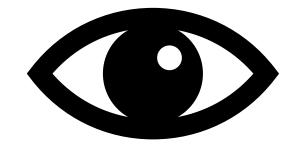
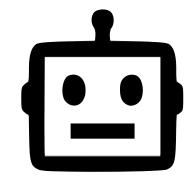
fhEVM Confidential Smart Contracts Using Homomorphic Encryption


Transa	ctions Internal T	kns Erc20 Token Txns	Erc721 Token Txns Erc11	155 Token	Txns Analytics Comm	ents					
↓F Latest 25 ERC-20 Token Transfer Events											
	Txn Hash	Age	From		То	Value	Token				
۲	0x61bac8ed64cf49ff5	37 1 hr 8 mins ago	Uniswap V2: KCAL 2	IN	() vitalik.eth	2,500	Step.app (KCAL)				
۲	0xd9f47a344e278579	ocb 1 hr 15 mins ago	Justin Sun	IN	() vitalik.eth	25,143,213.150843308745475521	Step.app (KCAL)				
۲	0xdea02c32d141997	aaa 12 hrs 57 mins age	o () plamer.eth	IN	() vitalik.eth	1	AssangeDAO (JUSTIC)				
۲	0x74205c19a313ba8	865 1 day 11 hrs ago	Uniswap V2: SEGA 3	IN	() vitalik.eth	227,158,544.808096280091774569	SEGA (SEGA)				
۲	0xad5c19e1af6de650	8e 2 days 20 hrs ago	0xad29c28a868c945caf9	IN	() vitalik.eth	21,420	ERC-20 (BASTAR)				
۲	0x1014024546d2e94	f39 3 days 4 mins ago	Uniswap V2: ALIS 2	IN	() vitalik.eth	153,473.76198500365822856	Acropolis DA (ALIS)				
۲	0xbffdb2fcd52e96f13	6c7 3 days 24 mins ag	o () vitalik.eth	OUT	OlympusDAO: DAO Funds	40,323.284453294043855726	Acropolis DA (ALIS)				
۲	0x6ac57444413cd7b	oef 3 days 31 mins ag	o 🖹 Uniswap V2: ALIS 2	IN	() vitalik.eth	40,323.284453294043855726	Acropolis DA (ALIS)				
۲	0xb15136c85e15dd8	1b3 3 days 1 hr ago	OlympusDAO: DAO Funds	IN	♦ vitalik.eth	8,633.511805120159396357	Acropolis DA (ALIS)				
۲	0xa9749c78f8ed9da9	96 3 days 14 hrs ago	Uniswap V2: Bvlgari	IN	♦ vitalik.eth	3,853,058,515,307.2989734036202684	ERC-20 (Bvlgar)				
۲	0x27fe35a36a42bbec	3 days 15 hrs ago	🖹 Uniswap V2: Bvlgari	IN	() vitalik.eth	3,652,123,857,386.0501562459646840	ERC-20 (Bvlgar)				
۲	0x3880e037ae48336	38f 3 days 15 hrs ago	🖹 Uniswap V2: Bvlgari	IN	() vitalik.eth	3,176,588,279,214.80176999868555856	ERC-20 (Bvlgar)				
۲	0x7d18a354e603c74	3 days 16 hrs ago	🖹 Uniswap V2: Bvlgari	IN	() vitalik.eth	2,784,937,897,903.6328859385267450	ERC-20 (Bvlgar)				

Everything on a blockchain is public

This leads to many privacy issues



THEFT

Criminals know what you own, so they can easily target you and steal your crypto. overnr

Governments can surveil you, even if you use multiple addresses.

SURVEILLANCE

MEV

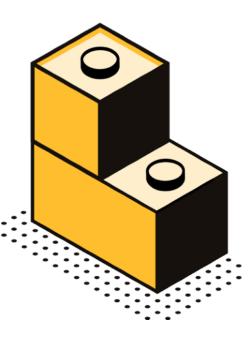
Bots can front-run you, creating a hidden tax on every transaction.

Fully Homomorphic Encryption (FHE) enables encrypted data processing

More generally: f(E[x], ..., E[y]) = E[f(x, ..., y)]

E[x] < E[y] = E[x < y]

E[x] + E[y] = E[x + y]



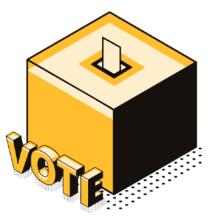
Zama's fhEVM enables confidential smart contracts using homomorphic encryption

E2E encryption of transactions and state

Z

Composability and data availability onchain

No impact on existing dapps and state

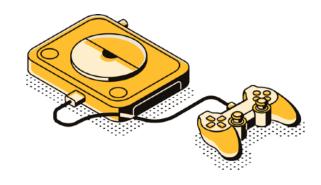

The fhEVM unlocks a myriad of use cases

Tokenization

Manage and swap tokenized assets without other seeing it

Bid on items without revealing the amount or the winner

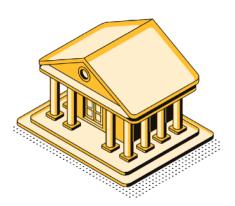
Confidential Voting


Prevents bribery and blackmailing by keeping votes private

Store identities on-chain and generate attestations without ZK

Ζ

Blind Auctions



On-chain Games

Hide cards and moves until reveal (e.g. poker, blackjack, ..)

Encrypted DIDs

Private Transfers

Keep balances and amounts private, without using mixers

Zama's fhEVM is the most comprehensive confidential smart contract solution

	Zama fhEVM	Other FHE	ZK	Mixers	SGX
Operations supported	Everything	Additions & multiplications	AND & XOR	None	Everything
Privacy Model	Hides the data	Hides the data	Hides the data	Hides the identity	Hides the data
Data Availability	On-chain	On-chain	Off-chain	On-chain	On-chain
Encrypted state composability	Yes	Limited	No	No	Yes
On-chain PRNG	Yes	No	No	No	Yes
Developer Experience	Easy	Medium	Hard	Hard	Easy
Compliance	At the application level	At the user level	At the user level	At the user level	At the application level
Security	Proven secure	No security proof	Proven secure	Proven secure	Broken

Ζ

Powerful features are available out of the box

High Precision Integers

Up to 256 bits of precision for integers

Full range of Operators

All typical operators are available: +,-,*,/,<,>,==,...

Encrypted If-Else Conditionals

Check conditions on encrypted states

On-chain Secure Randomness

Generate randomness without using oracles

Configurable Decryption

Threshold, centralized or KMS decryption

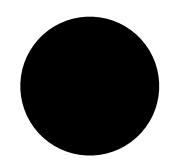
Unbounded Compute Depth

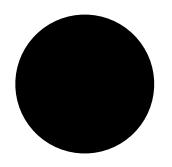
Unlimited consecutive FHE operations

fhEVM: How It Works

Zama's fhEVM combines state of the art cryptography in a provably secure way

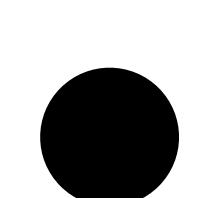
Homomorphic encryption is used to compute on private state, directly on-chain Multi-party computation is used for threshold decryption of FHE ciphertexts

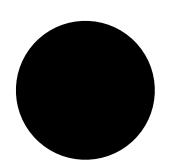

MPC

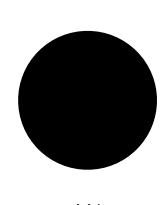

+

ZK

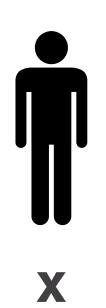
Zero-Knowledge Proofs of Knowledge are used to ensure encryption and decryption integrity

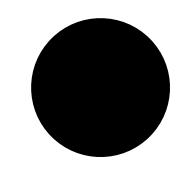

Everything is encrypted under single global FHE public key

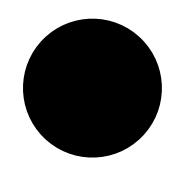


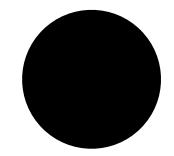


The global key is generated securely using a threshold protocol

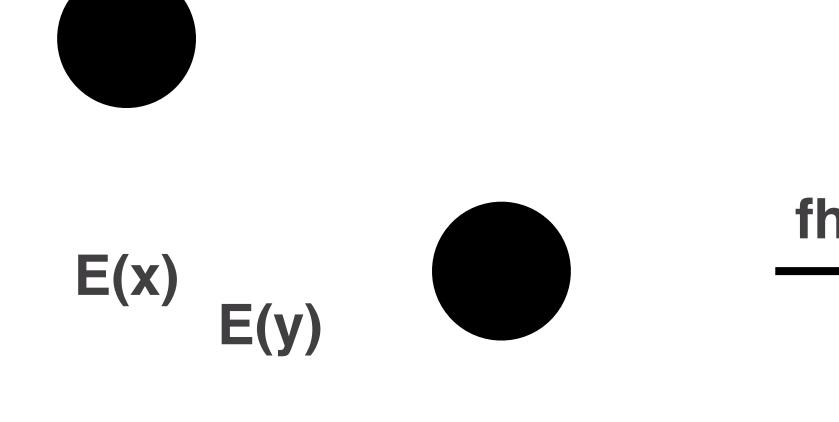


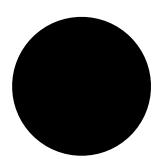


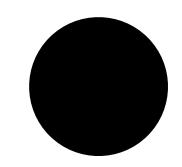

The inputs are simply encrypted using the global public FHE key

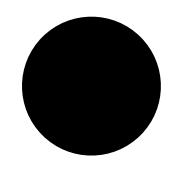


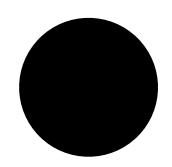
FHE ciphertext + ZK proof

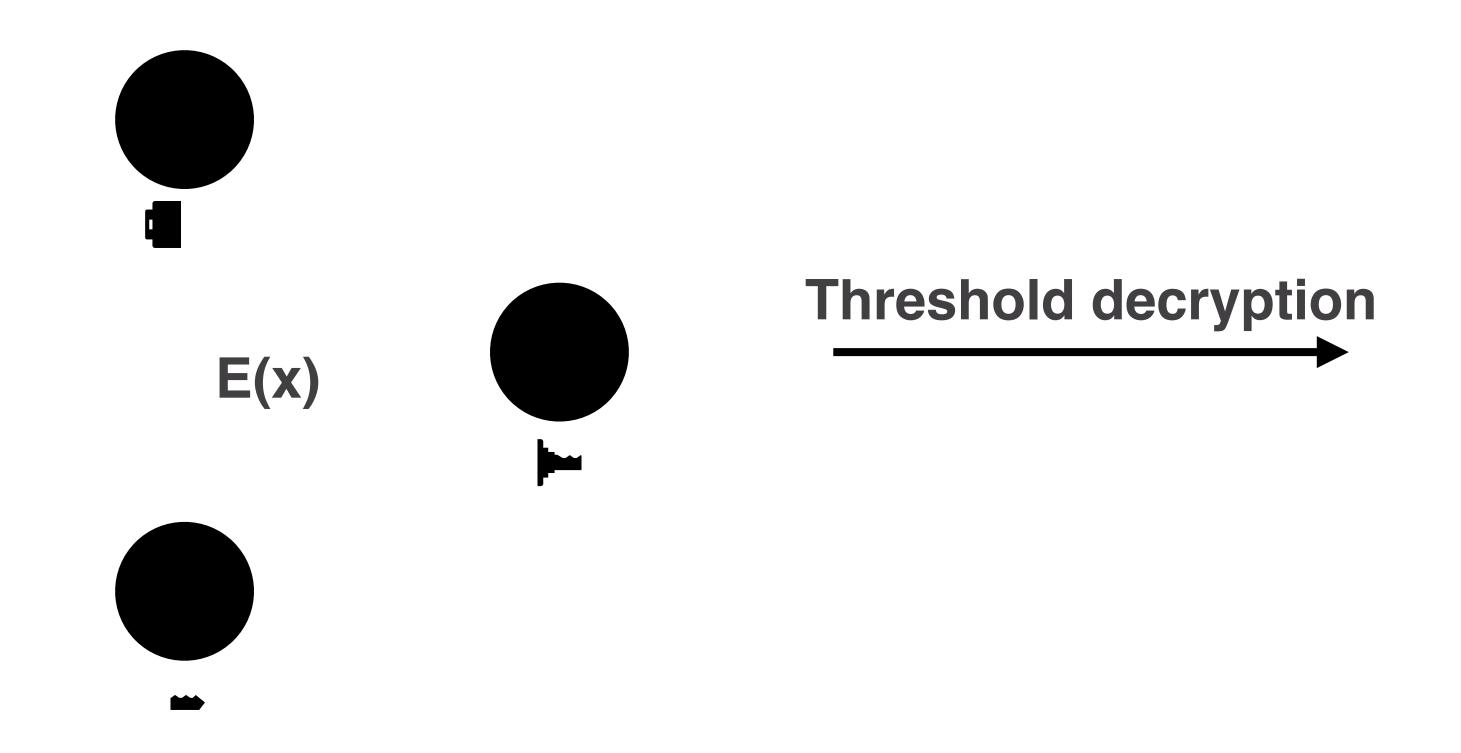


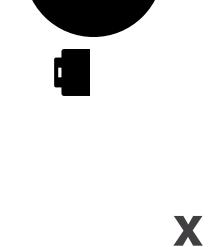


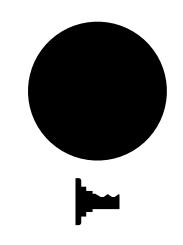


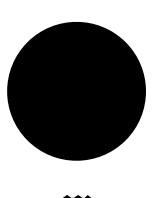

Computation is done locally by validators using homomorphic operations



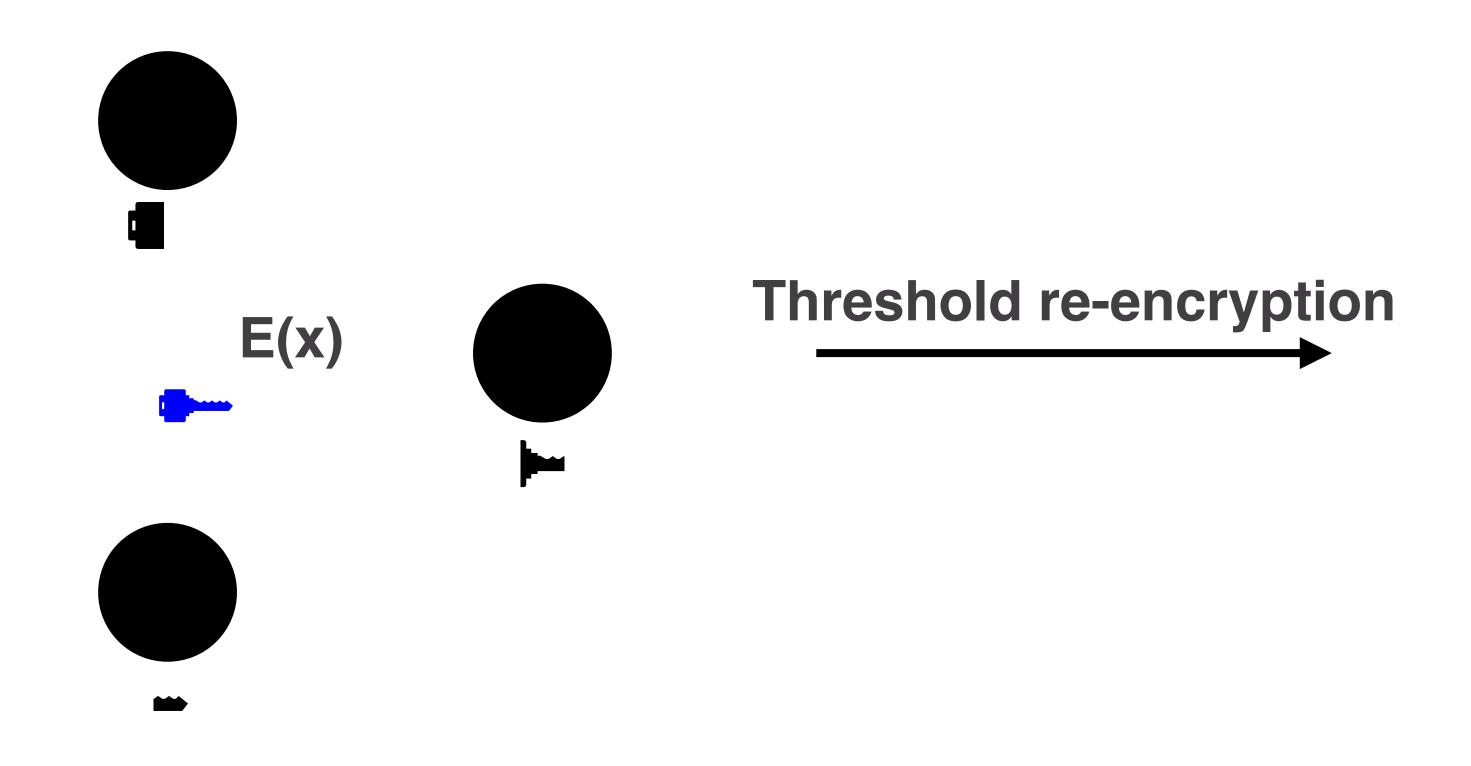


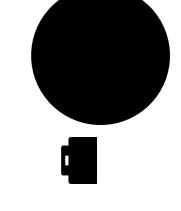


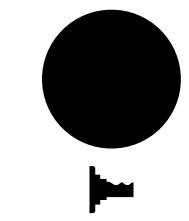


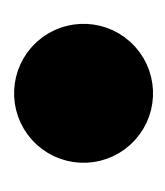

E(z)


Values can be decrypted by validators using a threshold protocol

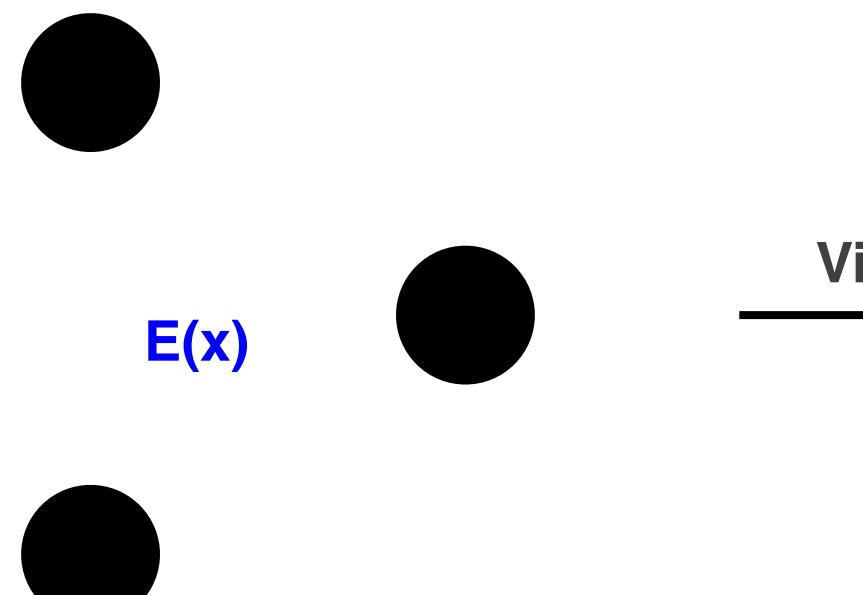


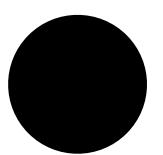






Values can also be re-encrypted to user public key using a threshold protocol





E(x)




Re-encrypted values can be read and decrypted by the user owning the key

Encrypted Smart Contracts

Can be used for computation, storage, composition, etc

Represents an encrypted value

> euint8, euint16, ueint32, ... add, sub, mul, eq, le, gt, ...

TFHE::euint32

mapping(address => euint32) balances;

Efficient since they are small (only handles to ciphertexts)

euint32 amount = TFHE_asEuint32(amountCiphertext);

Well-formed to not leak anything about global FHE secret key

> Ciphertexts include ZK proof of plaintext knowledge, that must be checked

TFHE.asEuint

Prevent user from decrypting arbitrary ciphertexts

return TFHE.reencrypt(balances[msg.sender], publicKey);

Securely re-encrypt from global FHE public key to user NaCl public key

TFHE.reencrypt

Optional authentication token to trust identity of sender (EIP-712)

require(TFHE.decrypt(TFHE.le(amount, currentAllowance)));

Evaluate condition homomorphically

Leaks *something*!

Alternative is TFHE.cmux(eCondition, eTrueValue, eFalseValue)

TFHE.decrypt

Decrypt boolean, and abort if false

Developers can write confidential contracts without learning cryptography

contract EncryptedERC20 {

// A mapping from address to an encrypted balance. mapping(address => euint32) internal balances;

// Returns the balance of the caller encrypted under the provided public key. function balanceOf(

bytes32 publicKey,

bytes calldata signature

) public view onlySignedPublicKey(publicKey, signature) returns (bytes memory) { return TFHE.reencrypt(balances[msg.sender], publicKey, 0); }

// Transfers an encrypted amount.

function transfer(address from, address to, euint32 amount) internal { // Make sure the sender has enough tokens.

require(TFHE.decrypt(TFHE.le(amount, balances[from])));

// Add to the balance of `to` and subract from the balance of `from`. balances[to] = TFHE.add(balances[to], amount); balances[from] = TFHE.sub(balances[from], amount);

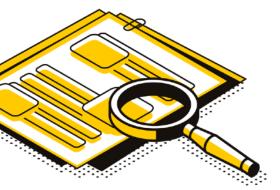
Solidity Integration

fhEVM contracts are simple solidity contracts that are built using traditional solidity toolchains.

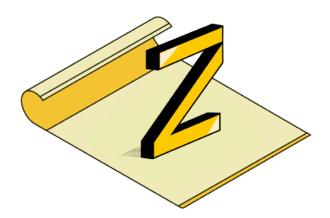
Simple DevX

Developers can use the euint data types to mark which part of their contracts should be private.

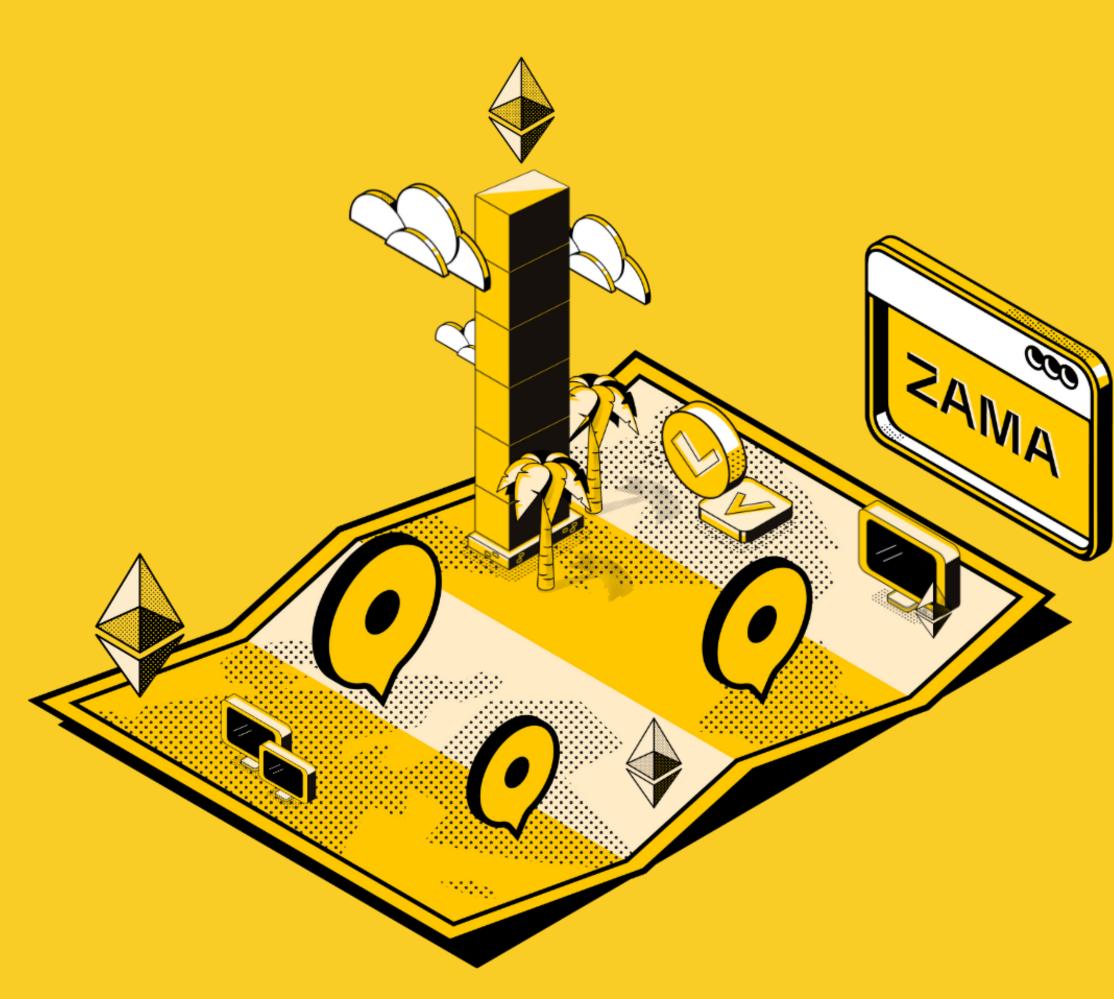
SC-defined ACL


All the logic for access control of encrypted states is defined by developers in their smart contracts.

Try the fhEVM yourself today



Ζ



Documentation

White Paper

Questions?

