Homomorphic polynomial evaluation using Galois structure and applications to BFV bootstrapping

Hiroki Okada² Rachel Player¹ Simon Pohmann¹

Royal Holloway, University of London, UK

KDDI Research, Japan

October 5, 2023

Motivation

- TFHE is great!
- But sometimes BFV can achieve better performance
 - Parallelism via slots
 - Plaintext space has more structure
- [LW23]: BFV bootstrapping for LWE (TFHE) ciphertexts
- Polynomial evaluation is fascinating
- This setting is unusual and new

BFV

 $\begin{array}{ll} \mbox{Plaintext space} & R_t = R/tR \\ \mbox{Ciphertext space} & R_q^2 \\ \mbox{Secret key} & s \in R_q \end{array}$

where $R := \mathbb{Z}[X]/(X^N + 1)$

Message m stored in highest significant bits

$$c_0 + c_1 s pprox rac{q}{t} m$$

• Homomorphic +, \cdot and Galois automorphisms

 $\begin{array}{ll} {\sf Plaintext} & m \in R_t \\ {\sf Ciphertext} & (c_0,c_1) \in R_q^2 \\ {\sf Secret \ key} & s \in R_q \end{array}$

$$c_0 + c_1 s \approx \frac{q}{t} m$$

★ ∃ > ____

Assume t = p, $q = p^e$ (bootstrapped ciphertext).

Plaintext $m \in R_t$ Ciphertext $(c_0, c_1) \in R_q^2$ Secret key $s \in R_q$

 $\mathrm{Dec}(c_0,c_1)=\lfloor p^{1-e}(c_0+c_1s)\rceil$

くぼう くほう くほう

3

Theorem ([HS21])

Polynomial $f \in \mathbb{Z}[X]$ with deg $(f) \leq p$ such that

$$f(z_0+
ho^i z_1)\equiv z_0\mod
ho^{i+1}.$$

for $z_0 \in \{0, ..., p-1\}$, $z_1 \in \mathbb{Z}$, i < e

Theorem ([HS21]) Polynomial $f \in \mathbb{Z}[X]$ with $\deg(f) \leq p$ such that $f(z_0 + p^i z_1) \equiv z_0 \mod p^{i+1}.$ for $z_0 \in \{0, ..., p-1\}, z_1 \in \mathbb{Z}, i < e$

(本間) (本語) (本語) (二語

Theorem ([HS21]) Polynomial $f \in \mathbb{Z}[X]$ with $\deg(f) \leq p$ such that $f(z_0 + p^i z_1) \equiv z_0 \mod p^{i+1}.$ for $z_0 \in \{0, ..., p-1\}, z_1 \in \mathbb{Z}, i < e$

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣

Theorem ([HS21]) Polynomial $f \in \mathbb{Z}[X]$ with deg $(f) \leq p$ such that $f(z_0 + p^i z_1) \equiv z_0 \mod p^{i+1}.$ for $z_0 \in \{0, ..., p-1\}, z_1 \in \mathbb{Z}, i < e$

- 本間 と く ヨ と く ヨ と 二 ヨ

Theorem ([HS21]) Polynomial $f \in \mathbb{Z}[X]$ with deg $(f) \le p$ such that $f(z_0 + p^i z_1) \equiv z_0 \mod p^{i+1}.$ for $z_0 \in \{0, ..., p-1\}, z_1 \in \mathbb{Z}, i < e$

(本間) (本語) (本語) (二語

Theorem ([HS21]) Polynomial $f \in \mathbb{Z}[X]$ with $\deg(f) \leq p$ such that $f(z_0 + p^i z_1) \equiv z_0 \mod p^{i+1}.$ for $z_0 \in \{0, ..., p-1\}, z_1 \in \mathbb{Z}, i < e$

$$p^0 p^1 p^2 p^3 p^4 \ z_0 0 0 0 0 0$$

▲ 興 ▶ ▲ 国 ▶ ▲ 国 ▶ ― 国

く 目 ト く ヨ ト く ヨ ト

Beware the Algebraic Number Theory!

Plaintext space slots

Plaintext Space: $R_t = \mathbb{Z}_t[X]/(X^N + 1)$ • If $X^N + 1$ factors modulo t

$$R_t \cong \bigoplus_{i=1}^n \underbrace{\mathbb{Z}_t[X]/(f_i)}_{a \text{ "slot"}}$$

• $\mathbb{Q}[X]/(X^N+1)$ is Galois \Rightarrow all slots isomorphic

 \Rightarrow SIMD parallelism!

Bootstrapping with Slots

Encrypt "vectors" in

$$R_t \cong \bigoplus_{i=1}^n \mathbb{Z}_t[X]/(f_i)$$

where $X^N + 1 = f_1 \cdots f_n \mod t$

- Perform *n* digit extractions in SIMD
- Only N/n digit extraction steps

Why not n = N?

Bootstrapping with Slots

Encrypt "vectors" in

$$R_t \cong \bigoplus_{i=1}^n \mathbb{Z}_t[X]/(f_i)$$

where $X^N + 1 = f_1 \cdots f_n \mod t$

• Perform *n* digit extractions in SIMD

• Only *N*/*n* digit extraction steps

Why not n = N?

 $X^N + 1$ factors completely mod $p^e \Leftrightarrow p \equiv 1 \mod 2N$

Requires large p!

Digit extraction and small n

We work in "plaintext slots"

$$S = \mathbb{Z}_{p^e}[X]/(f_i)$$

Think: modulus is prime (i.e. e = 1) $\Rightarrow S = \mathbb{F}_{p^d}$

- Digit extraction polynomial works in \mathbb{F}_p
- We "waste" the rest of \mathbb{F}_{p^d}

Galois automorphisms

 $\operatorname{Gal}(\mathbb{F}_{p^d}/\mathbb{F}_p) = \{ \sigma : \mathbb{F}_{p^d} \to \mathbb{F}_{p^d} \mid \sigma \text{ automorphism} \}$

- This is a group
- Cyclic, generated by Frobenius automorphism

$$\pi: \mathbb{F}_{p^d} \to \mathbb{F}_{p^d}, \quad x \mapsto x^p$$

- Has an analogue for Galois rings (i.e. the p^e-case)
- Relationship with Galois group of R resp. R_p is given by the splitting behavior of (p) in the cyclotomic number field Q[X]/(X^N + 1).

The algebraic norm

Defined as

$$N(x) := \prod_{i=0}^{d-1} \pi^i x$$

Observation 1: If $x \in \mathbb{F}_p$ and $\alpha \in \mathbb{F}_{p^d}$, then

 $N(\alpha - x) = \operatorname{MinPoly}(\alpha)(x)$

3 N 3

The algebraic norm

Defined as

$$N(x) := \prod_{i=0}^{d-1} \pi^i x$$

Observation 1: If $x \in \mathbb{F}_p$ and $\alpha \in \mathbb{F}_{p^d}$, then

$$N(\alpha - x) = \operatorname{MinPoly}(\alpha)(x)$$

Observation 2: We can compute N(x) as

$$x_{0} := x \\ x_{1} := x_{0} \cdot \pi x_{0} = x \cdot \pi x \\ x_{2} := x_{1} \cdot \pi^{2} x_{1} = x \cdot \pi x \cdot \pi^{2} x \cdot \pi^{3} x \\ \dots \end{cases}$$
 log *d* mults!

`

The algebraic norm (cont'd)

Observation 1 $N(\alpha - x) = \operatorname{MinPoly}(\alpha)(x)$

Observation 2 Can compute N(x) with log(d) multiplications

If we find $\alpha \in \mathbb{F}_{p^d}$ such that MinPoly $(\alpha) =$ Digit Extraction Poly

- Requires $p \leq d$
- Digit extraction in log(p) mults!
- Classical method (Paterson Stockmeyer) uses $2\sqrt{p}$ mults
- Can be used for many polynomials!

It is faster!

Evaluate digit extraction poly via $N(\alpha_{\text{digit extract}} - x)$

- Assuming $p \leq d$
- Using log(p) mults

$$N = 2^{15}, p = 257, d = 256, n = 128, e = 2$$

	Key switches	Time (our impl)	Time [CH18]
Lin. Transform 1	22	7.9s	-
Lin. Transform 2	30	8.6s	-
Digit Extract	17	5.6s	-
Total	69	22.1s	36.8s

(timings for slim bootstrapping)

• 3 •

Future Directions

- What about parameters with $t = p^r$, 1 < r < e?
 - ▶ Concurrent progress by [CH18; Gee+23]
- Evaluating multiple polynomials at same point?
- What if degree > d?

Thank you for your attention!

[CH18] Hao Chen and Kyoohyung Han. "Homomorphic Lower Digits Removal and Improved FHE Bootstrapping". 2018.

- [Gee+23] Robin Geelen, Ilia Iliashenko, Jiayi Kang, and Frederik Vercauteren. "On Polynomial Functions Modulo p^e and Faster Bootstrapping for Homomorphic Encryption". 2023.
- [HS21] Shai Halevi and Victor Shoup. "Bootstrapping for HElib". (2021).
- [LW23] Zeyu Liu and Yunhao Wang. Amortized Functional Bootstrapping in less than 7ms, with $\tilde{O}(1)$ polynomial multiplications. 2023.