
January 4th, 2024

Efficient Pruning for Machine Learning
under Homomorphic Encryption

FHE.org Meetup

Ehud Aharoni^, Moran Baruch^, Pradip Bose*, Alper Buyuktosunoglu*, Nir
Drucker^, Subhankar Pal*, Tomer Pelleg^, Kanthi Sarpatwar*, Hayim

Shaul^, Omri Soceanu^ and Roman Vaculin*

Subhankar.Pal@ibm.com
*IBM T.J. Watson Research Center, USA and ^IBM Research – Israel

Privacy-Preserving Machine Learning using FHE

2

§ Homomorphic encryption (HE) allows computing on encrypted data
– Useful for privacy-preserving machine learning (PPML): model and/or input are private

§ E.g. a client wants to offload the task of diagnosing COVID-19 from a patient’s X-ray image to
a server where the server itself may be using a proprietary model trained with encrypted data

Encode &
Encrypt

Client-side Server-side

Predict

Send to Client

Decrypt &
Decode

Encrypted
Result

Encrypted
Image

Encrypted ResultDecrypted Result

“COVID”

Send to
Server

Private Data

FHE Operations are Expensive!

3

⟧⟦𝒚 = ⟧⟦𝒙 ∗ 𝒙′

!⟧⟦𝒙 𝒂

!

𝒙′Δ

INTTmod	"!"#

mod	𝑞# mod	𝑞$ mod	𝑞%&'

NTTmod	"$ NTTmod	"# NTTmod	"!"%

−mod	"$ −mod	"#
−mod	"!"%

𝑞%&$&$ mod	𝑞# 𝑞%&$&$ mod	𝑞$ 𝑞%&$&$ mod	𝑞%&'

$ mod	"$ $ mod	"# $ mod	"!"%

…

…

…

…

(𝑙 − 1) times

⟧⟦𝒚 𝒂

⟧⟦𝒙 𝒃

!

INTTmod	"!"#

mod	𝑞# mod	𝑞$ mod	𝑞%&'

NTTmod	"$ NTTmod	"# NTTmod	"!"%

−mod	"$ −mod	"#
−mod	"!"%

𝑞%&$&$ mod	𝑞# 𝑞%&$&$ mod	𝑞$ 𝑞%&$&$ mod	𝑞%&'

$ mod	"$ $ mod	"# $ mod	"!"%

…

…

…

…

(𝑙 − 1) times

⟧⟦𝒚 𝒃

𝒚 = 𝒙 ∗ 𝒙′

!

𝒙′𝒙

𝒚 1,000-100,000× slower than plaintext ops

Pruning for Neural Nets under HE
§ One technique for speeding up neural network processing is to

prune the network parameters, e.g.,
– Pruning weights based on an absolute threshold (L1 norm)
– Pruning neurons randomly, etc.

§ Commonly used technique in the ML domain

§ Improves latency, by reducing the number of operations and
storage of model and/or inputs

4

Weight &
neuron
pruning

§ Certain FHE schemes, e.g., CKKS, support operations in a Single-
Instruction Multiple Data (SIMD) manner
– The ciphertext message consists of SIMD slots
– The same operation is applied to every slot in the ciphertext

§ Creates a challenge for pruning
𝑎!
𝑎"
𝑎#
𝑎$
𝑎%

HAdd

𝑏!
𝑏"
𝑏#
𝑏$
𝑏%

=
𝑎! + 𝑏!
𝑎" + 𝑏"
𝑎# + 𝑏#
𝑎$ + 𝑏$
𝑎% + 𝑏%

𝑎!
𝑎"
𝑎#
𝑎$
𝑎%

𝑎!
𝑎"

𝑎$Prune
No point! Other
values are non-
zeros.

Ciphertext SIMD Packing using Tile Tensors
§ HE schemes, such as BGV, B/FV, and CKKS

– Operate on ciphertexts in a SIMD fashion
– Encrypt a plaintext vector into a ciphertext
– Homomorphic ops performed slot-wise on the elements

of the plaintext vector

§ A recent work by Aharoni et al. [5] proposes a data
structure called tile tensor that packs tensors (e.g.,
vectors, matrices) into fixed-size chunks, i.e., tiles
– Implemented as part of an offering called HeLayers [6]

§ Thus, for NN inference under HE, what matters is not
traditional sparsity but tile sparsity, i.e., the % of
tiles that contain only zero values prior to HE
encoding/encrypting

5

5 7 4 1
1 2 3 0

5 6 0 0
2 5 0 0

0 0 0 0
8 7 2 3

0 0 0 0
0 4 0 0

Ciphertext of
shape 2×4×2

Padding

Replic
atio

ns

8 7 2 3
5 7 4 1

0 4
5 6

1 2 3 0 2 5

Plaintext matrix of shape 2×6

[5] E. Aharoni, et al., “HeLayers: A Tile Tensors Framework for Large Neural Networks on Encrypted Data”, CoRR abs/2011.0 (2020). 2011.01805
[6] https://github.ibm.com/bioauth/helayers/

Pack

https://github.ibm.com/bioauth/helayers/

Problem with NN Pruning+HE Packing and Solution

§ Exhaustive search complexity to find best permutation for 𝑀×𝑁 matrix = 𝑂(𝑀!𝑁!) à prohibitive!

§ Instead, we propose an iterative method to arrive at the “best” permuted matrix
6

1.20.21.40.50.21.31.01.9

0.20.11.50.20.70.20.10.5

0.60.51.60.90.90.61.70.6

0.11.90.20.70.70.30.30.3

1.2 0 1.4 0 0 1.31.01.9

0 0 1.5 0 0 0 0 0

0 0 1.6 0 0 0 1.7 0

0 1.9 0 0 0 0 0 0

Prune
(thres = 1.0)

0 1 2 3 4 5 6 7

0

1

2

3

1.21.3 0 1.4 0 0 1.01.9

0 0 0 1.6 0 0 1.7 0

0 0 0 1.5 0 0 0 0

0 0 1.9 0 0 0 0 0

0 5 1 2 3 4 6 7

0

2

1

3

Pack

1.2 1.3 0 1.4 0 0 1.0 1.9

0 0 0 1.6 0 0 1.7 0

0 0 0 1.5 0 0 0 0

0 0 1.9 0 0 0 0 0

Tile
0

Tile
1

Tile
2

Tile
3

Tile
4

Tile
5

Tile
6

Tile
7

Permute row/col

Pack
0
1
2
3
4
5
6
7

0
1
2
3

0
1
2
3
4
5
6
7

0
1
2
3

5
0

1
2
3
4
6
7

0
2
1
3

Pr
un

e

Pe
rm

ut
e

1.2 0 1.4 0 0 1.31.01.9

0 0 1.5 0 0 0 0 0

0 0 1.6 0 0 0 1.7 0

0 1.9 0 0 0 0 0 0

Tile
0

Tile
1

Tile
2

Tile
3

Tile
4

Tile
5

Tile
6

Tile
7

Consider 2×2 tile
tensors4×6 weight matrix

Prune+pack -> 1/8 fewer
ctxts

Prune+permute+pack ->
4/8 fewer ctxts

Column indices

Row indices

Instead, consider…

Permute Algorithm Illustration with Weight Pruning

§ For clustering using k-means, we use grouped Hamming distance: for two mask vectors 𝑎& and 𝑏&, computes the
number of non-zero groups of size '(% (or)(# , depending on the iteration) in (𝑎& AND 𝑏&)

§ Further, we implement a balancing scheme that reassigns points from centroids with > 𝑡" (or, 𝑡#) points to
centroids that have the minimum distance to the point7

1.2 0 1.4 0 0 1.3 1.0 1.9

0 0 1.5 0 0 0 0 0

0 0 1.6 0 0 0 1.7 0

0 1.9 0 0 0 0 0 0

0 1 2 3 4 5 6 7
0
1
2
3

1.2 0 1.4 0 0 1.3 1.0 1.9

0 0 1.5 0 0 0 0 0

0 0 1.6 0 0 0 1.7 0

0 1.9 0 0 0 0 0 0

𝑘	–Means
(𝑘 = 𝑀/𝑡$) 1.2 0 1.4 0 0 1.3 1.0 1.9

0 0 1.5 0 0 0 0 0

0 0 1.6 0 0 0 1.7 0

0 1.9 0 0 0 0 0 0

0
1
2
3

1
2
0
3

Iteration 1 -> 2 zero-tiles

𝑘	-Means
(𝑘 = 𝑁/𝑡')

0 0 1.2 0

0 0 0 1.9

1.5 1.6 1.4 0

0 0 0 0

0 0 0 0

0 0 1.3 0

0 1.7 1.0 0

0 0 1.9 0

0 0 1.3 0

0 0 1.9 0

0 0 0 0

0 0 0 0

0 0 1.2 0

0 0 0 1.9

1.5 1.6 1.4 0

0 1.7 1.0 0

0
1
2
3
4
5
6
7

5
7
3
4
0
1
2
6

Transpose
1.3 1.9 0 0 1.2 0 1.4 1.0

0 0 0 0 0 0 1.5 0

0 0 0 0 0 0 1.6 1.7

0 0 0 0 0 1.9 0 0

Iteration 0 -> 1 zero-tile

Iteration 2 -> 4 zero-tiles

MxN weight matrix
with t1xt2 tile tensors

Split into
row vectors

Transpose

Extending Permutation to Multiple FC Layers

8

§ For a single-layered NN, we can alternately apply our permutation
algorithm to the rows and columns of the weight matrix

§ For correctness, we need to introduce an input permutation matrix 𝑃-
and output permutation matrix 𝑃., for the input and output
activation, resp.

§ For a multi-layered NN, if we do the same for each layer, we will
need a 𝑃- and 𝑃. for each layer à this is a bad idea

0

1

2

3

0

1

2

3

4

5

6

7

0

1

2

3

𝑃&

𝑃*

0

1

2

3

4

5

6

7

0

1

2

3

0

1

2

3

4

5

0

1

2

3

4

5

6

7

0

1

2

3

0

1

2

3

0

1

2

3

4

5

6

7

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

𝑃&
𝑃+ 𝑃+++

𝑃++
𝑃*

0

1

2

3

0

1

2

3

4

5

6

7

Permute rows

Pe
rm

ut
e

co
ls

Repeat until
convergence

2-layer solution

Single-Layered NN Multi-Layered NN

Extending Permutation to Multiple FC Layers

9

0

1

2

3

0

1

2

3

4

5

0

1

2

3

0

1

2

3

4

5

6

7

0

1

2

3

4

5

{1} Permute rows

{2} Permute rows

0

1

2

3
0

1

2

3

4

5

0

1

2

3

0

1

2

3

4

5

6

7

0

1

2

3

4

5

{3
} P

er
m

ut
e

co
ls

{4
} P

er
m

ut
e

co
ls

{5
} P

er
m

ut
e

co
ls

0

1

2

3

0

1

2

3

4

5

0

1

2

3

0

1

2

3

4

5

6

7

0

1

2

3

4

5

(even-numbered weight
matrices are transposed)

Permute

Repeat until
convergence

N-layer solution

{1} {2}

{3} {4} {5}

§ Instead, we propose a layer-wise co-permutation algorithm that permutes adjacent layers
together
– E.g, shuffling neurons {1} è co-permute rows of 𝑊,-

. and rows of the preceding weight matrix, 𝑊/,, or
concat(𝑊/, ,𝑊,-

.)

§ Therefore, only one 𝑃- and 𝑃. layers are required

𝑊() 𝑊)*
+

𝑊*, 𝑊,-
+

𝑊() 𝑊)*
+

𝑊*, 𝑊,-
+

0

1

2

3

0

1

2

3

4

5

0

1

2

3

4

5

6

7

0

1

2

3

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

𝑃& 𝑃*

Multi-Layered NN

Extending Permutation to Conv Layers
§ For convolutional layers, the permutation algorithm is more nuanced as a Conv2D layer

consists of 4D filter weights (dimensions: inC, outC, H, W)

§ Similar to permuting neurons in the FC case, we permute channels in the Conv2D case

§ This translates to a similar co-permutation algorithm as before, but with column-groupwise
transposition
– Precisely, the Conv layer is reshaped to reduce it to a 2D tensor and each group of Cout×Cin (or, Cin×Cout, for alternate

iterations) sub-matrix is transposed within the larger tensor
– Reshape and transposition are done prior to model deployment, and do not add any overhead during inference

10

Reshape
(4,3,2,2) à (4,3*2*2)

Column-Groupwise
Transpose

𝑤&' 𝑤('

𝑤)'' 𝑤))'
𝑤*' 𝑤+'

𝑤,' 𝑤-'
𝑤'' 𝑤)'

𝑤.' 𝑤/'

𝑤&) 𝑤()

𝑤)') 𝑤)))
𝑤*) 𝑤+)

𝑤,) 𝑤-)
𝑤') 𝑤))

𝑤.) 𝑤/)

𝑤&. 𝑤(.

𝑤)'. 𝑤)).
𝑤&/ 𝑤(/

𝑤)'/ 𝑤))/
𝑤*. 𝑤+.

𝑤,. 𝑤-.
𝑤'. 𝑤).

𝑤.. 𝐹/.

𝑤*/ 𝑤+/

𝑤,/ 𝑤-/
𝑤'/ 𝑤)/

𝑤./ 𝑤//

𝑤## 𝑤.# 𝑤/#𝑤$# 𝑤0# 𝑤1# 𝑤'# 𝑤2#𝑤$## 𝑤3# 𝑤4#𝑤$$#

𝑤#$ 𝑤.$ 𝑤/$ 𝑤$$ 𝑤0$ 𝑤1$ 𝑤'$ 𝑤2#𝑤$#$ 𝑤3$ 𝑤4$𝑤$$$

𝑤#' 𝑤.' 𝑤/'𝑤$' 𝑤0' 𝑤1' 𝑤'' 𝑤2'𝑤$#' 𝑤3' 𝑤4'𝑤$$'

𝑤#3 𝑤.3 𝑤/3𝑤$3 𝑤03 𝑤13 𝑤'3 𝑤23𝑤$#3 𝑤33 𝑤43𝑤$$3

𝑤## 𝑤#$ 𝑤#' 𝑤#3 𝑤$# 𝑤$$ 𝑤$' 𝑤$3 𝑤'# 𝑤'$ 𝑤'' 𝑤'3 𝑤3# 𝑤3$ 𝑤3' 𝑤33

𝑤.# 𝑤.$ 𝑤.' 𝑤.3 𝑤0# 𝑤0
$ 𝑤0' 𝑤03 𝑤2

𝑤2$ 𝑤2' 𝑤23 𝑤4# 𝑤4$ 𝑤4' 𝑤43

𝑤/# 𝑤/$ 𝑤/' 𝑤/3 𝑤1# 𝑤1$ 𝑤1' 𝑤13𝑤$## 𝑤$#$ 𝑤$#' 𝑤$#3 𝑤$$# 𝑤$$$ 𝑤$$' 𝑤$$3𝐶56×𝐶789
𝐶56 = 3, 𝐶789 = 4

𝐶789×𝐶56

Conv2D Layer

Proposed Pruning Schemes

11

§ P4E is our best-proposed scheme
– Prior to expansion, we perform a second pruning-aware-packing step
– Reduces tiles that contain “mostly” zeros
– Tiles are marked for pruning if it has more than a certain fraction of non-zeros

§ P2T uses a tile packing-based pruning scheme
– Pick a tile shape and split every matrix into tiles
– For each tile, we compute the minimum/maximum/average metric of its absolute values
– Prune the tiles with the lowest value of the metric

§ P2T is our adaptation of a state-of-the-art scheme called Hunter [7], which we compare with

Scope, criterion and target of pruning for each
scheme

Overview of our prune, permute, expand, and pack methods

[7] Y. Cai, et al., “Hunter: HE-Friendly Structured Pruning for Efficient Privacy-Preserving Deep Learning”, ASIA CCS ’22

§ For a 4-layer (A-D) MLP network with 2×2 tiles

§ Perform 54/88 = 61% weight-based pruning
– After pruning we can only reduce 2/22 ≈ 10% tiles
– After permutation, however, it is possible to reduce 7/22 = 35% of the tiles

§ Prunepack removes tiles that have “a few” non-zeros in them, e.g., 10/22 = 45% in this case

§ Expansion is useful to restore the accuracy loss without affecting tile sparsity
12

P4E Scheme Illustration

0
1
2

0
1
2
3

0
1
2
3
4
5
6
7

0
1
2
3
4
5

3

Layer A
Layer B

Layer C

Layer D

𝑊()
𝑊)* 𝑊*,

𝑊)*
:

𝑊()

𝑊*,

Permute Expand

0
1
2

0
1
2
3

0
1
2
3
4
5
6
7

0
1
2
3
4
5

3

𝑊)*
:

𝑊()

𝑊*,

2/22
zero
tiles

↑ zero tiles, ↓ accuracy

0
1

20

1
2

3

0

1

2

3

4

5

6

7

0

1
2

3
4

5
3

𝑊)*
:

𝑊()

𝑊*,

7/22
zero
tiles

↑ zero tiles, → accuracy

𝑊)*
:

𝑊()

𝑊*,

10/22
zero
tiles

2
3
0

0
3
1
2

4
6
1
7
2
5
0
3

0
5
3
4
1
2

1

→ zero tiles, ↑ accuracyPrunePack

0
1

20

1
2

3

0

1

2

3

4

5

6

7

0

1
2

3
4

5
3

𝑊)*
:

𝑊()

𝑊*,

10/22
zero
tiles

↑ zero tiles, ↓ accuracyPrune

Threat Model

§ We consider a simple 2-party threat model in this work
1. A data owner with a pre-trained NN model and private data

samples
2. A cloud server that run HE inference as a service

§ During computation, the cloud learns nothing about the underlying
encrypted samples of the user or about the encrypted weights of
the model owner, although it does learn the structure of the NN

§ We assume
– Secure protocols for inter-party communication, such as TLS 1.3
– Computationally-bounded and semi-honest adversaries
– That the data arrangement is modified before encryption and thus does

not impact the semantic security of the HE scheme
– 128-bit security

13

TL
S1

.3

Secret key
Evaluation keys
Public key

Experimental Setup and HeLayers Integration

§ We evaluate our methods on four applications that use MLPs and CNNs
– In addition, we showcase our P4E technique on a 21-layer HE-friendly AlexNet with trained activation functions

§ We consider the MNIST, CIFAR-10 and SVHN datasets + COVIDx CT-2A dataset for AlexNet

§ We perform accuracy measurements and pruning using PyTorch on a system with V100 GPUs and Xeon Gold CPU

§ Our proposal is integrated into HeLayers
– Enhanced HeLayers to automatically identify zero vector inputs using a “zero-flag” and remove storage for zero vectors

§ End-to-end memory and latency are measured using
– HeLayers running on 8 threads, averaged over 10 runs
– SEAL CKKS implementation while targeting 128b security, with N=32,768

14

Client-Side

Pr
ed

ic
tio

ns

Li
ne

ar

Im
ag

es

Pe
rm

ut
e

Encode+
Encrypt

Pe
rm

ut
e

Server-Side
Client-Side

Decrypt+
Decode

Li
ne

ar

Li
ne

ar

MLP-Classifier1

Po
ly

Ac
t

Po
ly

Ac
t

Client-Side

Pr
ed

ic
tio

ns

Fl
at

te
n

Im
ag

es

Pe
rm

ut
e

Encode+
Encrypt

Pe
rm

ut
e

Pe
rm

ut
e

Server-SideClient-Side

Decrypt+
Decode

CNN-Classifier2

Po
ly

Ac
t

Av
gP

oo
l

Co
nv

2D

Po
ly

Ac
t

Av
gP

oo
l

Co
nv

2D

Li
ne

ar

Li
ne

ar

Po
ly

Ac
t

Client-Side

Compressed
Images

Im
ag

es

Pe
rm

ut
e

Encode+
Encrypt

Pe
rm

ut
e

Server-SideClient-Side

Decrypt+
Decode

Li
ne

ar

AE-Compressor

Pe
rm

ut
e

Encode+
Encrypt

3

Client-Side

Re
co

ns
tr

uc
te

d
Im

ag
es

Pe
rm

ut
e

Decrypt+
Decode

Li
ne

ar
Po

ly
Ac

t

Li
ne

ar

Po
ly

Ac
t

Denoised
ImagesClient-Side Client-SideNoisy Images

Pe
rm

ut
e

Encode+
Encrypt

Pe
rm

ut
e

Server-Side

Decrypt+
Decode

AE-Denoiser4

Li
ne

ar
Po

ly
Ac

t

Li
ne

ar

Po
ly

Ac
t

Li
ne

ar

Po
ly

Ac
t

Comparison with P2T Schemes

15

§ Inference accuracy vs. tile sparsity (% of zero tiles) comparison; 𝑡%	and 𝑡& swept s.t. 𝑡% = 𝑡& and 𝑡% ⋅ 𝑡& ⋅ 𝑡' =
(
&

– Using our best pruning technique (P3E for Conv and P4E for FC with Lc/L1/Wei, labeled HE-PEx)
– Against P2T variants for a 21-layer AlexNet NN on the COVIDx CT-2A dataset; local-scope variants far outperform global-scope ones
– Markers show the NN that has the highest tile sparsity within at most 2.5% worse accuracy compared to the unpruned NN

§ Through careful pruning, our best scheme achieves a tile sparsity of 75–84% with, at worse, a 2.5%
degradation in inference accuracy over the unpruned NN

§ Overall, across the other four applications (omitted for brevity), we observe that HE-PEx improves the tile
sparsity of each NN by 48%, 57%, and 104% over P2T for tile sizes of 8×8, 16×16 and 32×32, resp.

§ The efficacy of P2T schemes degrades as the tile size increases, whereas HE-PEx remains more stable
– The larger the tile, the greater the probability that it holds a set of “important” weights along with “unimportant” ones
– Pruning all of these weights at once in P2T leads to severe accuracy degradation, since important weights are pruned out

Impact on End-to-End Latency and Memory for Inference

16

§ Experiments performed with HElayers+HE-PEx on NN inference
using the AE-Denoiser NN, on CIFAR-10

§ Our results show memory and latency reductions of 10–35% and
17–35%, resp., compared to the unpruned model

– With < 2.5% degradation in NN inference accuracy

§ The benefits are higher for smaller 𝑡", 𝑡#, as the tile sparsity is
greater for smaller tiles

– However, smaller tile shapes require a large 𝑡3, and therefore a
large batch size of the inputs

– The final tile shape depends on the optimization requirements, e.g.,
latency, memory, throughput

§ Our method reduces 29–63% of HE additions and 53–63% of HE
multiplications compared to the unpruned NN

§ There is a potential 37% latency to reduce even with 99% tile
sparsity

– Reason: outputs of the FC layers may be denser than the weights,
and these need to run through polynomial activations

– Can mitigate using other methods, e.g., activation pruning

Add
(before)

Add (↓)
(after)

Mul
(before)

Mul (↓)
(after)

8×8 28,840 10,801
(63%) 25,600 9,367

(63%)

16×16 7,360 3,954
(46%) 6,400 3,002

(53%)

32×32 2,200 1,542
(30%) 1,600 937

(41%)

64×64 760 542
(29%) 400 188

(53%)

Reduction in HE operations with HE-PEx
HE Op

Tile
Shape

Impact of Permutation

17

§ We plot histograms of the zero values in 32x32 tiles
of the layers of AlexNet trained on COVIDx CT-2A
dataset, after performing Lc/L1/Wei pruning with
97.5% pruning fraction

§ As shown in green, after pruning the weights as part
of the first prune step, we see a Gaussian distribution
centered at 97.5% with a squashed tail

§ After permutation, we observe a two-fold set of benefits
– First, the weight tensors are rearranged so that more zeros are clustered together, thus increasing

the tile sparsity from 3.9% to 9.8%
– Second, trained non-zero weights have migrated from sparse tiles into denser tiles

• This leads to better inference accuracy after re-training, as these weights are not pruned away

Conclusion

§ Presented a framework of packing-aware pruning for HE-enabled NNs that combines four
critical primitives – pruning, permutation, expansion & packing
– In particular, our novel permutation approach lends improvement in tile sparsity without affecting

functionality or accuracy of the NN

§ Described how it operates in a non-client-aided HE-enabled inference use-case, and
integrated it with a general HE packing framework called HElayers

§ Adapted a state-of-the-art pruning technique called Hunter and compared our best scheme
against theirs, in terms of NN loss/accuracy and the fractions of ciphertexts eliminated

§ Our results with running various privacy-preserving ML applications on different datasets
showed significant reductions in memory and latency for inference under HE under a small
loss in accuracy

18

© 2022 IBM Corporation

Thank You! Questions?

© 2024 IBM Corporation

