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Privacy-Preserving Machine Learning using FHE
= Homomorphic encryption (HE) allows computing on encrypted data
— Useful for privacy-preserving machine learning (PPML): model and/or input are private

= E.g. aclient wants to offload the task of diagnosing COVID-19 from a patient’s X-ray image to
a server where the server itself may be using a proprietary model trained with encrypted data
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FHE Operations are Expensive!
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Pruning for Neural Nets under HE

= One technique for speeding up neural network processing is to
prune the network parameters, e.g.,

— Pruning weights based on an absolute threshold (L1 norm)
— Pruning neurons randomly, etc.

Commonly used technique in the ML domain

Improves latency, by reducing the number of operations and

storage of model and/or inputs
Certain FHE schemes, e.g., CKKS, support operations in a Single-

Instruction Multiple Data (SIMD) manner
— The ciphertext message consists of SIMD slots

— The same operation is applied to every slot in the ciphertext

Creates a challenge for pruning
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Ciphertext SIMD Packing using Tile Tensors
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= HE schemes, such as BGV, B/FV, and CKKS 8
— Operate on ciphertexts in a SIMD fashion \ Y
— Encrypt a plaintext vector into a ciphertext _ h
— Homomorphic ops performed slot-wise on the elements Plaintext matrix of shape 2x6
of the plaintext vector
&
= A recent work by Aharoni et al. [5] proposes a data Ny
structure called tile tensor that packs tensors (e.g., <@ |
vectors, matrices) into fixed-size chunks, i.e., tiles | il
— Implemented as part of an offering called HelLayers [6] 0 010
4 6 HONINS
= Thus, for NN inference under HE, what matters is not 3 0 4 NK %ﬁ
traditional sparsity but tile sparsity, i.e., the % of offoffoffofMoffofo]o
tiles that contain only zero values prior to HE ——
encoding/encrypting Ciphertext of Padding
shape 2x4x2

[5] E. Aharoni, et al., “HelLayers: A Tile Tensors Framework for Large Neural Networks on Encrypted Data”, CoRR abs/2011.0 (2020). 2011.01805
[6] https://github.ibm.com/bioauth/helayers/

5



https://github.ibm.com/bioauth/helayers/

Problem with NN Pruning+HE Packing and Solution

Column indices
4x6 weight matrix —

Row indices

Consider 2x2 tile
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= Exhaustive search complexity to find best permutation for MxN matrix = O(M!N!) = prohibitive!

» Instead, we propose an iterative method to arrive at the “best” permuted matrix
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Permute Algorithm Illustration with Weight Pruning
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» For clustering using k-means, we use grouped Hamming distance: for two mask vectors a; and b;, computes the
number of non-zero groups of size [tﬂl (or [tﬂl depending on the iteration) in (a; AND b;)
2 1

» Further, we implement a balancing scheme that reassigns points from centroids with > t; (or, t,) points to
centroids that have the minimum distance to the point
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Extending Permutation to Multiple FC Layers

» For asingle-layered NN, we can alternately apply our permutation
algorithm to the rows and columns of the weight matrix

and output permutation matrix P,, for the input and output
activation, resp.

» For a multi-layered NN, if we do the same for each layer, we will
need a P; and P, for each layer - this is a bad idea
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Extending Permutation to Multiple FC Layers

» Instead, we propose a layer-wise co-permutation algorithm that permutes adjacent layers
together

— E.g, shuffling neurons {1} =& co-permute rows of W}, and rows of the preceding weight matrix, Wy, or
concat(Wyg , Wi,)

» Therefore, only one P; and P, layers are required

N-layer solution
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Extending Permutation to Conv Layers

= For convolutional layers, the permutation algorithm is more nuanced as a Conv2D layer
consists of 4D filter weights (dimensions: inC, outC, H, W)

= Similar to permuting neurons in the FC case, we permute channels in the Conv2D case

» This translates to a similar co-permutation algorithm as before, but with column-groupwise

transposition
— Precisely, the Conv layer is reshaped to reduce it to a 2D tensor and each group of CoxCi, (or, Ci,xCoy, for alternate
iterations) sub-matrix is transposed within the larger tensor
— Reshape and transposition are done prior to model deployment, and do not add any overhead during inference
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Proposed Pruning Schemes

P2 : Train — Prune

P2T : Train — PruneP?ek

P3: Train — Prune — Permute

P3E : Train — Prune — Permute

P4 : Train — Prune — Permute — PruneP®

P4E : Train — Prune — Permute — PruneP2

Overview of our prune, permute, expand, and pack methods

» PAE is our best-proposed scheme

— Retrain — Pack

— Retrain — Pack

Scope Local (Lc), Global (Gl)

P2T Criterion Average/Maximum/Minimum of tile
(T-Avg/T-Max/T-Min)

Target Weight (-)

— Retrain — Pack

Scope Local (Lc), Global (Gl)

P2,P3,P3E || Criterion | L1 (L1), Rand (Rnd)

Target Weight (Wei), Neuron (Neu)

— Expand — Retrain — Pack

— Retrain — Pack

— Expand — Retrain — Pack

Scope Local (Lc), Global (GI) [1st and 2nd prune]

P4, P4E L1 (L1), Rand (Rnd) [1st prune], threshold

Criteri . o
FHEHON | fraction of non-zeros in tile to prune [2nd prune]

Target Weight (Wei), Neuron (Neu) [1st prune]

Scope, criterion and target of pruning for each
scheme

— Prior to expansion, we perform a second pruning-aware-packing step

— Reduces tiles that contain “mostly” zeros

— Tiles are marked for pruning if it has more than a certain fraction of non-zeros

= P2T uses a tile packing-based pruning scheme
— Pick a tile shape and split every matrix into tiles

— For each tile, we compute the minimum/maximum/average metric of its absolute values

— Prune the tiles with the lowest value of the metric

= P2T is our adaptation of a state-of-the-art scheme called Hunter [7], which we compare with

11 [7]1Y. Cai, et al., “Hunter: HE-Friendly Structured Pruning for Efficient Privacy-Preserving Deep Learning”, ASIA CCS ’22



PAE Scheme Illustration

2/22
zero
tiles

» For a 4-layer (A-D) MLP network with 2x2 tiles

» Perform 54/88 = 61% weight-based pruning
— After pruning we can only reduce 2/22 = 10% tiles

10/22
zero .
tiles

§=§

s
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— After permutation, however, it is possible to reduce 7/22 = 35% of the tiles

= PrunePak removes tiles that have “a few” non-zeros in them, e.g., 10/22 = 45% in this case

= Expansion is useful to restore the accuracy loss without affecting tile sparsity
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Threat Model

» During computation, the cloud learns nothing about the underlying

We consider a simple 2-party threat model in this work
1. A dataowner with a pre-trained NN model and private data
samples
2. A cloud server that run HE inference as a service

encrypted samples of the user or about the encrypted weights of
the model owner, although it does learn the structure of the NN

= \We assume

13

— Secure protocols for inter-party communication, such as TLS 1.3

— Computationally-bounded and semi-honest adversaries

— That the data arrangement is modified before encryption and thus does
not impact the semantic security of the HE scheme

— 128-bit security

!
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@, Public key



Experimental Setup and HelLayers Integration
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We evaluate our methods on four applications that use MLPs and CNNs
— In addition, we showcase our P4E technique on a 21-layer HE-friendly AlexNet with trained activation functions

We consider the MNIST, CIFAR-10 and SVHN datasets + COVIDx CT-2A dataset for AlexNet

We perform accuracy measurements and pruning using PyTorch on a system with V100 GPUs and Xeon Gold CPU

Our proposal is integrated into HelLayers
— Enhanced Helayers to automatically identify zero vector inputs using a “zero-flag” and remove storage for zero vectors

End-to-end memory and latency are measured using
— Helayers running on 8 threads, averaged over 10 runs
— SEAL CKKS implementation while targeting 128b security, with N=32,768
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Comparison with P2T Schemes
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— Using our best pruning technique (P3E for Conv and P4E for FC with Lc/L1/Wei, labeled HE-PEX)
— Against P2T variants for a 21-layer AlexNet NN on the COVIDx CT-2A dataset; local-scope variants far outperform global-scope ones
— Markers show the NN that has the highest tile sparsity within at most 2.5% worse accuracy compared to the unpruned NN

Through careful pruning, our best scheme achieves a tile sparsity of with, at worse, a 2.5%
degradation in inference accuracy over the unpruned NN

Overall, across the other four applications (omitted for brevity), we observe that HE-PEx improves the tile
sparsity of each NN by , ,and over P2T for tile sizes of 8x8, 16x16 and 32x32, resp.

The efficacy of P2T schemes degrades as the tile size increases, whereas HE-PEx remains more stable
— The larger the tile, the greater the probability that it holds a set of “important” weights along with “unimportant” ones
— Pruning all of these weights at once in P2T leads to severe accuracy degradation, since important weights are pruned out

15



Impact on End-to-End Latency and Memory for Inference

16

Experiments performed with HElayers+HE-PEx on NN inference
using the AE-Denoiser NN, on CIFAR-10

Our results show and latency reductions of and
17-35%, resp., compared to the unpruned model
— With < 2.5% degradation in NN inference accuracy

The benefits are higher for smaller t4, t,, as the tile sparsity is
greater for smaller tiles
— However, smaller tile shapes require a large t5, and therefore a
large batch size of the inputs
— The final tile shape depends on the optimization requirements, e.g.,
latency, memory, throughput

Our method reduces of and 53-63% of HE

multiplications compared to the unpruned NN

There is a potential 37% latency to reduce even with 99% tile
sparsity
— Reason: outputs of the FC layers may be denser than the weights,
and these need to run through polynomial activations
— Can mitigate using other methods, e.g., activation pruning

Test Loss

—eo— 64%x64
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Normalized Latency

1.00 0.75 0.50
Normalized Memory

Reduction in HE operations with HE-PEx

HE Op
Tild Add Add (1) Mul Mul (1)
Shape (before) (after) (before) (after)
10,801 9,367
8x8 28,840 (63%) 25,600 (63%)
3,954 3,002
1,542 937
32x32 2,200 (30%) 1,600 (41%)
542 188
64x64 760 (29%) 400 (53%)
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Impact of Permutation

T
[] Hist. after P2 [_JHist. after P31

v

_ Zero tiles H
Weights not created in P3

pruned in P4

get region

runePack tar,

g

10.0

= We plot histograms of the zero values in 32x32 tiles 05
of the layers of AlexNet trained on COVIDx CT-2A o 2 TJoa
dataset, after performing Lc/L1/Wei pruning with § 5 01931
97.5% pruning fraction S 7 o2
i 2.5 4017

0.0
= As shown in green, after pruning the weights as part o.o86 =

of the first prune step, we see a Gaussian distribution
centered at 97.5% with a squashed tail

= After permutation, we observe a two-fold set of benefits

88 90 92 94 96 I 98 100
% of Zeros in Tile

— First, the weight tensors are rearranged so that more zeros are clustered together, thus increasing

the tile sparsity from 3.9% t0 9.8%

— Second, trained non-zero weights have migrated from sparse tiles into denser tiles
- This leads to better inference accuracy after re-training, as these weights are not pruned away
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Conclusion

» Presented a framework of packing-aware pruning for HE-enabled NNs that combines four
critical primitives — pruning, permutation, expansion & packing
— In particular, our novel permutation approach lends improvement in tile sparsity without affecting
functionality or accuracy of the NN

» Described how it operates in a non-client-aided HE-enabled inference use-case, and
integrated it with a general HE packing framework called HElayers

» Adapted a state-of-the-art pruning technique called Hunter and compared our best scheme
against theirs, in terms of NN loss/accuracy and the fractions of ciphertexts eliminated

= Qur results with running various privacy-preserving ML applications on different datasets
showed significant reductions in memory and latency for inference under HE under a small

loss in accuracy
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