations
(2) Compact Key-Switching
- Re-use the LWE key as a part of RLWE key
- Improve both time and space complexity

Blind Rotation

Functionality

- Homomorphic evaluation of $t v \cdot X^{b+\sum_{i=1}^{n} a_{i} s_{i}}=t v \cdot X^{\frac{q}{8} m+e} \in R_{q}$.

$$
t v=-\frac{q}{8}\left(1+X+\cdots+X^{N-1}\right) \in R_{q} .
$$

Constant term of $t v \cdot X^{\frac{q}{8} m+e}=\frac{q}{8} m$.

- Homomorphically multiply monomials $X^{a_{i} s_{i}}$ to $t v \cdot X^{b}$ iteratively.
- We need \mathbf{n} external products total.

Previous Blind Rotation

$$
\begin{aligned}
& a_{n} \quad\left[s_{n}\right]_{t} \\
& \times X^{a_{n} s_{n}} \quad\left[t v \cdot X^{b+\langle a, s\rangle}\right]_{t}
\end{aligned}
$$

- $X^{a_{i} s_{i}}=\left\{\begin{array}{ll}X^{a_{i}} & \left(s_{i}=1\right) \\ 1 & \left(s_{i}=0\right)\end{array}=1+\left(X^{a_{i}}-1\right) s_{i}\right.$
- Using this key formula, we have $\left[X^{a_{i} s_{i}}\right]_{t}=1+\left(X^{a_{i}}-1\right)\left[s_{i}\right]_{t}$
- We iteratively multiply one monomial $X^{a_{i} s_{i}}$ for \mathbf{n} times.

Observation

- Can we multiply 2 monomials simultaneously?

$$
\begin{aligned}
& X^{a_{1} s_{1}+a_{2} s_{2}} \\
& =\left(1+\left(X^{a_{1}}-1\right) s_{1}\right)\left(1+\left(X^{a_{2}}-1\right) s_{2}\right) \\
& =1+\left(X^{a_{1}}-1\right) s_{1}+\left(X^{a_{2}}-1\right) s_{2}+\left(X^{a_{1}}-1\right)\left(X^{a_{2}}-1\right) s_{1} s_{2}
\end{aligned}
$$

- With this formula, the number of homomorphic mult reduces by half.
- Requires RGSW encryption of $s_{1} s_{2}$
- + the number of linear evaluation grows.
- What if we can ignore the case where $s_{1}=s_{2}=1$?
- No additional blind rotation keys are required.
- The number of linear evaluation remains same.
- Generalization: How about ℓ monomials?
\rightarrow Possible. If \mathbf{s} is sampled from Block Binary Key Distribution...

Block Binary Keys

Definition (Block Binary Key)

- $n=k \ell$ for two positive integers $k, \ell>0$
- $\mathbf{s}=\left(B_{1}, \ldots, B_{k}\right) \in\{0,1\}^{n}$
- $B_{i} \leftarrow \mathcal{U}((1,0, \ldots, 0), \ldots,(0,0, \ldots, 1),(0, \ldots, 0))$
- At most one 1 in each block

1	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	1	0

Figure: Block Binary Key with $\ell=3$ and $k=6$

Block Binary Keys

$$
\begin{aligned}
X^{a_{1} s_{1}} & = \begin{cases}X^{a_{1}} & \left(s_{1}=1\right) \\
1 & \left(s_{1}=0\right)\end{cases} \\
& =1+\left(X^{a_{1}}-1\right) s_{1}
\end{aligned}
$$

\rightarrow Multiply 1 monomial with 1 mult and 1 add.

$$
\begin{aligned}
& X^{\sum_{i=1}^{\ell} a_{i} s_{i}}= \begin{cases}X^{a_{1}} & \left(s_{1}=1, s_{2}=0, \ldots, s_{\ell}=0\right) \\
\vdots & \\
X^{a_{\ell}} & \left(s_{1}=0, s_{2}=0, \ldots, s_{\ell}=1\right) \\
1 & \left(s_{1}=0, s_{2}=0, \ldots, s_{\ell}=0\right)\end{cases} \\
&=1+\sum_{i=1}^{\ell}\left(X^{a_{i}}-1\right) s_{i}
\end{aligned}
$$

\rightarrow Multiply ℓ monomials with 1 mult and ℓ add.

Our Blind Rotation

$$
\begin{gathered}
a_{1}, \ldots, a_{\ell}\left[s_{1}\right]_{t}, \ldots,\left[s_{\ell}\right]_{t} \\
t v \cdot X^{b} \stackrel{a_{\ell+1}, \ldots, a_{2 \ell}\left[s_{\ell+1}\right]_{t}, \ldots,\left[s_{2 \ell}\right]_{t}}{\times^{\sum_{i=1}^{\ell} a_{i} s_{i}}-\left[t v \cdot X^{b+\sum_{i=1}^{\ell} a_{i} s_{i}}\right]_{t}-\begin{array}{|c|c|}
\sum_{i=\ell+1}^{2 \ell} a_{i} s_{i}
\end{array}\left[t v \cdot X^{\left.b+\sum_{i=1}^{2 \ell} a_{i} s_{i}\right]_{t}}\right.} \begin{array}{r}
a_{(k-1) \ell+1}, \ldots, a_{k \ell}\left[s_{(k-1) \ell+1}\right]_{t}, \ldots,\left[s_{k \ell}\right]_{t} \\
\ldots \\
\times X^{\sum_{i=(k-1) \ell+1}^{k \ell} a_{i} s_{i}}\left[t v \cdot X^{b+\langle a, s\rangle}\right]_{t}
\end{array}
\end{gathered}
$$

- Iteratively multiplies ℓ monomials with one homomorphic multiplication.
- Only \mathbf{k} external products are required!!
- However, not direct ℓ-times speedup due to other operations.

Algorithm

Algorithm 1 New Blind Rotation

1: Input: The blind rotation key BK and a TLWE ciphertext $\mathbf{c}=(b, \mathbf{a}) \in$ \mathbb{T}^{n+1}
2: Output: A TRLWE ciphertext ACC $\in \mathbb{T}_{N}[X]^{2}$
3: $\mathrm{tv} \leftarrow-\frac{1}{8} \cdot\left(1+X+\cdots+X^{N-1}\right) \in \mathbb{T}_{N}[X]$
4: Let $\bar{b}=\lfloor 2 N b\rceil$ and $\bar{a}_{i}=\left\lfloor 2 N a_{i}\right\rceil$ for $0 \leq i<n$
5: $\operatorname{ACC} \leftarrow\left(X^{\bar{b}} \cdot \mathrm{tv}, 0\right) \in \mathbb{T}_{N}[X]^{2}$
6: for $0 \leq j<k$ do
7: $\quad \mathrm{ACC} \leftarrow \mathrm{ACC}+\mathrm{ACC} \cdot\left[\sum_{i \in l_{j}}\left(X^{\overline{\mathrm{a}}_{i}}-1\right) \cdot \mathrm{BK}_{i}\right]$
8: end for

Optimization (Hoisting)

- This algorithm requires more Floating point operations than the original blind rotation algorithm.
- Instead, we re-use the gadget decomposition of ACC for each external products. i.e., $h($ ACC $)$
- Previous: ACC $\leftarrow \operatorname{ACC}+\left\langle h(\mathrm{ACC}), \sum_{i \in l_{j}}\left(X^{\bar{a}_{i}}-1\right) \cdot \mathrm{BK}_{i}\right\rangle$
- Modified: $\mathrm{ACC} \leftarrow \mathrm{ACC}+\sum_{i \in l_{j}}\left(X^{\overline{a_{i}}}-1\right) \cdot\left\langle h(\mathrm{ACC}), \mathrm{BK}_{i}\right\rangle$
- Then, the number of FFT operations is reduced with the same number of Floating point operations.

Security of Block Binary Keys

- Asymptotic Security: If the entropy of key distribution is sufficiently large, LWE is secure (Goldwasser et al).
- Entropy of block binary keys: $(\ell+1)^{k}$
- Concrete Security : We conducted cryptanalysis considering the best-known lattice attacks.
- Dual attack
- Meet-in-the-Middle
- Tailor-made

Dual Attack

- Dual Attack
- Dual Attack is effective for sparse secret.
- Run lattice-estimator with respect to (expected) Hamming weight $n /(\ell+1)$ and LWE dimension n.
- Modified Dual Attack
- With one guessing, one can reduce ℓ dimension at once.
- Therefore, one can reduce t blocks by guessing and then exploit dual attack.
- Then, the cost is $O\left((\ell+1)^{t} \cdot \mathcal{T}\right)$ where \mathcal{T} is the cost of dual attack on LWE of dimension $n-t \ell$ under secret with (expected) Hamming weight $(n-t \ell) /(\ell+1)$.

MitM attack

- MitM algorithm
- Given secret \mathbf{s}, split the secret vector into $\mathbf{s}=\mathbf{s}_{0}+\mathbf{s}_{1}$.
- For an LWE instance $(b, \mathbf{a}), b+\left\langle\mathbf{s}_{0}, \mathbf{a}\right\rangle \approx-\left\langle\mathbf{s}_{1}, \mathbf{a}\right\rangle$ since $b+\langle\mathbf{a}, \mathbf{s}\rangle$ is small.
- Therefore, we can find the collision between two sets in time $\mathcal{S}^{0.5}$:

$$
\begin{aligned}
& \mathcal{R}_{0}=\left\{b+\left\langle\mathbf{x}_{0}, \mathbf{a}\right\rangle \mid\left\|\mathbf{x}_{0}\right\|_{1}=\|\mathbf{s}\|_{1} / 2\right\} \\
& \mathcal{R}_{1}=\left\{-\left\langle\mathbf{x}_{1}, \mathbf{a}\right\rangle \mid\left\|\mathbf{x}_{1}\right\|_{1}=\|\mathbf{s}\|_{1} / 2\right\}
\end{aligned}
$$

- May et al. (2021)
- Inductively perform MitM algorithm to $\mathbf{s}_{0}, \mathbf{s}_{1}$.
- Overall cost requires $\geq \mathcal{S}^{0.28}$ time complexity.
- Since $\mathcal{S}=(\ell+1)^{k}$, the cost is $2^{O(0.28 k \log (\ell+1))}$.
- In other words, it achieves $0.28 k \log (\ell+1)$-bit security.

Key-Switching

Functionality

- Switch the secret key of LWE ciphertext from \mathbf{t} to \mathbf{s}.
- For LWE ciphertext $\mathbf{c}=\left(b, a_{1}, \ldots, a_{N}\right)$ encrypted under \mathbf{t}, we compute $\mathbf{c}^{\prime}=(b, 0, \ldots, 0)+\sum_{i=1}^{N} a_{i} \odot \operatorname{Enc}_{\mathbf{s}}\left(t_{i}\right)$.
- Enc $\mathrm{s}_{\mathbf{s}}\left(t_{i}\right)$: Gadget encryptions of t_{i} under $\mathbf{s}(1 \leq i \leq N)$.
- $\operatorname{Dec}_{\mathbf{s}}\left(\mathbf{c}^{\prime}\right) \approx b+\sum_{i=1}^{N} a_{i} t_{i}=\operatorname{Dec}_{\mathbf{t}}(\mathbf{c})$.
- Complexity
- Time: \mathbf{N} homomorphic scalar multiplications.
- Space: N key-switching keys

Compact Key-Switching

- If $t_{i}=s_{i}(1 \leq i \leq n)$, we can replace \mathbf{c}^{\prime} by

$$
\left(b, a_{1}, \ldots, a_{n}\right)+\sum_{i=n+1}^{N} a_{i} \odot \operatorname{Enc}_{\mathbf{s}}\left(t_{i}\right)
$$

- $\operatorname{Dec}_{\mathbf{s}}\left(\mathbf{c}^{\prime}\right) \approx b+\sum_{i=1}^{n} a_{i} s_{i}+\sum_{i=n+1}^{N} a_{i} t_{i}=b+\sum_{i=1}^{N} a_{i} t_{i}=\operatorname{Dec} c_{\mathbf{t}}(\mathbf{c})$.
- Complexity
- Time : N - \mathbf{n} scalar multiplications
- Space: N - n key-switching keys

Compact Key-Switching

Security Analysis of Compact Key-Switching

- Dual Attack : Run the lattice estimator with LWE dimension N, (expected) Hamming weight $n /(\ell+1)+(N-n) / 2$.
- MitM Attack: The security relies on the LWE security.

Parameter Selection

- We set the parameters with respect to the Dual and MitM attack.
- Given ℓ, we can set $k=\lceil 457.143 / \log (\ell+1)\rceil$.

$n=k \ell$	N	ℓ	Dual	MitM
630	1024	2	130.7	139.7
687	1024	3	130.7	128.2
788	1024	4	129.9	128.0
885	1024	5	128.9	128.1
978	1024	6	128.0	128.1

Implementation \& Result

	ℓ	n	Bootstrapping	Key Size
TFHE	.	630	10.53 ms	109 MB
Ours	2	630	7.05 ms	60 MB
	3	687	6.49 ms	
	4	788	6.70 ms	
	5	885	6.82 ms	56 MB
	6	978	7.12 ms	52 MB

Table: 128-bit Security level

- Implemented based on the TFHE library.
- We achieve 1.5-1.6x SPEEDUP!
- Key size is reduced by $\mathbf{1 . 8 x}$!

Further Applications

- This technique can be applied to many TFHE-like cryptosystems.
- It works as long as the algebraic structure remains the same.
- O PBS, WoP-PBS, Chimera...
- O MK-TFHE
- The secret key for MK ciphertexts is the concatenated vector of each secret key.
- O AP/FHEW
- Secret key sampled from block n-ary distribution.
- Originally, keys were given by RGSW encryptions of $X^{j B^{k} \cdot s_{i}}\left(X^{s_{i}}\right.$ in LMKC+22).
- Instead, provide RGSW encryptions of 0 if s_{i} is zero.
- \triangle MP-TFHE (n-out-of-n Threshold TFHE)
- The secret key for MP ciphertexts is the sum of each secret key.
- Can be applied to a naïve solution (AKÖ23).
- Cannot be applied to the state-of-the art schemes (LMKC+22, PR23).

Multi-Key TFHE

\#Parties	2	4	8	16	32
KMS	0.25 s	0.87 s	2.24 s	5.62 s	14.04 s
Block	0.14 s	0.49 s	1.17 s	3.30 s	7.68 s

Table: 128-bit Security level

- We achieve 1.7-1.9x SPEEDUP.
- The performance improvement is better than single-key scheme.
- The size of the key-switching key is also reduced.

Implementations

- Source code is available at github.com/SNUCP/blockkey-tfhe
- MK implementation (Julia) : github.com/SNUCP/MKTFHE
- PBS implementation (Go) : github.com/sp301415/tfhe-go

