
High-precision RNS-CKKS
on small word-size architecture

Duhyeong Kim, Intel Labs
FHE.org Meetup

Jan 11th, 2024

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its
subsidiaries. Other names and brands may be claimed as the property of others .

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex .
Performance results are based on testing as of dates shown in configurations and may not reflect all publicly
available updates. See backup for configuraƟon details. No product or component can be absolutely secure.

* Other names, logos and brands used throughout this presentation may be claimed as the property of others.

* This research was, in part, funded by the Defense Advanced Research Projects Agency (DARPA) through contract
HR0011-21-3-0003. The views, opinions, and findings expressed are those of the authors and should not be
interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.
Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited).

Notices and Disclaimers

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

• Enable high-precision RNS-CKKS on fixed but smaller word-size architectures
• Single scaling Composite scaling

• Enable functionally correct CKKS composite scaling in two open-source libraries
• OpenFHE: C++, enabled by Intel labs
• Lattigo: Go, enabled by Seoul National University (SNU)

• Demonstrate with secure parameters the equivalence between single and
composite scaling

• 7-layer CNN Inference with longitudinal packing in OpenFHE-CKKS with composite scaling
• 7-layer CNN Inference with multiplexed packing in Lattigo-CKKS with composite scaling
• Logistic Regression Training in OpenFHE-CKKS with composite scaling

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Overview

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

 Any computation on encrypted data “without decryption process”

𝒎

𝐄𝐧𝐜(𝒎)
𝐄𝐧𝐜 𝒇 𝒎

= 𝒇෨ 𝑬𝒏𝒄 𝒎

𝒇(𝒎)
𝒇()

𝒇෨()

𝐄𝐧𝐜

Fully Homomorphic Encryption (FHE)

𝐃𝐞𝐜

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

CKKS: FHE for real-number arithmetic

How can we think of the “approximate” computation in CKKS?

• Imitation of “fixed-point” arithmetic in cleartext version

• Example: computation of 1.584 × 2.4835 × 9.5937 × 8.7264 × 6.12743 (≈ 2017.9897)

1.584

2.4835

9.5937

8.7264

6.12743

scale-up
(encode)

158400

248350

959370

872640

612743

⊗

encrypt

158403

248346

959371

872647

612738

⊗

39338751474

837192225089

612738

scale-down

393385

8371924

= 3.93385 × 10ହ

= 83.71924 × 10ହ

= 6.12738 × 10ହ

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

CKKS: FHE for real-number arithmetic

How can we think of the “approximate” computation in CKKS?

• Imitation of “fixed-point” arithmetic in cleartext version

• Example: computation of 1.584 × 2.4835 × 9.5937 × 8.7264 × 6.12743 (≈ 2017.9897)

612738

393385

8371924

⊗ 3293389322759

scale-down

329338937

612738

⊗ 201798481579529 2017984819

scale-down

decrypt
2017984819

scale-down
(decode)

2017.984819

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Scaling Factor in CKKS

• Determine the “initial precision bits” under the decimal point
• CKKS Encoding/Encryption results in

• Larger , start with higher precision
• Smaller start with lower precision

scaling factor

encoding/encryption error
(size determined by FHE params)

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Scaling Factor in CKKS

• Exponential growth of Scaling Factor
 ᇱ 𝟐 ᇱ

 𝟐𝒌 𝟐𝒌 ᇱ 𝟐𝒌శ𝟏 ᇱ

• How to control the growth of scaling factor?

“rescale”

• Rescale(): ℓ ௖௧

୼
ℓିଵ (from the context of “original” CKKS)

 ᇱ 𝟐 ᇱ Rescale (1/Δ)

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Rescale in RNS-CKKS

• RNS-CKKS
 An efficient way to implement CKKS w/o big-number arithmetic
 Ctxt moduli ℓ ଴ ଵ ℓ for level (instead of modulo ℓ)

𝐑𝐍𝐒𝑸ℓ
𝒙 ≔ (𝒙 𝐦𝐨𝐝 𝒒𝟎, 𝒙 𝐦𝐨𝐝 𝒒𝟏, … , 𝒙 𝐦𝐨𝐝 𝒒ℓ)

• Rescale modulo ℓ in RNS?
 No efficient way to compute 𝟏

𝚫

 Instead, we can efficiently compute 𝟏

𝒒ℓ

o
ଵ

௤ℓ
⋅ 𝑥 = 𝑞ℓ

ିଵ ⋅ 𝑥 − 𝑥 mod 𝑞ℓ

o Easy to obtain the RNS representation of 𝑥 mod 𝑞ℓ

 RNSொℓషభ
𝑥 mod 𝑞ℓ = (𝑥 mod 𝑞ℓ, 𝑥 mod 𝑞ℓ, … , 𝑥 mod 𝑞ℓ)

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Rescale in RNS-CKKS

• Case 1: < word-size
 Set each prime ℓ to be bits
 Perform the “single scaling”

ℓ
ℓ

ℓିଵ

• Case 2: > word-size
• Set each product of ℓ’s to be bits
• Perform the “composite scaling”

௜
𝒊 𝒊ି𝟏

௜ି𝟐

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Rescale in RNS-CKKS

• Case 1: < word-size
 Set each prime ℓ to be bits
 Perform the “single scaling”

ℓ
ℓ

ℓିଵ

• Case 2: > word-size
• Set each product of ℓ’s to be bits
• Perform the “composite scaling” (degree = 2)

ℓ
ℓ ℓିଵ

ℓିଶ

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Rescale in RNS-CKKS

• Case 1: < word-size
 Set each prime ℓ to be bits
 Perform the “single scaling”

ℓ
ℓ

ℓିଵ

• Case 2: > word-size
• Set each product of ℓ’s to be bits
• Perform the “composite scaling” (degree = 3)

ℓ
ℓ ℓିଵ ℓିଶ

ℓିଷ

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Rescale in RNS-CKKS

• Case 1: < word-size
 Set each prime ℓ to be bits
 Perform the “single scaling”

ℓ
ℓ

ℓିଵ

• Case 2: > word-size
• Set each product of ℓ’s to be bits
• Perform the “composite scaling” (degree =)

ℓ
ℓ ℓି௧ାଵ

ℓି௧

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Rescale in RNS-CKKS

• Examples
 word-size : single scaling
 word-size : single scaling
 word-size : single scaling
 word-size : composite scaling (double-prime)
 word-size : composite scaling (double-prime)
 word-size : composite scaling (triple-prime)

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Precision Issue due to Rescale

• Original CKKS:NO precision issue
 Scaling factor is ALWAYS preserved as

• RNS-CKKS: YES precision issue
 Scaling factor is NOT be preserved as

o Division by ℓ’s, instead of
o 𝟐

ℓ

 Critical Impact to Homomorphic Addition
o ᇱ ᇱ ᇱ ᇱ

o The ratio ᇱ () directly harms the precision

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Precision Issue due to Rescale

• Solution 1: Choose the primes properly
 To keep the scaling factors (not equal but) very close to
 Single Scaling

o Requirement: ℓ (proposed in original RNS-CKKS)

o 𝟐
ℓ

 Composite Scaling
o Requirement: ℓ ℓିଵ

o 𝟐
ℓ ℓି𝟏

 Precision (Single Scaling v.s. Composite Scaling)
o NO Difference in Mult + Relin + Rescale
o Closeness of ℓ (resp. ℓ ℓିଵ and affects the Add Precision

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Precision Issue due to Rescale

• Solution 2: Exact Scaling
 Differences v.s. Solution 1

o Scaling factor 𝚫𝒊 for each level 𝒊
o 𝚫𝒊’s are NOT required to be very close to 𝚫
o Adjust the ciphertext scaling factors to 𝚫𝒊 before Add and Mult
o As a result, we “always” add two ciphertexts with “same” scaling factors

 Precision (Single Scaling v.s. Composite Scaling)
o NO Difference in Mult + Relin + Rescale
o NO Difference in Add

 We implemented 32-bit RNS-CKKS in OpenFHE and Lattigo with Solution 2
 “FLEXIBLEAUTO” mode in OpenFHE
Bootstrapping enabled in both libraries

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Theoretical Analysis on Precision

Rescale 𝑐𝑡 : 𝑐𝑡 mod 𝑄௜ ↦
ଵ

௤೔
⋅ 𝑐𝑡 mod 𝑄௜ିଵ (single scaling)

Rescale(௧) 𝑐𝑡 : 𝑐𝑡 mod 𝑄௜ ↦
ଵ

௤೔௤೔షభ⋯௤೔ష೟శభ
⋅ 𝑐𝑡 mod 𝑄௜ି௧ (composite scaling)

Theorem. Let 𝐵௥௦, 𝐵௖௢௠௣ି be the upper bounds of the error induced by Rescale(⋅) and Rescale(௧)(⋅),
respectively. Then, it holds that

𝐵௖௢௠௣ି௥௦ ≤
1

𝑞௜𝑞௜ିଵ ⋯ 𝑞௜ି௧ାଵ
+

1

𝑞௜𝑞௜ିଵ ⋯ 𝑞௜ି௧ାଶ
+ ⋯ +

1

𝑞௜
+ 1 𝐵௥௦ ≈

1

𝑞௜
+ 1 𝐵௥௦

Hence, composite scaling results in less than log
ଵ

௤೔
+ 1 ≈

ଷ.ଷଶଶ

௤೔
bit precision loss, which is negligible,

compared to single scaling.

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

7-layer CNN Inference (CIFAR-10)
• Implementation in OpenFHE with longitudinal packing

 Unit tests with Same Precision

• Implementation in Lattigo with multiplexed packing
 The end-to-end CNN Inference results match up to 5 digits after the decimal point
 14 consecutive bootstrapping (2 per layer, before and after ReLU)

Experimental Results

19

Precision bits
32-bit composite scaling

Precision bits
64-bit single scalingUnit tests

3939Fully connected

4040ReLU

4141Mean pool

3939Convolution

1212Bootstrapping

========== Parameters ==========
Ring dimension : 65536
Scaling factor : 258

• Same for both cases
Primes

• 58-bit primes for 64-bit case
• (29, 29)-bit primes for 32-bit case

 Double-prime scaling
 58 = 29 + 29

Security
• Same for both cases

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Experimental Results
Logistic Regression Training

• Reference code: https://github.com/openfheorg/openfhe-logreg-training-examples
• 1 bootstrapping per epoch

========== Parameters ==========
Ring dimension : 32768
Scaling factor : 258

• Same for both cases

Primes
• 58-bit primes for 64-bit case
• (29, 29)-bit primes for 32-bit case

 Double-prime scaling
 58 = 29 + 29

Security
• Same for both cases

Bootstrapping
• Same for both cases

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Wrap-up

• Result: Enable high-precision RNS-CKKS on small word-size architectures
without multi-precision arithmetic

• Use of small word-size: GPU, FPGA, Embedded devices, etc.
• Arbitrary precision for bootstrapping combined with Meta-BTS

• Limitation: Choice of scaling factor
• Lower bound exists on each prime (NTT condition)
• E.g., ସ଴ two 20-bit primes for double-prime scaling

• How many 20-bit “NTT-friendly” primes exist for the dimension 𝑁 = 2ଵ଺?
• Several small intervals that are not usable as scaling factor

• Implementation: Not public yet but planning for open-sourcing composite-
scaling variant of OpenFHE-CKKS

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

https://eprint.iacr.org/2023/1462

