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• Enable high-precision RNS-CKKS on fixed but smaller word-size architectures
• Single scaling Composite scaling

• Enable functionally correct CKKS composite scaling in two open-source libraries
• OpenFHE: C++, enabled by Intel labs
• Lattigo: Go, enabled by Seoul National University (SNU)

• Demonstrate with secure parameters the equivalence between single and 
composite scaling

• 7-layer CNN Inference with longitudinal packing in OpenFHE-CKKS with composite scaling
• 7-layer CNN Inference with multiplexed packing in Lattigo-CKKS with composite scaling
• Logistic Regression Training in OpenFHE-CKKS with composite scaling
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 Any computation on encrypted data “without decryption process”

𝒎

𝐄𝐧𝐜(𝒎)
𝐄𝐧𝐜 𝒇 𝒎

= 𝒇෨ 𝑬𝒏𝒄 𝒎

𝒇(𝒎)
𝒇(  )

𝒇෨(  )

𝐄𝐧𝐜   

Fully Homomorphic Encryption (FHE)

𝐃𝐞𝐜   
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CKKS: FHE for real-number arithmetic

How can we think of the “approximate” computation in CKKS?

• Imitation of “fixed-point” arithmetic in cleartext version

• Example: computation of 1.584 × 2.4835 × 9.5937 × 8.7264 × 6.12743 (≈ 2017.9897)

1.584

2.4835

9.5937

8.7264

6.12743

scale-up 
(encode)

158400

248350

959370

872640

612743

⊗

encrypt

158403

248346

959371

872647

612738

⊗

39338751474

837192225089

612738

scale-down

393385

8371924

= 3.93385 × 10ହ

= 83.71924 × 10ହ

= 6.12738 × 10ହ
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CKKS: FHE for real-number arithmetic

How can we think of the “approximate” computation in CKKS?

• Imitation of “fixed-point” arithmetic in cleartext version

• Example: computation of 1.584 × 2.4835 × 9.5937 × 8.7264 × 6.12743 (≈ 2017.9897)

612738

393385

8371924

⊗ 3293389322759

scale-down

329338937

612738

⊗ 201798481579529 2017984819

scale-down

decrypt
2017984819

scale-down
(decode)

2017.984819
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Scaling Factor in CKKS

• Determine the “initial precision bits” under the decimal point
• CKKS Encoding/Encryption results in

• Larger   , start with higher precision
• Smaller start with  lower precision

scaling factor

encoding/encryption error
(size determined by FHE params)
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Scaling Factor in CKKS

• Exponential growth of Scaling Factor
 ᇱ 𝟐 ᇱ

 𝟐𝒌 𝟐𝒌 ᇱ 𝟐𝒌శ𝟏 ᇱ

• How to control the growth of scaling factor?

“rescale”

• Rescale( ): ℓ ௖௧

୼
ℓିଵ (from the context of “original” CKKS)

 ᇱ 𝟐 ᇱ Rescale (1/Δ)
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Rescale in RNS-CKKS

• RNS-CKKS
 An efficient way to implement CKKS w/o big-number arithmetic
 Ctxt moduli ℓ ଴ ଵ ℓ for level (instead of modulo ℓ)

𝐑𝐍𝐒𝑸ℓ
𝒙 ≔ (𝒙 𝐦𝐨𝐝 𝒒𝟎, 𝒙 𝐦𝐨𝐝 𝒒𝟏, … , 𝒙 𝐦𝐨𝐝 𝒒ℓ)

• Rescale modulo ℓ in RNS?
 No efficient way to compute 𝟏

𝚫

 Instead, we can efficiently compute 𝟏

𝒒ℓ

o
ଵ

௤ℓ
⋅ 𝑥 = 𝑞ℓ

ିଵ ⋅ 𝑥 − 𝑥 mod 𝑞ℓ

o Easy to obtain the RNS representation of 𝑥 mod 𝑞ℓ

 RNSொℓషభ
𝑥 mod 𝑞ℓ = (𝑥 mod 𝑞ℓ, 𝑥 mod 𝑞ℓ, … , 𝑥 mod 𝑞ℓ)
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Rescale in RNS-CKKS

• Case 1: < word-size
 Set each prime ℓ to be bits
 Perform the “single scaling” 

ℓ
ℓ

ℓିଵ

• Case 2: > word-size
• Set each product of ℓ’s to be bits
• Perform the “composite scaling”

௜
𝒊 𝒊ି𝟏

௜ି𝟐
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Rescale in RNS-CKKS

• Case 1: < word-size
 Set each prime ℓ to be bits
 Perform the “single scaling” 

ℓ
ℓ

ℓିଵ

• Case 2: > word-size
• Set each product of ℓ’s to be bits
• Perform the “composite scaling” (degree = 2)

ℓ
ℓ ℓିଵ

ℓିଶ
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Rescale in RNS-CKKS

• Case 1: < word-size
 Set each prime ℓ to be bits
 Perform the “single scaling” 

ℓ
ℓ

ℓିଵ

• Case 2: > word-size
• Set each product of ℓ’s to be bits
• Perform the “composite scaling” (degree = 3)

ℓ
ℓ ℓିଵ ℓିଶ

ℓିଷ
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Rescale in RNS-CKKS

• Case 1: < word-size
 Set each prime ℓ to be bits
 Perform the “single scaling” 

ℓ
ℓ

ℓିଵ

• Case 2: > word-size
• Set each product of ℓ’s to be bits
• Perform the “composite scaling” (degree = )

ℓ
ℓ ℓି௧ାଵ

ℓି௧
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Rescale in RNS-CKKS

• Examples
 word-size : single scaling
 word-size : single scaling
 word-size : single scaling
 word-size : composite scaling  (double-prime)
 word-size : composite scaling (double-prime)
 word-size : composite scaling (triple-prime)
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Precision Issue due to Rescale

• Original CKKS:NO precision issue
 Scaling factor is ALWAYS preserved as 

• RNS-CKKS: YES precision issue
 Scaling factor is NOT be preserved as 

o Division by ℓ’s, instead of 
o 𝟐

ℓ

 Critical Impact to Homomorphic Addition
o ᇱ ᇱ ᇱ ᇱ

o The ratio ᇱ ( ) directly harms the precision 
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Precision Issue due to Rescale

• Solution 1: Choose the primes properly
 To keep the scaling factors (not equal but) very close to 
 Single Scaling 

o Requirement: ℓ (proposed in original RNS-CKKS)

o 𝟐
ℓ

 Composite Scaling 
o Requirement: ℓ ℓିଵ

o 𝟐
ℓ ℓି𝟏

 Precision (Single Scaling v.s. Composite Scaling)
o NO Difference in Mult + Relin + Rescale 
o Closeness of ℓ (resp. ℓ ℓିଵ and affects the Add Precision
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Precision Issue due to Rescale

• Solution 2: Exact Scaling
 Differences v.s. Solution 1 

o Scaling factor 𝚫𝒊 for each level 𝒊
o 𝚫𝒊’s are NOT required to be very close to 𝚫
o Adjust the ciphertext scaling factors to 𝚫𝒊 before Add and Mult
o As a result, we “always” add two ciphertexts with “same” scaling factors

 Precision (Single Scaling v.s. Composite Scaling)
o NO Difference in Mult + Relin + Rescale
o NO Difference in Add

 We implemented 32-bit RNS-CKKS in OpenFHE and Lattigo with Solution 2
 “FLEXIBLEAUTO” mode in OpenFHE
Bootstrapping enabled in both libraries
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Theoretical Analysis on Precision

Rescale 𝑐𝑡 :          𝑐𝑡 mod 𝑄௜  ↦
ଵ

௤೔
⋅ 𝑐𝑡 mod 𝑄௜ିଵ (single scaling)

Rescale(௧) 𝑐𝑡 :      𝑐𝑡 mod 𝑄௜  ↦
ଵ

௤೔௤೔షభ⋯௤೔ష೟శభ
⋅ 𝑐𝑡 mod 𝑄௜ି௧ (composite scaling)

Theorem. Let 𝐵௥௦, 𝐵௖௢௠௣ି be the upper bounds of the error induced by Rescale(⋅) and Rescale(௧)(⋅), 
respectively. Then, it holds that

𝐵௖௢௠௣ି௥௦ ≤
1

𝑞௜𝑞௜ିଵ ⋯ 𝑞௜ି௧ାଵ
+

1

𝑞௜𝑞௜ିଵ ⋯ 𝑞௜ି௧ାଶ
+ ⋯ +

1

𝑞௜
+ 1 𝐵௥௦ ≈

1

𝑞௜
+ 1 𝐵௥௦

Hence, composite scaling results in less than log
ଵ

௤೔
+ 1 ≈

ଷ.ଷଶଶ

௤೔
bit precision loss, which is negligible, 

compared to single scaling.               
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7-layer CNN Inference (CIFAR-10)
• Implementation in OpenFHE with longitudinal packing

 Unit tests with Same Precision

• Implementation in Lattigo with multiplexed packing
 The end-to-end CNN Inference results match up to 5 digits after the decimal point
 14 consecutive bootstrapping (2 per layer, before and after ReLU)

Experimental Results

19

Precision bits
32-bit composite scaling

Precision bits
64-bit single scalingUnit tests

3939Fully connected

4040ReLU

4141Mean pool

3939Convolution

1212Bootstrapping

========== Parameters ==========
Ring dimension : 65536
Scaling factor : 258 

• Same for both cases
Primes

• 58-bit primes for 64-bit case
• (29, 29)-bit primes for 32-bit case

 Double-prime scaling
 58 = 29 + 29

Security
• Same for both cases
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Experimental Results
Logistic Regression Training

• Reference code: https://github.com/openfheorg/openfhe-logreg-training-examples
• 1 bootstrapping per epoch

========== Parameters ==========
Ring dimension : 32768
Scaling factor : 258 

• Same for both cases

Primes
• 58-bit primes for 64-bit case
• (29, 29)-bit primes for 32-bit case

 Double-prime scaling
 58 = 29 + 29

Security
• Same for both cases

# Bootstrapping 
• Same for both cases
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Wrap-up

• Result: Enable high-precision RNS-CKKS on small word-size architectures 
without multi-precision arithmetic 

• Use of small word-size: GPU, FPGA, Embedded devices, etc.
• Arbitrary precision for bootstrapping combined with Meta-BTS

• Limitation: Choice of scaling factor
• Lower bound exists on each prime (NTT condition)
• E.g., ସ଴ two 20-bit primes for double-prime scaling

• How many 20-bit “NTT-friendly” primes exist for the dimension 𝑁 = 2ଵ଺?
• Several small intervals that are not usable as scaling factor

• Implementation: Not public yet but planning for open-sourcing composite-
scaling variant of OpenFHE-CKKS
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