Etficient Pruning for Machine Learning
under Homomorphic Encryption

Ehud Aharoni®, Moran Baruch”, Pradip Bose®, Alper Buyuktosunoglu®, Nir
Drucker”, Subhankar Pal*, Tomer Pelleg”, Kanthi Sarpatwar®, Hayim
Shaul”, Omri Soceanu” and Roman Vaculin®

Subhankar.Pal@ibm.com
“IBM T.J. Watson Research Center, USA and "IBM Research — Israel

FHE.org Mee{up January 4, 2024

Privacy-Preserving Machine Learning using FHE
= Homomorphic encryption (HE) allows computing on encrypted data
— Useful for privacy-preserving machine learning (PPML): model and/or input are private

= E.g. aclient wants to offload the task of diagnosing COVID-19 from a patient’s X-ray image to
a server where the server itself may be using a proprietary model trained with encrypted data

® == sid Encrypted
am Client-side | =m Server-si eO Result
.| Encode & 8 4 Predict
Encrypt Send to o O
Server Q O
::> aQ g o
_ : Encrypted Q &
Private Data Image O

Decrypt &

Decode
<:| < Send to Client
D
&)

Decrypted Result Encrypted Result

FHE Operations are Expensive!

A x'
X X [x]q [x]p
y T 1,000-100,000x% slower than plaintext ops
y=x*x mod g mod g mod g, mod g mod g .. <mod gD
(I —1) times (I —1) times '
NTTmod ¢ NTTmod 4 NTTmod g, NTTmod ¢ NTTmod 4 w
* ~mod q ~mod q _mod g, ~mod q ~mod g
q;_1mod g, q;-ymod q, qiymod q;_, q;-ymod g, q;-ymod q; qi-ymod q;_,
" mod qq " modgq “mod g; "' mod gqq " mod g "mod gq;
[yla [yls

[yl = [x] * x’

Pruning for Neural Nets under HE

= One technique for speeding up neural network processing is to
prune the network parameters, e.g.,

— Pruning weights based on an absolute threshold (L1 norm)
— Pruning neurons randomly, etc.

Commonly used technique in the ML domain

Improves latency, by reducing the number of operations and

storage of model and/or inputs
Certain FHE schemes, e.g., CKKS, support operations in a Single-

Instruction Multiple Data (SIMD) manner
— The ciphertext message consists of SIMD slots

— The same operation is applied to every slot in the ciphertext

Creates a challenge for pruning

Qo

a;

a

by

by

D [
HAdd =
b,

a0+b0

a1+b1

a2+b2
a3+b3
as + by

[400)

a;
as
as

>4

Pru

Ao
a;

O
ne [

No point! Other
values are non-
Zeros.

Ciphertext SIMD Packing using Tile Tensors

1
5
= HE schemes, such as BGV, B/FV, and CKKS 8
— Operate on ciphertexts in a SIMD fashion \ Y
— Encrypt a plaintext vector into a ciphertext _ h
— Homomorphic ops performed slot-wise on the elements Plaintext matrix of shape 2x6
of the plaintext vector
&
= A recent work by Aharoni et al. [5] proposes a data Ny
structure called tile tensor that packs tensors (e.g., <@ |
vectors, matrices) into fixed-size chunks, i.e., tiles | il
— Implemented as part of an offering called HelLayers [6] 0 010
4 6 HONINS
= Thus, for NN inference under HE, what matters is not 3 0 4 NK %ﬁ
traditional sparsity but tile sparsity, i.e., the % of offoffoffofMoffofo]o
tiles that contain only zero values prior to HE ——
encoding/encrypting Ciphertext of Padding
shape 2x4x2

[5] E. Aharoni, et al., “HelLayers: A Tile Tensors Framework for Large Neural Networks on Encrypted Data”, CoRR abs/2011.0 (2020). 2011.01805
[6] https://github.ibm.com/bioauth/helayers/

5

https://github.ibm.com/bioauth/helayers/

Problem with NN Pruning+HE Packing and Solution

Column indices
4x6 weight matrix —

Row indices

Consider 2x2 tile
012345¢6 7 tensors

1.2|0.2[1.4/0.5/0.2[1.3|1.0[1.9 1.2/ 0 (1.4/ 0 | O [1.3]1.02.9 Tz QL2 [0 {l3Lcfl.9

0.2]0.1}1.5/0.2/0.70.2/0.1/0.5 0l1.50[/0j0]|0;0

Prune

(thres = 1.0)

tD

0.6]0.5]1.6]0.9]0.9/0.6/1.7/0.6 O(OfLé6j0O|0O|O7]0 N IS S M 1T L] o

0.1}1.9/0.2/0.7|0.7|0.3|0.3|0.3

0
1101025 0(0(0(0|O0
2
3

ofofo|ojofjofojo Oi1.90i0 OiO OiO

Prune+pack -> 1/8 fewer
ctxts
Permute row/col 05123467

01213/ 0|14/ 0|0 [1.0(2.9 L 2(1.3] o (1.4 2 | &{1-9

))
0lo|o 160070

O | o {22500 A (o A

@ Prune
€]
@Permute

2
1/0(0]011.5 00|00
3(0|0119 000|000 0 01.9i0 OiO ofo

G0

Prune+permute+pack ->
4/8 fewer ctxts

= Exhaustive search complexity to find best permutation for MxN matrix = O(M!N!) = prohibitive!

» Instead, we propose an iterative method to arrive at the “best” permuted matrix

6

Permute Algorithm Illustration with Weight Pruning

01234567
0 |12| o |14| 0] 0 |1.3|1.0]2.9
110fo|ts{o]ofofo]o
2lololrelo]ofo]r7fo
3|oft9lo]|o|ofo]ofo

MxN weight matrix
with t1xt2 tile tensors

Splitinto
row vectors

1.2

014

1.3

0

0 [1.5

0

0

0

0

0 [1.6

0

0

0

w NN PO

0

1.9(0

0

0

0

Iteration O -> 1 zero-tile

0

010

0

0

1.5

0

0

010

0

0

0

1.6

1.7

1.3(1.9]/0

0

1.2

0

1.4

1.0

0

0|0

0

0

1.9

0

0

Iteration 2 -> 4 zero-tiles

Transposel

O B~ W J 01

2

1.5

1.6

6

0

1.7

010

1.5

0

0

0

0

1.6

0

0

0

1.7

0

1.2(0

1.4

0

0

1.3

1.0

1.9

W o N B
o

0 11.9

0

0

0

0

0

0

Iteration 1 -> 2 zero-tiles

Transpose - L—

oo DN PP O

7

0

0

1.2

0

0

0

0

1.9

1.5

1.6

1.4

0

0

1.3

1.7

1.0

0

1.9

0

» For clustering using k-means, we use grouped Hamming distance: for two mask vectors a; and b;, computes the
number of non-zero groups of size [tﬂl (or [tﬂl depending on the iteration) in (a; AND b;)
2 1

» Further, we implement a balancing scheme that reassigns points from centroids with > t; (or, t,) points to
centroids that have the minimum distance to the point

ln
4|||
L

|

Extending Permutation to Multiple FC Layers

» For asingle-layered NN, we can alternately apply our permutation
algorithm to the rows and columns of the weight matrix

and output permutation matrix P,, for the input and output
activation, resp.

» For a multi-layered NN, if we do the same for each layer, we will
need a P; and P, for each layer - this is a bad idea

s o S

007 3 o O QLo

% B g

O'i;o Q O 8f\ }‘O O! ’O

0080 00— 9 &/to

" NO0'0 P, O ©O
Po PII

For correctness, we need to introduce an input permutation matrix P;

2-layer solution

Repeat until
convergence

Permute cols

o
073
0%
N
O
00
0, 0. /Oy
O 0
O’\O)
A O’,p
0.0 00
B

Single-Layered NN Multi-Layered NN

|||
M
(el
Myl
"'|II||

Extending Permutation to Multiple FC Layers

» Instead, we propose a layer-wise co-permutation algorithm that permutes adjacent layers
together

— E.g, shuffling neurons {1} =& co-permute rows of W}, and rows of the preceding weight matrix, Wy, or
concat(Wyg , Wi,)

» Therefore, only one P; and P, layers are required

N-layer solution

Wep Wog We Wi
{2} Permute rows Tg) Tg) § O
ENEEEE % E :::’ Ov O O|O
oH FHI - s @) O O Oy
BB OE O O O O
- f T Q T A 2
s 3 neposed) Wap Wgc Wasf} Wec o), O &
]
9 R o 0 o 9 q O "
o S /0 Q. & O ® O o O/O O /v
8 o/ 9 S 83 AN o O ofe)
50 8 °o°38 g e § 8. e g og P, O P,
© 1) Xl o) 3 o

® © ® |
W Multi-Layered NN

|||
I
(el
Honl
||||“||

Extending Permutation to Conv Layers

= For convolutional layers, the permutation algorithm is more nuanced as a Conv2D layer
consists of 4D filter weights (dimensions: inC, outC, H, W)

= Similar to permuting neurons in the FC case, we permute channels in the Conv2D case

» This translates to a similar co-permutation algorithm as before, but with column-groupwise

transposition
— Precisely, the Conv layer is reshaped to reduce it to a 2D tensor and each group of CoxCi, (or, Ci,xCoy, for alternate
iterations) sub-matrix is transposed within the larger tensor
— Reshape and transposition are done prior to model deployment, and do not add any overhead during inference

ol g} ol ol ol of,ol ol ol ol ol ol of,o

ol of 1] 1p Wy Wy [Wg W1 [Ws Wg W3 Wg W1gW3 W7 V11
WOWlWOWl‘ foal o al Akt ok a0l 1l k1] 1
Wy Wi [wWg Wi Ws Wg Wy Wg Wigws W W

w? [w [wl wl [0 [Wa |Wg Wi Ws [Wg W3 We WioW3 W7 V11

2| 2] 21 2| 2] 21 21 2| 21| 2] 2] 2
Resh Wo W4 [Wg W1 Ws Wo W5 [Wg WipW3 W7 Vi1
- | - esnape 3, 3| 3l 3.3l 3l 33 3] 3l 3]53
| | - P *n % Wy [Wa [Wg W1 Ws Wg W2 Wg WigW3 W7 V11
2.2 b 3.3 b (4,3,2,2) > (4,3*2*2) ;
wg Wi E wo Wi B CoutXCin @ Column-Groupwise
w2 [F2 £ w3 [wi [Transpose

welwi g lwa wowi w2 we st w2 [wi welwi fwzfw?

w; we ws w2 ws w

w3 [ws [wé WS

Conv2D Layer
Cin =3,Court =4 Wy
Cinxcout Wg

wa w3 Wé W |Wé (w7 (w7 w3 w3

ol 1] 2l,3l,.0l,1],2],3
Wg |Wg [Ws WiolW1iolV1oW1ioW11V11V11PV11

10

|||
I
(el
Honl
||||“||

Proposed Pruning Schemes

P2 : Train — Prune

P2T : Train — PruneP?ek

P3: Train — Prune — Permute

P3E : Train — Prune — Permute

P4 : Train — Prune — Permute — PruneP®

P4E : Train — Prune — Permute — PruneP2

Overview of our prune, permute, expand, and pack methods

» PAE is our best-proposed scheme

— Retrain — Pack

— Retrain — Pack

Scope Local (Lc), Global (Gl)

P2T Criterion Average/Maximum/Minimum of tile
(T-Avg/T-Max/T-Min)

Target Weight (-)

— Retrain — Pack

Scope Local (Lc), Global (Gl)

P2,P3,P3E || Criterion | L1 (L1), Rand (Rnd)

Target Weight (Wei), Neuron (Neu)

— Expand — Retrain — Pack

— Retrain — Pack

— Expand — Retrain — Pack

Scope Local (Lc), Global (GI) [1st and 2nd prune]

P4, P4E L1 (L1), Rand (Rnd) [1st prune], threshold

Criteri . o
FHEHON | fraction of non-zeros in tile to prune [2nd prune]

Target Weight (Wei), Neuron (Neu) [1st prune]

Scope, criterion and target of pruning for each
scheme

— Prior to expansion, we perform a second pruning-aware-packing step

— Reduces tiles that contain “mostly” zeros

— Tiles are marked for pruning if it has more than a certain fraction of non-zeros

= P2T uses a tile packing-based pruning scheme
— Pick a tile shape and split every matrix into tiles

— For each tile, we compute the minimum/maximum/average metric of its absolute values

— Prune the tiles with the lowest value of the metric

= P2T is our adaptation of a state-of-the-art scheme called Hunter [7], which we compare with

11 [7]1Y. Cai, et al., “Hunter: HE-Friendly Structured Pruning for Efficient Privacy-Preserving Deep Learning”, ASIA CCS ’22

PAE Scheme Illustration

2/22
zero
tiles

» For a 4-layer (A-D) MLP network with 2x2 tiles

» Perform 54/88 = 61% weight-based pruning
— After pruning we can only reduce 2/22 = 10% tiles

10/22
zero .
tiles

§=§

s

(V]

— After permutation, however, it is possible to reduce 7/22 = 35% of the tiles

= PrunePak removes tiles that have “a few” non-zeros in them, e.g., 10/22 = 45% in this case

= Expansion is useful to restore the accuracy loss without affecting tile sparsity

12

Threat Model

» During computation, the cloud learns nothing about the underlying

We consider a simple 2-party threat model in this work
1. A dataowner with a pre-trained NN model and private data
samples
2. A cloud server that run HE inference as a service

encrypted samples of the user or about the encrypted weights of
the model owner, although it does learn the structure of the NN

= \We assume

13

— Secure protocols for inter-party communication, such as TLS 1.3

— Computationally-bounded and semi-honest adversaries

— That the data arrangement is modified before encryption and thus does
not impact the semantic security of the HE scheme

— 128-bit security

!

LN

% Secret key

Evaluation keys

@, Public key

Experimental Setup and HelLayers Integration

0 MLP-Classifier

9 AE- ComEressor

: : : -
: 0 : - Compressed : : 2
S Encode+ 2 Decrypt+ Images Encode+ Decrypt+ E
0 Encode+ < Decrypt+ 8 2 < E
% Encrypt =) Decode g 0 Encrypt = Decode Encrypt Decode Gy
€ o) £ H o H T 8 %D
RS H = = H H H ol
H =~ H H H =
Client-Side : Client-Side Client-Side : Server- Slde Client-Side : I Client-Side
Server-Side i
9 CNN-Classifier @ AE-Denoiser . .
: g d 5 5 5 :
Slle =l = X Encode+ 9 @ Decrypt+
0 Encode+ 2l 8 o8 < =3 Decrypt+ 2 _\ < 5 < <
% Encrypt 3% ElEINE g Decode L S 2L/ |5 2| Decode
5 H | E: NI [= |] T o o o T
= . o - -
: : : Denoised
H . Noisy Images ~ : o HEPSTp
Client-Side ! Server-Side Client-Side Client-Side = Server-Side : Client-Side Images

We evaluate our methods on four applications that use MLPs and CNNs
— In addition, we showcase our P4E technique on a 21-layer HE-friendly AlexNet with trained activation functions

We consider the MNIST, CIFAR-10 and SVHN datasets + COVIDx CT-2A dataset for AlexNet

We perform accuracy measurements and pruning using PyTorch on a system with V100 GPUs and Xeon Gold CPU

Our proposal is integrated into HelLayers
— Enhanced Helayers to automatically identify zero vector inputs using a “zero-flag” and remove storage for zero vectors

End-to-end memory and latency are measured using
— Helayers running on 8 threads, averaged over 10 runs
— SEAL CKKS implementation while targeting 128b security, with N=32,768

14

4|||
”II

Comparison with P2T Schemes

g 8%

> 80

O

o

S 60 A

O

<

-+~ 40 T

(%]

& T T T T T T T T
60 80 100 60 80 100 60 80 100 60 80 100
Tile Sparsity (%) Tile Sparsity (%) Tile Sparsity (%) Tile Sparsity (%)

N | =

Inference accuracy vs. tile sparsity (% of zero tiles) comparison; t; and t, swepts.t.t; =t, and t; - t, - t5
y P y P 1 2 1

— Using our best pruning technique (P3E for Conv and P4E for FC with Lc/L1/Wei, labeled HE-PEX)
— Against P2T variants for a 21-layer AlexNet NN on the COVIDx CT-2A dataset; local-scope variants far outperform global-scope ones
— Markers show the NN that has the highest tile sparsity within at most 2.5% worse accuracy compared to the unpruned NN

Through careful pruning, our best scheme achieves a tile sparsity of with, at worse, a 2.5%
degradation in inference accuracy over the unpruned NN

Overall, across the other four applications (omitted for brevity), we observe that HE-PEx improves the tile
sparsity of each NN by , ,and over P2T for tile sizes of 8x8, 16x16 and 32x32, resp.

The efficacy of P2T schemes degrades as the tile size increases, whereas HE-PEx remains more stable
— The larger the tile, the greater the probability that it holds a set of “important” weights along with “unimportant” ones
— Pruning all of these weights at once in P2T leads to severe accuracy degradation, since important weights are pruned out

15

Impact on End-to-End Latency and Memory for Inference

16

Experiments performed with HElayers+HE-PEx on NN inference
using the AE-Denoiser NN, on CIFAR-10

Our results show and latency reductions of and
17-35%, resp., compared to the unpruned model
— With < 2.5% degradation in NN inference accuracy

The benefits are higher for smaller t4, t,, as the tile sparsity is
greater for smaller tiles
— However, smaller tile shapes require a large t5, and therefore a
large batch size of the inputs
— The final tile shape depends on the optimization requirements, e.g.,
latency, memory, throughput

Our method reduces of and 53-63% of HE

multiplications compared to the unpruned NN

There is a potential 37% latency to reduce even with 99% tile
sparsity
— Reason: outputs of the FC layers may be denser than the weights,
and these need to run through polynomial activations
— Can mitigate using other methods, e.g., activation pruning

Test Loss

—eo— 64%x64

—o— 8X%8 —o— 16X%X16 —e— 32X%32
0.06 A 0.06 A
@
o
0.04 4 — 0.04 -
t
@
0.02 A 0.02 A

Normalized Latency

1.00 0.75 0.50
Normalized Memory

Reduction in HE operations with HE-PEx

HE Op
Tild Add Add (1) Mul Mul (1)
Shape (before) (after) (before) (after)
10,801 9,367
8x8 28,840 (63%) 25,600 (63%)
3,954 3,002
1,542 937
32x32 2,200 (30%) 1,600 (41%)
542 188
64x64 760 (29%) 400 (53%)

||
I
(KN
Mol
||u“||

Impact of Permutation

T
[] Hist. after P2 [_JHist. after P31

v

_ Zero tiles H
Weights not created in P3

pruned in P4

get region

runePack tar,

g

10.0

= We plot histograms of the zero values in 32x32 tiles 05
of the layers of AlexNet trained on COVIDx CT-2A o 2 TJoa
dataset, after performing Lc/L1/Wei pruning with § 5 01931
97.5% pruning fraction S 7 o2
i 2.5 4017

0.0
= As shown in green, after pruning the weights as part o.o86 =

of the first prune step, we see a Gaussian distribution
centered at 97.5% with a squashed tail

= After permutation, we observe a two-fold set of benefits

88 90 92 94 96 I 98 100
% of Zeros in Tile

— First, the weight tensors are rearranged so that more zeros are clustered together, thus increasing

the tile sparsity from 3.9% t0 9.8%

— Second, trained non-zero weights have migrated from sparse tiles into denser tiles
- This leads to better inference accuracy after re-training, as these weights are not pruned away

17

Conclusion

» Presented a framework of packing-aware pruning for HE-enabled NNs that combines four
critical primitives — pruning, permutation, expansion & packing
— In particular, our novel permutation approach lends improvement in tile sparsity without affecting
functionality or accuracy of the NN

» Described how it operates in a non-client-aided HE-enabled inference use-case, and
integrated it with a general HE packing framework called HElayers

» Adapted a state-of-the-art pruning technique called Hunter and compared our best scheme
against theirs, in terms of NN loss/accuracy and the fractions of ciphertexts eliminated

= Qur results with running various privacy-preserving ML applications on different datasets
showed significant reductions in memory and latency for inference under HE under a small

loss in accuracy

18

Thank You! Questions?

© 2024 1BM Corporation

