Faster TFHE Bootstrapping with Block Binary Keys

Changmin Lee¹, Seonhong Min², Jinyeong Seo², Yongsoo Song²

¹Korea Institute for Advanced Study, Seoul ²Seoul National University, Seoul

Fully Homomorphic Encryption

- Fully Homomorphic Encryption (FHE) supports arbitrary function evaluation on encrypted data.
- Various Applications: privacy preserving machine learning, private information retrieval, private set intersection ...

Learning with Errors

• The most efficient FHEs to date are built on Learning with Errors (LWE) problem and its ring-variant Ring-LWE (RLWE).

• **RLWE**:
$$(a, b) \approx_c \mathcal{U}(R_q^2)$$

▶ Variant of LWE over $R_q = R/qR$ where $R = \mathbb{Z}[X]/(X^N + 1)$

►
$$a \leftarrow U(R_q)$$
, $s \in R$, $e \leftarrow$ small dist' over R

•
$$b = -a \cdot s + e \pmod{q}$$

• FHE schemes based on LWE/RLWE

- BGV / BFV / CKKS
- TFHE / FHEW

TFHE description

• FHE scheme that supports bits operations (NAND, AND, OR...).

• Secret Key:

- LWE secret $\mathbf{s} = (s_1, \dots, s_n)$
- RLWE secret $t = \sum_{i=1}^{N} t_i X^{i-1}$
- Vectorized secret $\mathbf{t} = (t_1, \dots, t_N)$
- All keys are sampled from binary distribution
- Encoding: $m \in \{-1, 1\} \mapsto \mu = \frac{q}{8}m \in \mathbb{Z}_q$
- **Decoding**: $\begin{cases} 1 & \text{if } \mu > 0 \\ -1 & \text{otherwise} \end{cases}$
- Encryption: $c = (b, \mathbf{a}) \in \mathbb{Z}_q^{n+1}$ for $\mathbf{a} \leftarrow \mathcal{U}(\mathbb{Z}_q^n)$, $e \leftarrow$ small dist., $b = -\langle \mathbf{a}, \mathbf{s} \rangle + \mu + e$.
- Decryption: $b + \langle \mathbf{a}, \mathbf{s} \rangle = \mu + e$

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Homomorphic Gate Evaluation

• Each bit operation consists of the following pipeline:

$$\begin{array}{ccc} c_1 \longrightarrow \\ c_2 \longrightarrow \end{array} \quad \text{Linear Combination} \longrightarrow c \longrightarrow \end{array} \quad \text{Bootstrapping} \longrightarrow c'$$

• Linear Combination : The linear combination corresponding to a Boolean gate is evaluated.

- ex) NAND :
$$c = (\frac{q}{8}, \mathbf{0}) - c_1 - c_2$$

- output ciphertext contains a large noise e.

• **Bootstrapping** : Reduces the size of noise for further evaluation. - ex) $||e|| < \frac{q}{8} \rightarrow ||e'|| < \frac{q}{16}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

TFHE Bootstrapping

- Blind Rotation : Homomorphically computes the decryption circuit on the exponent of X i.e., X^{b+(a,s)}.
 - ▶ Need Blind Rotation Key : RGSW encryptions of s_i $(1 \le i \le n)$
- **Sample Extract** : Extract the constant term of the plaintext from the resulting RLWE ciphertext.
- Key-Switching : Switch the dimension of the LWE ciphertext.
 - ▶ Need Key-Switching Key : Gadget encryptions of t_i $(1 \le i \le N)$

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Our Contribution

Motivation : Most FHE schemes (BGV/FV/CKKS) make an additional assumption on key structure to obtain better efficiency.

- BGV/FV : Small noise growth in homomorphic multiplication.
- BGV/CKKS : Small depth for bootstrapping.

Our Result : We adapt similar approach to accelerate TFHE bootstrapping.

- Faster Blind Rotation
 - Sample LWE key from block binary key distribution

- Reduce the number of FFT operations

Ompact Key-Switching

- Re-use the LWE key as a part of RLWE key
- Improve both time and space complexity

Blind Rotation

Functionality

• Homomorphic evaluation of $tv \cdot X^{b+\sum_{i=1}^{n} a_i s_i} = tv \cdot X^{\frac{q}{8}m+e} \in R_q$.

$$tv = -rac{q}{8}(1+X+\cdots+X^{N-1})\in R_q$$

Constant term of
$$tv \cdot X^{\frac{q}{8}m+e} = \frac{q}{8}m$$
.

- Homomorphically multiply monomials $X^{a_i s_i}$ to $tv \cdot X^b$ iteratively.
- We need **n** external products total.

Previous Blind Rotation

$$a_{1} [s_{1}]_{t} a_{2} [s_{2}]_{t}$$

$$tv \cdot X^{b} \times X^{a_{1}s_{1}} [tv \cdot X^{b+a_{1}s_{1}}]_{t} \times X^{a_{2}s_{2}} [tv \cdot X^{b+a_{1}s_{1}+a_{2}s_{2}}]_{t} \dots$$

$$a_{n} [s_{n}]_{t} \dots \times X^{a_{n}s_{n}} - [tv \cdot X^{b+\langle a, s \rangle}]_{t}$$

•
$$X^{a_is_i} = egin{cases} X^{a_i} & (s_i=1) \ 1 & (s_i=0) \end{bmatrix} = 1 + (X^{a_i}-1)s_i$$

- Using this key formula, we have $[X^{a_i s_i}]_t = 1 + (X^{a_i} - 1)[s_i]_t$

- We iteratively multiply one monomial $X^{a_i s_i}$ for **n** times.

イロト 不得 ト イヨト イヨト

Observation

• Can we multiply 2 monomials simultaneously?

$$\begin{aligned} X^{a_1s_1+a_2s_2} \\ &= (1+(X^{a_1}-1)s_1)(1+(X^{a_2}-1)s_2) \\ &= 1+(X^{a_1}-1)s_1+(X^{a_2}-1)s_2+(X^{a_1}-1)(X^{a_2}-1)s_1s_2 \end{aligned}$$

- With this formula, the number of homomorphic mult reduces by half.
 - Requires RGSW encryption of s₁s₂
 - + the number of linear evaluation grows.
- What if we can ignore the case where $s_1 = s_2 = 1$?
 - No additional blind rotation keys are required.
 - The number of linear evaluation remains same.
- Generalization: How about ℓ monomials?
 - \rightarrow Possible. If s is sampled from Block Binary Key Distribution...

- 4 目 ト 4 日 ト

Block Binary Keys

Definition (Block Binary Key)

• $n = k\ell$ for two positive integers $k, \ell > 0$

•
$$\mathbf{s} = (B_1, \dots, B_k) \in \{0, 1\}^n$$

• $B_i \leftarrow \mathcal{U}((1, 0, ..., 0), ..., (0, 0, ..., 1), (0, ..., 0))$

• At most one 1 in each block

Figure: Block Binary Key with $\ell = 3$ and k = 6

< □ > < □ > < □ > < □ > < □ > < □ >

Block Binary Keys

•
$$X^{a_1s_1} = \begin{cases} X^{a_1} & (s_1 = 1) \\ 1 & (s_1 = 0) \end{cases}$$

= $1 + (X^{a_1} - 1)s_1$

 \rightarrow Multiply 1 monomial with 1 mult and 1 add.

•
$$X^{\sum_{i=1}^{\ell} a_i s_i} = egin{cases} X^{a_1} & (s_1 = 1, s_2 = 0, \dots, s_\ell = 0) \ dots \ X^{a_\ell} & (s_1 = 0, s_2 = 0, \dots, s_\ell = 1) \ 1 & (s_1 = 0, s_2 = 0, \dots, s_\ell = 0) \ = 1 + \sum_{i=1}^{\ell} (X^{a_i} - 1) s_i \end{cases}$$

 \rightarrow Multiply ℓ monomials with 1 mult and ℓ add.

э

- 4 回 ト 4 三 ト 4 三 ト

Our Blind Rotation

$$a_{1}, \dots, a_{\ell} [s_{1}]_{t}, \dots, [s_{\ell}]_{t} \qquad a_{\ell+1}, \dots, a_{2\ell} [s_{\ell+1}]_{t}, \dots, [s_{2\ell}]_{t}$$

$$tv \cdot X^{b} - \times X^{\sum_{i=1}^{\ell} a_{i}s_{i}} - [tv \cdot X^{b+\sum_{i=1}^{\ell} a_{i}s_{i}}]_{t} - \times X^{\sum_{i=\ell+1}^{2\ell} a_{i}s_{i}} - [tv \cdot X^{b+\sum_{i=1}^{2\ell} a_{i}s_{i}}]_{t}$$

$$a_{(k-1)\ell+1}, \dots, a_{k\ell} [s_{(k-1)\ell+1}]_{t}, \dots, [s_{k\ell}]_{t}$$

$$\dots - \times X^{\sum_{i=(k-1)\ell+1}^{k\ell} a_{i}s_{i}} - [tv \cdot X^{b+(a,s)}]_{t}$$

- Iteratively multiplies ℓ monomials with one homomorphic multiplication.
- Only **k** external products are required!!
- However, not direct ℓ -times speedup due to other operations.

• • = • • = •

Algorithm

Algorithm 1 New Blind Rotation

- 1: Input: The blind rotation key BK and a TLWE ciphertext $\mathbf{c} = (b, \mathbf{a}) \in \mathbb{T}^{n+1}$
- 2: **Output:** A TRLWE ciphertext $ACC \in \mathbb{T}_N[X]^2$

3:
$$\texttt{tv} \leftarrow -rac{1}{8} \cdot (1 + X + \dots + X^{N-1}) \in \mathbb{T}_N[X]$$

4: Let $\overline{b} = \lfloor 2Nb \rceil$ and $\overline{a}_i = \lfloor 2Na_i \rceil$ for $0 \le i < n$

5: ACC
$$\leftarrow (X^b \cdot \texttt{tv}, 0) \in \mathbb{T}_N[X]^2$$

6: **for**
$$0 \le j < k$$
 do

7:
$$ACC \leftarrow ACC + ACC \boxdot \left| \sum_{i \in I_i} (X^{\overline{a}_i} - 1) \cdot BK_i \right|$$

8: end for

< 回 > < 回 > < 回 >

Optimization (Hoisting)

- This algorithm requires more Floating point operations than the original blind rotation algorithm.
- Instead, we re-use the gadget decomposition of ACC for each external products. *i.e.*, h(ACC)
- • Previous: $ACC \leftarrow ACC + \left\langle h(ACC), \sum_{i \in I_j} (X^{\overline{a}_i} 1) \cdot BK_i \right\rangle$
 - ▶ Modified: ACC ← ACC + $\sum_{i \in I_i} (X^{\overline{a}_i} 1) \cdot \langle h(ACC), BK_i \rangle$
- Then, the number of FFT operations is reduced with the same number of Floating point operations.

Security of Block Binary Keys

- Asymptotic Security : If the entropy of key distribution is sufficiently large, LWE is secure (Goldwasser et al).
 - Entropy of block binary keys : $(\ell+1)^k$
- **Concrete Security** : We conducted cryptanalysis considering the best-known lattice attacks.
 - Dual attack
 - Meet-in-the-Middle
 - Tailor-made

(四) (三) (三)

Dual Attack

Dual Attack

- Dual Attack is effective for sparse secret.
- Run lattice-estimator with respect to (expected) Hamming weight $n/(\ell + 1)$ and LWE dimension *n*.

Modified Dual Attack

- With one guessing, one can reduce ℓ dimension at once.
- Therefore, one can reduce t blocks by guessing and then exploit dual attack.
- Then, the cost is $O((\ell + 1)^t \cdot T)$ where T is the cost of dual attack on LWE of dimension $n t\ell$ under secret with (expected) Hamming weight $(n t\ell)/(\ell + 1)$.

くぼう くほう くほう

MitM attack

- MitM algorithm
 - Given secret $\boldsymbol{s},$ split the secret vector into $\boldsymbol{s}=\boldsymbol{s}_0+\boldsymbol{s}_1.$
 - For an LWE instance (*b*, **a**), $b + \langle \mathbf{s}_0, \mathbf{a} \rangle \approx \langle \mathbf{s}_1, \mathbf{a} \rangle$ since $b + \langle \mathbf{a}, \mathbf{s} \rangle$ is small.
 - Therefore, we can find the collision between two sets in time $\mathcal{S}^{0.5}$:

$$\begin{aligned} \mathcal{R}_0 &= \{ b + \langle \mathbf{x}_0, \mathbf{a} \rangle \mid \|\mathbf{x}_0\|_1 = \|\mathbf{s}\|_1/2 \} \\ \mathcal{R}_1 &= \{ - \langle \mathbf{x}_1, \mathbf{a} \rangle \mid \|\mathbf{x}_1\|_1 = \|\mathbf{s}\|_1/2 \} \end{aligned}$$

- May et al. (2021)
 - Inductively perform MitM algorithm to s_0, s_1 .
 - Overall cost requires $\geq \mathcal{S}^{0.28}$ time complexity.
- Since $S = (\ell + 1)^k$, the cost is $2^{O(0.28k \log(\ell+1))}$.
- In other words, it achieves $0.28k \log(\ell + 1)$ -bit security.

- ロ ト - (周 ト - (日 ト - (日 ト -)日

Key-Switching

Functionality

• Switch the secret key of LWE ciphertext from t to s.

- For LWE ciphertext $\mathbf{c} = (b, a_1, \dots, a_N)$ encrypted under \mathbf{t} , we compute $\mathbf{c}' = (b, 0, \dots, 0) + \sum_{i=1}^N a_i \odot \operatorname{Enc}_{\mathbf{s}}(t_i)$.
 - $Enc_{s}(t_{i})$: Gadget encryptions of t_{i} under s $(1 \le i \le N)$.
 - $Dec_{s}(\mathbf{c}') \approx b + \sum_{i=1}^{N} a_{i}t_{i} = Dec_{t}(\mathbf{c}).$
- Complexity
 - Time : **N** homomorphic scalar multiplications.
 - Space: N key-switching keys

(人間) トイヨト イヨト ニヨ

Compact Key-Switching

• If $t_i = s_i$ $(1 \le i \le n)$, we can replace \mathbf{c}' by

$$(b, a_1, \ldots, a_n) + \sum_{i=n+1}^N a_i \odot \mathsf{Enc}_{\mathsf{s}}(t_i)$$

•
$$Dec_{\mathbf{s}}(\mathbf{c}') \approx b + \sum_{i=1}^{n} a_i s_i + \sum_{i=n+1}^{N} a_i t_i = b + \sum_{i=1}^{N} a_i t_i = Dec_{\mathbf{t}}(\mathbf{c}).$$

Complexity

- ▶ Time : **N** − **n** scalar multiplications
- Space : N n key-switching keys

э

A (1) < A (2) < A (2) </p>

Compact Key-Switching

Ours

3

イロト 不得 トイヨト イヨト

Security Analysis of Compact Key-Switching

- **Dual Attack** : Run the lattice estimator with LWE dimension N, (expected) Hamming weight $n/(\ell + 1) + (N n)/2$.
- MitM Attack : The security relies on the LWE security.

< 回 > < 回 > < 回 >

Parameter Selection

- We set the parameters with respect to the Dual and MitM attack.
- Given ℓ , we can set $k = \lfloor 457.143 / \log(\ell + 1) \rfloor$.

$n = k\ell$	N	l	Dual	MitM
630	1024	2	130.7	139.7
687	1024	3	130.7	128.2
788	1024	4	129.9	128.0
885	1024	5	128.9	128.1
978	1024	6	128.0	128.1

A B A A B A

Implementation & Result

	l	n	Bootstrapping	Key Size	
TFHE	•	630	10.53 <i>ms</i>	109 MB	
Ours	2	630	7.05 <i>ms</i>		
	3	687	6.49 <i>ms</i>	60 MB	
	4	788	6.70 <i>ms</i>		
	5	885	6.82 <i>ms</i>	56 MB	
	6	978	7.12 <i>ms</i>	52 MB	

Table: 128-bit Security level

- Implemented based on the TFHE library.
- We achieve 1.5-1.6x SPEEDUP!
- Key size is reduced by 1.8x!

- E - - E -

Further Applications

- This technique can be applied to many TFHE-like cryptosystems.
- It works as long as the algebraic structure remains the same.
 - O PBS, WoP-PBS, Chimera...
 - O MK-TFHE
 - The secret key for MK ciphertexts is the concatenated vector of each secret key.
 - O AP/FHEW
 - Secret key sampled from block *n*-ary distribution.
 - Originally, keys were given by RGSW encryptions of X^{jB^k·s_i} (X^{s_i} in LMKC+22).
 - Instead, provide RGSW encryptions of 0 if s_i is zero.
 - ► △ MP-TFHE (n-out-of-n Threshold TFHE)
 - The secret key for MP ciphertexts is the sum of each secret key.
 - Can be applied to a naïve solution (AKÖ23).
 - Cannot be applied to the state-of-the art schemes (LMKC+22, PR23).

(日)

Multi-Key TFHE

#Parties	2	4	8	16	32
KMS	0.25 <i>s</i>	0.87 <i>s</i>	2.24 <i>s</i>	5.62 <i>s</i>	14.04 <i>s</i>
Block	0.14 <i>s</i>	0.49 <i>s</i>	1.17 s	3.30 <i>s</i>	7.68 <i>s</i>

Table: 128-bit Security level

- We achieve 1.7-1.9x SPEEDUP.
- The performance improvement is better than single-key scheme.
- The size of the key-switching key is also reduced.

- Source code is available at github.com/SNUCP/blockkey-tfhe
- MK implementation (Julia) : github.com/SNUCP/MKTFHE
- PBS implementation (Go) : github.com/sp301415/tfhe-go

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <