Homomorphic polynomial evaluation using Galois structure and applications to BFV bootstrapping

Hiroki Okada ${ }^{2}$ Rachel Player ${ }^{1}$ Simon Pohmann ${ }^{1}$

Royal Holloway, University of London, UK
KDDI Research, Japan

October 5, 2023

Motivation

- TFHE is great!
- But sometimes BFV can achieve better performance
- Parallelism via slots
- Plaintext space has more structure
- [LW23]: BFV bootstrapping for LWE (TFHE) ciphertexts
- Polynomial evaluation is fascinating
- This setting is unusual and new

BFV

Plaintext space $\quad R_{t}=R / t R$
Ciphertext space R_{q}^{2}
Secret key $\quad s \in R_{q}$
where $R:=\mathbb{Z}[X] /\left(X^{N}+1\right)$

- Message m stored in highest significant bits

$$
c_{0}+c_{1} s \approx \frac{q}{t} m
$$

- Homomorphic +, • and Galois automorphisms

Bootstrapping BFV

Plaintext

$$
\begin{aligned}
m & \in R_{t} \\
\left(c_{0}, c_{1}\right) & \in R_{q}^{2} \\
s & \in R_{q}
\end{aligned}
$$

Ciphertext
Secret key

$$
c_{0}+c_{1} s \approx \frac{q}{t} m
$$

Assume $t=p, q=p^{e}$ (bootstrapped ciphertext).

$$
\text { Decryption: } m=\left\lfloor p^{1-e}\left(c_{0}+c_{1} s\right)\right\rceil
$$

Difficulty: \quad Rounded division by p^{e-1}
I
Floor-division by p^{e-1}
I
Get least significant p-adic digit

Bootstrapping BFV

Plaintext	$m \in R_{t}$
Ciphertext	$\left(c_{0}, c_{1}\right) \in R_{q}^{2}$
Secret key	$s \in R_{q}$

$$
\operatorname{Dec}\left(c_{0}, c_{1}\right)=\left\lfloor p^{1-e}\left(c_{0}+c_{1} s\right)\right\rceil
$$

Theorem ([HS21])

Polynomial $f \in \mathbb{Z}[X]$ with $\operatorname{deg}(f) \leq p$ such that

$$
f\left(z_{0}+p^{i} z_{1}\right) \equiv z_{0} \quad \bmod p^{i+1}
$$

for $z_{0} \in\{0, \ldots, p-1\}, z_{1} \in \mathbb{Z}, i<e$

Bootstrapping BFV

Theorem ([HS21])
Polynomial $f \in \mathbb{Z}[X]$ with $\operatorname{deg}(f) \leq p$ such that

$$
f\left(z_{0}+p^{i} z_{1}\right) \equiv z_{0} \quad \bmod p^{i+1}
$$

for $z_{0} \in\{0, \ldots, p-1\}, z_{1} \in \mathbb{Z}, i<e$

Bootstrapping BFV

Theorem ([HS21])
Polynomial $f \in \mathbb{Z}[X]$ with $\operatorname{deg}(f) \leq p$ such that

$$
f\left(z_{0}+p^{i} z_{1}\right) \equiv z_{0} \quad \bmod p^{i+1}
$$

for $z_{0} \in\{0, \ldots, p-1\}, z_{1} \in \mathbb{Z}, i<e$

Bootstrapping BFV

Theorem ([HS21])
Polynomial $f \in \mathbb{Z}[X]$ with $\operatorname{deg}(f) \leq p$ such that

$$
f\left(z_{0}+p^{i} z_{1}\right) \equiv z_{0} \quad \bmod p^{i+1}
$$

for $z_{0} \in\{0, \ldots, p-1\}, z_{1} \in \mathbb{Z}, i<e$

Bootstrapping BFV

Theorem ([HS21])
Polynomial $f \in \mathbb{Z}[X]$ with $\operatorname{deg}(f) \leq p$ such that

$$
f\left(z_{0}+p^{i} z_{1}\right) \equiv z_{0} \quad \bmod p^{i+1}
$$

for $z_{0} \in\{0, \ldots, p-1\}, z_{1} \in \mathbb{Z}, i<e$

Bootstrapping BFV

Theorem ([HS21])
Polynomial $f \in \mathbb{Z}[X]$ with $\operatorname{deg}(f) \leq p$ such that

$$
f\left(z_{0}+p^{i} z_{1}\right) \equiv z_{0} \quad \bmod p^{i+1}
$$

for $z_{0} \in\{0, \ldots, p-1\}, z_{1} \in \mathbb{Z}, i<e$

Bootstrapping BFV

Plaintext space slots

Plaintext Space: $R_{t}=\mathbb{Z}_{t}[X] /\left(X^{N}+1\right)$

- If $X^{N}+1$ factors modulo t

$$
R_{t} \cong \bigoplus_{i=1}^{n} \underbrace{\mathbb{Z}_{t}[X] /\left(f_{i}\right)}_{\mathrm{a} \text { "slot" }}
$$

- $\mathbb{Q}[X] /\left(X^{N}+1\right)$ is Galois \Rightarrow all slots isomorphic

$$
\Rightarrow \text { SIMD parallelism! }
$$

Bootstrapping with Slots

Encrypt "vectors" in

$$
R_{t} \cong \bigoplus_{i=1}^{n} \mathbb{Z}_{t}[X] /\left(f_{i}\right)
$$

where $X^{N}+1=f_{1} \cdots f_{n} \bmod t$

- Perform n digit extractions in SIMD
- Only N / n digit extraction steps

Why not $n=N$?

Bootstrapping with Slots

Encrypt "vectors" in

$$
R_{t} \cong \bigoplus_{i=1}^{n} \mathbb{Z}_{t}[X] /\left(f_{i}\right)
$$

where $X^{N}+1=f_{1} \cdots f_{n} \bmod t$

- Perform n digit extractions in SIMD
- Only N / n digit extraction steps

$$
\text { Why not } n=N \text { ? }
$$

$X^{N}+1$ factors completely $\bmod p^{e} \Leftrightarrow p \equiv 1 \bmod 2 N$
Requires large p !

Digit extraction and small n

We work in "plaintext slots"

$$
S=\mathbb{Z}_{p^{e}}[X] /\left(f_{i}\right)
$$

Think: modulus is prime (i.e. $e=1) \Rightarrow S=\mathbb{F}_{p^{d}}$

- Digit extraction polynomial works in \mathbb{F}_{p}
- We "waste" the rest of $\mathbb{F}_{p^{d}}$

Galois automorphisms

$$
\operatorname{Gal}\left(\mathbb{F}_{p^{d}} / \mathbb{F}_{p}\right)=\left\{\sigma: \mathbb{F}_{p^{d}} \rightarrow \mathbb{F}_{p^{d}} \mid \sigma \text { automorphism }\right\}
$$

- This is a group
- Cyclic, generated by Frobenius automorphism

$$
\pi: \mathbb{F}_{p^{d}} \rightarrow \mathbb{F}_{p^{d}}, \quad x \mapsto x^{p}
$$

- Has an analogue for Galois rings (i.e. the p^{e}-case)
- Relationship with Galois group of R resp. R_{p} is given by the splitting behavior of (p) in the cyclotomic number field $\mathbb{Q}[X] /\left(X^{N}+1\right)$.

The algebraic norm

Defined as

$$
N(x):=\prod_{i=0}^{d-1} \pi^{i} x
$$

Observation 1: If $x \in \mathbb{F}_{p}$ and $\alpha \in \mathbb{F}_{p^{d}}$, then

$$
N(\alpha-x)=\operatorname{MinPoly}(\alpha)(x)
$$

The algebraic norm

Defined as

$$
N(x):=\prod_{i=0}^{d-1} \pi^{i} x
$$

Observation 1: If $x \in \mathbb{F}_{p}$ and $\alpha \in \mathbb{F}_{p^{d}}$, then

$$
N(\alpha-x)=\operatorname{MinPoly}(\alpha)(x)
$$

Observation 2: We can compute $N(x)$ as

$$
\left.\begin{array}{rl}
x_{0} & :=x \\
x_{1} & :=x_{0} \cdot \pi x_{0}=x \cdot \pi x \\
x_{2} & :=x_{1} \cdot \pi^{2} x_{1}=x \cdot \pi x \cdot \pi^{2} x \cdot \pi^{3} x \\
& \cdots
\end{array}\right\} \log d \text { mults! }
$$

The algebraic norm (cont'd)

Observation 1
 $N(\alpha-x)=\operatorname{MinPoly}(\alpha)(x)$

Observation 2

Can compute $N(x)$ with $\log (d)$ multiplications

> If we find $\alpha \in \mathbb{F}_{p^{d}}$ such that $\operatorname{MinPoly}(\alpha)=$ Digit Extraction Poly

- Requires $p \leq d$
- Digit extraction in $\log (p)$ mults!
- Classical method (Paterson Stockmeyer) uses $2 \sqrt{p}$ mults
- Can be used for many polynomials!

It is faster!

Evaluate digit extraction poly via $N\left(\alpha_{\text {digit extract }}-x\right)$

- Assuming $p \leq d$
- Using $\log (p)$ mults

$$
N=2^{15}, \quad p=257, \quad d=256, \quad n=128, \quad e=2
$$

Key switches Time (our impl) Time [CH18]

Lin. Transform 1	22	7.9 s	-
Lin. Transform 2	30	8.6 s	-
Digit Extract	17	5.6 s	-
Total	69	22.1 s	36.8 s

(timings for slim bootstrapping)

Future Directions

- What about parameters with $t=p^{r}, 1<r<e$?
- Concurrent progress by [CH18; Gee+23]
- Evaluating multiple polynomials at same point?
- What if degree $>d$?

Thank you for your attention!

[CH18] Hao Chen and Kyoohyung Han. "Homomorphic Lower Digits Removal and Improved FHE Bootstrapping". 2018.
[Gee+23] Robin Geelen, Ilia Iliashenko, Jiayi Kang, and Frederik Vercauteren. "On Polynomial Functions Modulo p^{e} and Faster Bootstrapping for Homomorphic Encryption". 2023.
[HS21] Shai Halevi and Victor Shoup. "Bootstrapping for HElib". (2021).
[LW23] Zeyu Liu and Yunhao Wang. Amortized Functional Bootstrapping in less than 7 ms , with $\tilde{O}(1)$ polynomial multiplications. 2023.

