Designs for practical SHE
schemes based on RLWR

M. Bolboceanu, A. Costache, E. Hales, R. Player, M. Rosca, R. Titiu
(with thanks to A. Costache and R. Player for their slides!)

What is RLWR?

To start: what is RLWE?

Let N be a power of 2, and q a modulus.

Consider also the ring R, = Z4,[X]/(XN + 1)
.
([=].[=][5]+ >E&x&

Decision problem: is (a,b) formed like this, or uniformly random?
Search problem: what is the secret s?

How is RLWR different?

- No Gaussian errors
- Achieve this through rounding operation on a.s.

What is RLWR? Rounding

operation

— |p
Let N be a power of 2, and g a modulus. Xlap = LIXW

Consider also the ring R, = Z,[X]/(X" + 1)

Decision problem: is (a,b) formed like this, or uniformly random?
Search problem: what is the secret s?

Motivation for considering RLWR

Avoids need for Gaussian sampling

Side channels
Cost

Easy to implement rounding
Potential for improved bandwidth
LWR is used by several NIST candidates (Lizard, Round5, Saber)

How might we make SHE schemes from
LWR?

Initial attempt: BFV analogue [CS17]

Method: Swap out everything from BFV for rounded versions

L

unifom random bifs
¢ . \/

(Cto, Ctl) = (S:

k=1

Puniic key Pouss:
(UK ,"UJKXE. RQ’X RP

(Vi, rVkS_lq"P)

Vk,Ap-ﬂ-l—Zrk Wk | € Rg X R,
l k=1
SCOUL. POSOMRLS messog
meR,

Costache, A., & Smart, N. P. (2017). Homomorphic encryption without gaussian noise. Cryptology ePrint Archive. https://eprint.iacr.org/2017/163.pdf

There's a problem...

When we multiply two ciphertexts,ct=(ct,ct,) and ct'=(ct,’,ct,’), we do a tensor
product, and it is not clear what ring each component should be in

R
R" (ctgcty, ctoct] +ctyecty, ctict)) = (2,1, c0)
p

When we do noise analysis...

We normally lift to R

/
Luo et al suggest we consider c, Ctocty + R
in the ring R,

Creates unmanageable
noise growth, due to
integer polynomial if we
consider in the wrong modulus
CtoCt’l +Ct6Ct1 \‘ 9

\

ctoctg ctict)

When we're done with analysis,
where do we map it to? S

Luo, F., Wang, F., Wang, K., Li, J., & Chen, K. (2018). LWR-based fully homomorphic encryption, revisited. Security and Communication Networks, 2018. L

The Tangled Modulus problem

Where should the elements live after multiplication?

In which ring should we consider each element, in order to avoid unmanageable
noise?

(ctocty, ctoet] +ctpecty, ctict)) = (ea,e1,c0)

We define the invariant noise as N _ . in the following equation:

t|(p\" p
— (—) cas® — Seis + Co
D q q

= Mmult + Nmuit + tGmult

12

Possible solutions

Solution 1: Carefully choose modulus and do noise analysis to ensure
manageable noise (our work, LPR-style)

Solution 2: Modify the evaluation key to avoid the problem (our work, Regev-style)

Solution 3: Base the RLWR scheme on a different scheme to BFV (LWWC18)

13

RLWE LPR variant of BFV interlude

LPR-style encryption scheme

Key Generation:
y sk=s¢€ Rq
pk = (a,as +e) € Ry x Ry

Encryption:

ct = (¢, c1) € Ry X Ry, where

Co = pkyu + €

a=pkute +|q/t]'m pecR

¢ [leonsa]]

Lyubashevsky, V., Peikert, C., & Regev, O. (2013). On ideal lattices and learning with errors over rings. Journal of the ACM (JACM), 60(6), 1-35.

Decryption of ct:

15

LPR-style encryption: multiplication

Multiplication of ct=(ct,ct,) and ct'=(ct ’,ct,’):

t t t
GIETNIT ({—coc{)—‘ ; {— (cocy + C1C6)—‘ , {EQC{—D = (do, d1, d»)

q

Lyubashevsky, V., Peikert, C., & Regev, O. (2013). On ideal lattices and learning with errors over rings. Journal of the ACM (JACM), 60(6), 1-35.

16

LPR-style RLWR scheme

Our LPR-style SHE scheme from RLWR

Key Generation:

sk=s€¢R,
pk—(a, b= 25| q) € R X Ky
Encryption: ct = (¢, c1) € Ry X R,, where

a1 = [pkyulqp + p/t] - m
Decryption:

18

Our LPR scheme mult from RLWR

Here’s where the elements should live
This combination avoids the unmanageable noise growth

ct [Ecocd Lz/p, [B (coct + clq’)ﬂ L, [chﬂ]p

LPR-style encryption: multiplication

Multiplication of ct=(c ,c,) and ct’=(c ,c,’):

¢ t t
Ctmult i= qac()ccﬂ , b (cocy + clc(’))] ; EQC{D = (do, d1, da)

19

Security proof?

Security proof for regular LPR (from RLWE)

Honestly generated pk and ct

Lyubashevsky, V., Peikert, C., & Regev, O. (2013). On ideal lattices and learning with errors over rings. Journal of the ACM (JACM), 60(6), 1-35.

21

Security proof for regular LPR (from RLWE)
Hybl Honestly generated pk and ct (Real IND-CPA game)
. Decision Ring-LWE

Hyb2 Uniform pk = (a, b), honestly generated ct = (au + e1, bu + &)

22
Lyubashevsky, V., Peikert, C., & Regev, O. (2013). On ideal lattices and learning with errors over rings. Journal of the ACM (JACM), 60(6), 1-35.

Security proof for regular LPR (from RLWE)
Hybl Honestly generated pk and ct (Real IND-CPA game)
| Decision Ring-LWE
Hyb2 Uniform pk = (a, b), honestly generated ct = (au + e;, bu + &)
| Decision Ring-LWE

Hyb3 Uniform pk, uniform ct (A has no information)

23
Lyubashevsky, V., Peikert, C., & Regev, O. (2013). On ideal lattices and learning with errors over rings. Journal of the ACM (JACM), 60(6), 1-35.

Our RLWR LPR-style security proof

Hybl Honestly generated pk € R, X R,, ct € R, X R,

(IND-CPA)

24

Our RLWR LPR-style security proof

Hybl Honestly generated pk € R, X R,, ct € R, X R, (IND-CPA)
1l Decision Ring-LWR

Hyb2 Uniform pk = (a, b), honestly generated ct = (|au|, 4, | bul,)

25

Our RLWR LPR-style security proof

Hybl Honestly generated pk € R, X R,, ct € R, X R, (IND-CPA)
l Decision Ring-LWR

Hyb2 Uniform pk = (a, b), honestly generated ct = (|aul, ,, | bul,)
1 3-moduli Ring-LWR

Hyb3 Uniform pk, uniform ct (LA has no information)

26

3-moduli RLWR

Let a <~ R, and b <~ R, be chosen uniformly, and let v be a uniformly
chosen polynomial with ternary coefficients. The (decisional) 3-moduli
Ring-LWR problem with parameters n, r, q, p asks to distinguish
between (a, b, |au|, 4, | bu]q,p) and uniform tuples

(a,b,c,d) € R, X Ry X Ry X R,.

27

Reduction from Ring-LWR to 3-moduli Ring-LWR

Let p, g, r be integers such that g|r and pr = g2. If there is an efficient
algorithm for 3-moduli Ring-LWR with parameters n, r, g, p, then there
Is an efficient algorithm for Ring-LWR with parameters n, r, q.

28

Regev-style scheme

Can we reduce restrictions on p and q?

LPR-style scheme works well for powers of 2 — natural for rounding
LPR-style scheme requires: q|r and pr = g2

We might want to explore alternative schemes to avoid this restriction

Our solution:

- Regev-style scheme

Generalise the relinearisation technique to remove the condition q|r
Provable security for prime p and q with no other restrictions

30

Results

31

Comparing to BFV asymptotically

LPR-style scheme | Regev-style scheme | Prior work [LWWC18] BFV
pk size nlog(rq) ¢nlog(pq) (£ 4+ 1)nlog(p) 2nlog(q)
ct size nlog(pq) nlog(pq) (£ 4+ 1)nlog(p) 2nlog(q)

Security RLWR RLWR RLWR RLWE

32

Methodology for concrete comparison with BFV

Goal: compare ciphertext sizes between our schemes and BFV, using our
proof-of-concept Python implementation

Find parameter set with minimal ciphertext size such that we have:

1) 128 bits security
2) Correct decryption

Tree-shaped arithmetic circuit with depth L

Each level is 8 additions and 1 multiplication

33

What is the ciphertext size?

Logarithm to base 2 of the minimal ciphertext size in kilobytes that supports L
levels for the specified circuit with plaintext modulus t = 3

Calculated using proof of concept Python implementation

Sch Level L
=S 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
BFV 417 621 7.86 827 858 992 10.14 1034 1050 10.65 11.86 11.99 12.10 1221 1231

LPR-like 391 6.09 7.79 8.22 855 9.89 10.11 10.31 10.48 10.64 1185 11.97 1209 1219 12.30
Regev(/=3) | 409 6.17 7.83 825 857 991 10.13 10.33 1050 10.65 11.85 11.98 1210 1220 12.30

34

What is the ciphertext size?

Logarithm to base 2 of the minimal ciphertext size in kilobytes that supports L
levels for the specified circuit with plaintext modulus t = 28

Calculated using proof of concept Python implementation

Schaie Level L
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
BFV 458 6.63 827 868 10.06 10.32 1054 10.73 1195 1211 1224 1237 1248 1259 12.69

LPR-like 443 655 8.22 8.64 10.03 10.29 10.52 10.77 1194 12.09 1223 1236 1247 1258 12.68
Regev(/ =3) | 452 6.60 825 8.67 10.04 1031 10.53 10.72 1195 1210 12.24 1236 1248 1259 12.69

35

Parameter selection methodology

- We would like to choose parameters for concrete security using Lattice
Estimator

- But Lattice Estimator is built for LWE instances

- Solution: interpret our LWR instances as LWE instances

- Model the implied LWE error distribution as a Gaussian with standard
deviation o = 4/((¢/p)? —1) /12 following ‘Estimate all the schemes’

- Take p and g powers of 2 for performance

- We choose g/p = 16 to make o = 4.61, which is close to the standard choice
for FHE of 0 = 3.2

Albrecht, M. R., Curtis, B. R., Deo, A., Davidson, A., Player, R., Postlethwaite, E. W., ... & Wunderer, T. (2018). Estimate all the {LWE, NTRU} schemes!. In 36
Security and Cryptography for Networks: 11th International Conference, SCN 2018

Summary

37

What did we do?

Designed two SHE schemes based on the RLWR problem, Regev-style and
LPR-style

- BFV-like scheme is possible from RLWR
- Comparable parameters to BFV

- Improved ciphertext sizes

- Security analysis

Next steps...

- Library integration?

- RNS variant?

- Building other things from RLWR?
- [your cool idea here!]

39

Thank you!

erin.hales.2018@live.rhul.ac.uk
@erin__hales
Paper coming soon to an eprint near
you...

Designed two SHE schemes based
on the RLWR problem, Regev-style
and LPR-style

BFV-like scheme is possible
from RLWR

Comparable parameters to
BFV

Improved ciphertext sizes
Thorough security analysis

40

mailto:erin.hales.2018@live.rhul.ac.uk

Parameter sizes for LPR-style RLWR scheme

Assuming uniform ternary secret, targeting 128 bits security

n

r

q

p

215
214
213
212
211
210

2856
2425
2211
2105
252
226

2852
2421
2207
2101
248

222

2848
2417
2203
297
244

218

41

Comparing to BFV asymptotically

Regev-type scheme|LPR-type scheme| LWWC 54 BFV 37
Size of pk Inlog (PQ) nlog (rq) (¢ 4+ 1)nlog(q')| 2nlog(q”)
Size of ct nlog (PQ) nlog (pq) (0" +1)nlog(p')| 2nlog(q"”)
Security Ring-LWR,, ¢,p | Ring-LWR,, 4 [Ring-LWR,, , ,|Ring-LWE,, , .~
Constraints| P and Q prime | q|r and pr = ¢° P |q N/A

Table 1. A comparison of our Regev-type scheme and our LPR-type scheme with the
prior schemes LWWC 54 and BFV 37. The parameter constraints specified are
required for provable security. We may assume log (¢”) = log(Q) = log(r), while
q > p' and p’ is a polynomial factor larger than ¢”. If the encryption randomness
in the Regev-type scheme is sampled from the set of scalars {—B/2,... B/2} then
¢>1/log (B + 1)(nlog (PQ) + 2\ — 2), while ¢’ > log (¢) + 2.

