Morten Dahl

Senior Blockchain Director

thEVM

Confidential Smart Contracts
Using Homomorphic Encryption S




Everythin

g on a blockchain is

Transactions

Internal Txns

Erc721 Token Txns

I= Latest 25 ERC-20 Token Transfer Events

Txn Hash

8ed64cf49f537

1 hr 8 mins ago

1 hr 15 mins ago

12 hrs 57 mins ago

1 day 11 hrs ago

2 days 20 hrs ago

3 days 4 mins ago

3 days 24 mins ago

3 days 31 mins ago

3 days 1 hr ago

3 days 14 hrs ago

3 days 15 hrs ago

3 days 15 hrs ago

3 days 16 hrs ago

From

) vitalik.eth

1=] Uniswap V-

Erc1155 Token Txns

ouT

Analytics

To

() vitalik.eth

() vitalik.eth

) vitalik.eth

() vitalik.eth

() vitalik.eth

() vitalik.eth

@ OlympusDAO:

() vitalik.eth

() vitalik.eth

) vitalik.eth

) vitalik.eth

() vitalik.eth

() vitalik.eth

) £
'y,

Comments

) Funds

Value

2,500

25,143,213.150843308745475521

227,158,544.808096280091774569

21,420

153,473.76198500365822856

40,323.284453294043855726

40,323.284453294043855726

8,633.511805120159396357

3,853,058,515,307.2989734036202684...

3,652,123,857,386.0501562459646840...

3,176,588,279,214.80176999868555856

2,784,937,897,903.6328859385267450...

Token




This leads to many privacy issues

A
co

Criminals know what you
own, so they can easily target
you and steal your crypto.

®

Governments can surveil
you, even if you use
multiple addresses.

1

Bots can front-run you,
creating a hidden tax on
every transaction.



Fully
Homomorphic
Encryption

(FHE) enables
encrypted data
processing

E[x] + E[y] = E[x + y]

E[x] <E[y] =E[x<y]

More generally:
((Elx], ..., Ely]) = E[i(x, ..., y)]



Zama's fhEVM enables confidential smart
contracts using homomorphic encryption

E2E encryption of Composability and No impact on
transactions and data availability on- existing dapps and
state chain state



Tokenization

Manage and swap
tokenized assets without
other seeing it

Confidential Voting
Prevents bribery and
blackmailing by keeping
votes private

Blind Auctions

Bid on items without
revealing the amount or
the winner

Encrypted DIDs

Store identities on-chain
and generate attestations
without ZK

The fhEVM unlocks a myriad of use cases

On-chain Games

Hide cards and moves
until reveal (e.g. poker,
blackjack, ..)

Private Transfers

Keep balances and
amounts private, without
using mixers



Zama's fhEVM is the most comprehensive

confidential smart contract solution

Operations
supported

Privacy Model

Data Availability

Encrypted state
composability

On-chain PRNG

Developer
Experience

Compliance

Security

Zama fhEVM

Everything

Hides the data

On-chain

Yes

Yes

Easy

At the application level

Proven secure

Other FHE

Additions &
multiplications

Hides the data

On-chain

Limited

No

Medium

At the user level

No security
proof

ZK

AND & XOR

Hides the data

Off-chain

No

No

Hard

At the user level

Proven secure

Mixers

None

Hides the identity

On-chain

No

No

Hard

At the user level

Proven secure

SGX

Everything

Hides the data

On-chain

Yes

Yes

Easy

At the application level

Broken




Powerful features are available out of the box

High Precision Integers
Up to 256 bits of precision for integers

Full range of Operators
All typical operators are available: +,-,*,/,<,>,==,...

Encrypted If-Else Conditionals
Check conditions on encrypted states

On-chain Secure Randomness
Generate randomness without using oracles

Configurable Decryption
Threshold, centralized or KMS decryption

Unbounded Compute Depth

Unlimited consecutive FHE operations




fhEVM: How It Works



Zama's TfhEVM combines state of the art
cryptography in a provably secure way

FHE 4 MPC + ZK
Homomorphic encryption Multi-party computation is Zero-Knowledge Proofs
IS used to compute on used for threshold of Knowledge are used to
private state, directly decryption of FHE ensure encryption and

on-chain ciphertexts decryption integrity



Everything is encrypted under

single global FHE public key

-~ ©




The global key is generated securely

using a threshold protocol

. Threshold key generation .
——————————

-

12



The inputs are simply encrypted using the

global public FHE key

FHE ciphertext + ZK proof

— < @




Computation is done locally by validators

using homomorphic operations

E(z) .

fhEVM operations
————————————

E
" Ew)

14



Values can be decrypted by validators

using a threshold protocol

x .

Threshold decryption
—————————————————-

-

15



Values can also be re-encrypted to user

public key using a threshold protocol

Threshold re-encryption
———————————————-

16



Re-encrypted values can be read and

decrypted by the user owning the key

View function

w @ —




Encrypted Smart Contracts



TFHE::euint32

mapping(address => euint32) balances;

Can be used for
computation, storage,
composition, etc

Represents an
encrypted value

Efficient since they are small
(only handles to ciphertexts)

euint8, euint16, ueint32, ...
add, sub, mul, eq, le, agt, ...

19



TFHE.asEuint

eulnt32 amount = TFHE.asEuint32(amountCiphertext);

Well-formed to not leak
anything about global FHE
secret key

Prevent user from decrypting
arbitrary ciphertexts

Ciphertexts include
ZK proof of plaintext knowledge,
that must be checked

20



TFHE.reencrypt

return TFHE.reencrypt(balances[msg.sender], publicKey);

Securely re-encrypt Optional authentication
from global FHE public key token to trust identity of
to user NaCl public key sender (EIP-712)

21



TFHE.decrypt

require(TFHE.decrypt(TFHE. le(amount, currentAllowance)));

Evaluate condition Decrypt boolean,
homomorphically and abort if false

Leaks something!

Alternative is
TFHE.cmux(eCondition, eTrueValue, eFalseValue)

22



contract EncryptedERC20 {

mapping(address => euint32) internal balances;

function balanceOf(
bytes32 publicKey,
bytes calldata signature

) public view onlySignedPublicKey(publicKey, signature) returns (bytes memory) {
return TFHE.reencrypt(balances[msg.sender], publicKey, 0);

}

function transfer(address from, address to, euint32 amount) internal {

require(TFHE.decrypt(TFHE. Lle(amount, balances([from])));

balances[to] = TFHE.add(balances|[to], amount);
balances[from] = TFHE.sub(balances|[from], amount);

Developers can write confidential
contracts without learning cryptography

Solidity Integration

fhEVM contracts are simple
solidity contracts that are built
using traditional solidity
toolchains.

Simple DevX

Developers can use the euint
data types to mark which part
of their contracts should be
private.

SC-defined ACL

All the logic for access control
of encrypted states is defined
by developers in their smart
contracts.


https://www.zama.ai/post/on-chain-blind-auctions-using-homomorphic-encryption

Try the fhEVM yourself today

White Paper




Questions?




