
fhEVM
Confidential Smart Contracts
Using Homomorphic Encryption

Morten Dahl 
Senior Blockchain Director

2

Everything on a blockchain is public

This leads to many privacy issues

SURVEILLANCE

Governments can surveil
you, even if you use
multiple addresses.

THEFT

Criminals know what you
own, so they can easily target

you and steal your crypto.

MEV

Bots can front-run you,
creating a hidden tax on

every transaction.

3

Fully
Homomorphic
Encryption
(FHE) enables
encrypted data
processing

4

E[x] + E[y] = E[x + y]

E[x] < E[y] = E[x < y]

More generally:
f(E[x], …, E[y]) = E[f(x, …, y)]

E2E encryption of
transactions and

state

Composability and
data availability on-

chain

No impact on
existing dapps and

state

Zama's fhEVM enables confidential smart
contracts using homomorphic encryption

5

Confidential Voting
Prevents bribery and

blackmailing by keeping
votes private

Encrypted DIDs
Store identities on-chain

and generate attestations
without ZK

Private Transfers
Keep balances and

amounts private, without
using mixers

On-chain Games
Hide cards and moves
until reveal (e.g. poker,

blackjack, ..)

Blind Auctions
Bid on items without

revealing the amount or
the winner

Tokenization
Manage and swap

tokenized assets without
other seeing it

The fhEVM unlocks a myriad of use cases

6

7

Zama fhEVM Other FHE ZK Mixers SGX

Operations
supported Everything Additions &

multiplications AND & XOR None Everything

Privacy Model Hides the data Hides the data Hides the data Hides the identity Hides the data

Data Availability On-chain On-chain Off-chain On-chain On-chain

Encrypted state
composability Yes Limited No No Yes

On-chain PRNG Yes No No No Yes

Developer
Experience Easy Medium Hard Hard Easy

Compliance At the application level At the user level At the user level At the user level At the application level

Security Proven secure No security
proof Proven secure Proven secure Broken

Zama's fhEVM is the most comprehensive
confidential smart contract solution

8

Powerful features are available out of the box

High Precision Integers
Up to 256 bits of precision for integers

Full range of Operators
All typical operators are available: +,-,*,/,<,>,==,…

Encrypted If-Else Conditionals
Check conditions on encrypted states

On-chain Secure Randomness
Generate randomness without using oracles

Configurable Decryption
Threshold, centralized or KMS decryption

Unbounded Compute Depth
Unlimited consecutive FHE operations

fhEVM: How It Works

9

FHE

Homomorphic encryption
is used to compute on
private state, directly

on-chain

10

Zama's fhEVM combines state of the art
cryptography in a provably secure way

ZK

Zero-Knowledge Proofs
of Knowledge are used to

ensure encryption and
decryption integrity

MPC

Multi-party computation is
used for threshold
decryption of FHE

ciphertexts

+ +

Everything is encrypted under  
single global FHE public key

11

The global key is generated securely
using a threshold protocol

12

Threshold key generation

The inputs are simply encrypted using the
global public FHE key

13

FHE ciphertext + ZK proof
E(x)

x

Computation is done locally by validators
using homomorphic operations

14

fhEVM operations
E(x)

E(y) E(z)

Values can be decrypted by validators
using a threshold protocol

15

Threshold decryption
E(x) x

Values can also be re-encrypted to user
public key using a threshold protocol

16

Threshold re-encryptionE(x)
E(x)

Re-encrypted values can be read and
decrypted by the user owning the key

17

E(x)

x

View function

Encrypted Smart Contracts

18

TFHE::euint32

19

Can be used for
computation, storage,

composition, etc

Efficient since they are small
(only handles to ciphertexts)

euint8, euint16, ueint32, … 
add, sub, mul, eq, le, gt, …

Represents an  
encrypted value

TFHE.asEuint

20

Prevent user from decrypting
arbitrary ciphertexts

Well-formed to not leak
anything about global FHE

secret key

Ciphertexts include  
ZK proof of plaintext knowledge, 

that must be checked

TFHE.reencrypt

21

Securely re-encrypt 
from global FHE public key 

to user NaCl public key

Optional authentication
token to trust identity of

sender (EIP-712)

TFHE.decrypt

22

Decrypt boolean, 
and abort if false

Evaluate condition  
homomorphically

Alternative is 
TFHE.cmux(eCondition, eTrueValue, eFalseValue)

Leaks something!

SC-defined ACL
All the logic for access control
of encrypted states is defined
by developers in their smart
contracts.

Simple DevX
Developers can use the euint
data types to mark which part
of their contracts should be
private.

Solidity Integration
fhEVM contracts are simple
solidity contracts that are built
using traditional solidity
toolchains.

See an example
contract

23

Developers can write confidential
contracts without learning cryptography

https://www.zama.ai/post/on-chain-blind-auctions-using-homomorphic-encryption

24

Try the fhEVM yourself today

Github DocumentationDocumentation DocumentationWhite Paper

Questions?

