Towards Practical Transciphering for FHE
with Setup Independent of the Plaintext Space

Speaker: Jeongeun Park (COSIC, KU Leuven, Belgium)

Joint work with Pierrick Méaux (University of Luxembourg, Luxembourg)
and Hilder V. L. Pereira (Universidade Estadual de Campinas, Brazil)

Table of Contents

Homomorphic encryption and outsourced computation
Transciphering
Previous works and motivations

Our results

A S

Summary and conclusion

(Fully) Homomorphic Encryption (FHE)

* Allows computations over encrypted data:

* No need to (fully) trust the computing
party when private/confidential data is
handled.

* Application: privacy preserving outsourced
computation such as secure machine
learning (cloud service model)

a

P>

Fully Homomorpic Encryption

* Ciphertexts contain noise to guarantee the security.

* The noise grows over operations, resulting in decryption failure if it is too high.

[B
» »

* To handle the reasonable number of operations, the initial size of ciphertext is set
much bigger than the size of plaintext.

. Ciphertext .
e Expansion factor F = Cip | = 10 in many cases..

|Plaintext|

Privacy preserving protocols

* Back to our applications based on FHE:

 Client sends “encrypted query” to a data
holder or a computing party (server).

* Server runs the requested protocol to
give the correct answer to the client.

* It is well known that
optimal communication complexity is
achievable with FHE.

* What about actual communication cost?

g

[«

Privacy preserving protocols

g

* Back to our applications based on FHE:

 Client sends “encrypted query” to a data
holder or a computing party (server).

* Ciphertext size on the client side is too
large compared to its underlying
message.

* In the worst case, 2.5KB is uploaded to
send one single bit.

* Too slow for upload!

Transciphering
(a.k.a Hybrid Homomorphic Encryption)

* We know that the expansion factor of block/stream cipher is close to 1.

* Why don’t we use block/stream cipher for upload,
then let server transform the query into FHE ciphertext
by running its decryption homomorphically? [NLV11]

* Then we could achieve (almost) optimal communication cost!

Transciphering

Ci=fiskm)

FHE(m)

FHE (sk)

f = encryption function of a block/stream cipher

Existing works

* Homomorphically Evaluating standard ciphers with algorithmic optimization
* Homomorphic AES evaluations [GHS12, TCB+23,WWL+23]

* Running time improvement : from 4.1 minutes to 30 seconds over 10 years.
* Homomorpihic Trivium evaluation [BOS23]

* Desigining FHE friendly ciphers for efficient transciphering
* Block ciphers: LowMC, PRINCE, CHAGHRI, etc.
e Stream ciphers: FiLIP, PASTA, Elisabeth, Kreyvium, etc.
* And optimizing their homomorphic evaluations...[CDP+22,BOS23]

[GHS12] Homomorphic Evaluation of the AES Circuit
[TCB+23] At Last! A Homomorphic AES Evaluation in Less than 30 Seconds by Means of TFHE
[WWL+23] Fregata: Faster Homomorphic Evaluation of AES via TFHE

Check list to build efficient transciphering

Note that transciphering is a preprocessing for FHE based applications.

1. Noise after transciphering
* It is directly related to what kind of operations we can do after transciphering.

2. Computation overhead
* If it takes too long time compared to the main protocol, it is not useful.

How efficient are current designs?

Cipher Throughput Transciphering Multithreading | Noise budget (bits)
(bit/s) (ms)

Kreyvium (64 bits) N/A (Bootstrapping)
[BOS23]

Trivium (64 bits) 529 259 Yes N/A (Bootstrapping)
[BOS23]

Elisabeth-4 (4 bits) 44 91 Yes N/A (Bootstrapping)
[CHM+22]

FiLIP (1 bit) 382 2.62 No 6 (logq ~ 16.5)
[CDP+22]

This table is not about comparing with one another in one metric but about showing how efficient state-of-art designs are.

[CHM+22] Towards Case-Optimized Hybrid Homomorphic Encryption Featuring the Elisabeth Stream Cipher KU LEUVEN

Motivation

 What is FHE friendly message space?

_ LplX] ZylX]
D, (X) XN+1’

* p(= 2) any positive integer for TFHE, FINAL

* p(= 2) any positive integer such that p = 1 mod m for BGV/FV.

* Zy or Ry : m = 2N, N= a power of 2

* F, is notanideal choice for existing FHE.
e p =25 andm = 48133 (Chaghri)
 psuchthatp —1 {3 (PASTA)
* Fixed p=2 for most of ciphers (FiLIP,LowMC, Kreyvium, etc.)

* Elisabeth cipher is designed for Z,4 (TFHE functional bootstrapping).

Motivatio

It is tiring to change

ciphers per function

Client Server

O Run f; over data with precision 4
e Cipherl.Enc(data,sk)

Run f, over data with precision 6
* Cipher2.Enc(data,sk)

A\ 4

For a fixed database encrypted under client’s key

KU LEUVEN

Motivation

* With these approaches,

 Client has to send key materials for all ciphers per precision.
(huge memory blowup on server side)

e Client has to run several different setups. (not user-friendly)

 Client has to rely on the security of all used ciphers.
(not ideal from the security point of view)

KU LEUVEN

Our design

* We design an efficient transciphering technique which does not
require a fixed message space of FHE schemes.

e Our solution is to “compose” bits into an integer homomorphically.

* Client encrypts each bit of its input data (e.g. 32/64bits), using an FHE friendly
cipher for Z, and sends them to the server.

* The server

1. homomorphically transforms them into FHE ciphertexts encrypting bits.

2. grabs the upper logp bits from the encrypted bits, transforms them into an logp-bit
integer.

3. uses the output for a target application which requires logp bits precision for input.
* Server repeats the above per application, without interacting with the client.

Our instantiation: FiLIP cipher (Z,)

* We chose FiLIP cipher for encrypting data elements bit-by-bit
since its homomorphic decryption is already optimized in [CDP+22].

* We modify their algorithms for further optimization of our design.
* The goal is to generate FHE.Enc(i :== u — (1 mod 2t~1097))

* Instead of generating FHE.Enc(b;) for the desired bits, we generate
FHE.Enc(b; - 27) by modifying homomorphic FiLIP decryption
algorithm.

* Parallel computation with logp threads.

* Adding up all logp ciphertexts returns FHE.Enc(i1).

[CDP+22] SortingHat: Efficient Private Decision Tree Evaluation via Homomorphic Encryption and Transciphering | KULEUVEN

Technical detail

v >[PRNG]
C | | ~
- ~
- 1 ~
- 1 ~
& -~
e ., Y L= _
Secret Subset >»| Permutation > Whitening > ¥f ciphertext

Key with =z >
K bits >

with

z
bits
plaintext

Definition 2 (XOR-THR Function (Definition 11 of [HMR20])). For any positive integers
k,d, and s such that d < s+ 1, and for all z = (x1,...,Zk,Y1,---,Ys) € IB"2“+S, XTHR. 4.5 is defined
as:

XTHR,,5(2) = XORk(@1, - - -, %) + Tas(U1, - - -, ¥s) € Fa,
where XORy(z1,...,xx) =1+ --- +) € Fa.

Technical detail

 To do:

1. homomorphically evaluate two Boolean functions; XOR function and Threshold function
over Z, (we need FHE.Enc(b;- 27)),

2. and combine them efficiently.

* Note that the previous work (SortingHat) dealt with bits only, therefore XOR was
computed via homomorphic addition over Z,.

* Detail of the functions:

1. Homomorphic XOR over Z,, : Cy + C; — 2Cy - €4
* We used external product for the multiplication.

1, if Wy(a) =d

2. Homomorphic Threshold function over Z,, : T;(a) = { 0 otherwise

* where Wy (a) the Hamming weight of a binary vector a.

Definition 2 (XOR-THR Function (Definition 11 of [HMR?20])). For any positive integers
k,d, and s such that d < s+ 1, and for all z = (x1,...,Zk,Y1,---,Ys) € IF’2“+S, XTHRg. 4,5 25 defined
as:

XTHRk’d’S(Z) = XORk(.’El, e ,.’Ek) —+ Td,s(yl, .. ,ys) c IFQ,
where XORg(x1,...,xx) = x1 + -+ - + x) € Fo.

e Solution:

* We use so-called test-polynomial 7'(X) to evaluate FHE. Enc(f (1m)) from
T(X)-FHE.Enc(X™),where T(X) dependson f .

We evaluate T'(X) - FHE. Enc(XOR (x4, x5, ..., x;,)) by applying
homomorphic XOR over Z,, k times.
* We obtain C := FHE.Enc(T(X) - XOR (x4, %5, ..., X3))

« and we can lift the result to the exponent ; C' :== FHE . Enc(T(X) - X*ORGwxk)y
by computing (X — 1) - C + T(X).

Then we multiply C’ by FHE. Enc(X?#71) for each y;.
Finally we obtain FHE. Enc (T (X) - XXORG 1) +2:Wh (y1,s)),
Due to the way T (X) is defined, we get FHE. Enc(2/ - b;).

Implementation result

* We used FINAL library for our proof-of-concept implementation
to use their practical implementation of external product.

* External product: efficiently designed for a product of an integer and
a bit.

* One can use other libraries (e.g. SEAL, HElib, TFHE-rs, ...) to implement
our design with larger parameters.

Implementation result

Table 3: Running times and upload depending on different parameter sets

Client’s | Client’s | Global On-line :
upload | setup setup P |p—Setup phase Per bit
22| 2.6s 13 ms | 6.5 ms
Set-I || 215 MB | 3.4s 2s [|2°] 3.74s | 18.8 ms | 6.3 ms
24| 526s | 25.2ms | 6.3 ms
22| 74s 36 ms | 18 ms
231 11s 54 ms | 18 ms
241 14.7s | Tlms |17.7 ms
Set-II|| 1 GB 11s 6.5s [[2°| 17.7s | 84.6 ms | 17 ms
261 21.2s | 101 ms |16.8 ms
27| 248s | 117ms |16.7 ms
281 29.7s | 137ms [17.1 ms

NTRU
params

Set-|

Set-l|

211

912829 =
219 .8

1073741

827
- 230

92683 =
216 .5

9209716
- 221

Noise after transciphering

Table 4: Failure probability of output of Z,Transcipher.

p |log(owwe) | Upper bound on failure probability
221 =10 2150
Set-I ||23| =~ 10.5 230
241 =~11 28
22| =~ 11.03 2215347
23| ~11.04 2753842
24| ~11.04 g~ 13382
Set-11||2° | ~ 11.05 23329
26| ~11.05 2831
27| ~11.06 27209
28| ~11.05 254

Comparison with other FiLIP evaluation

Table 5: Comparison of running time (in milliseconds) of transcipherings with FiLIP. For
previous works, we present the latency as tg,t, corresponding to the latency for plaintext
space p = 23 and the latency for p = 27, respectively. The time per bit is presented in the

same way.

Work Cipher Scheme | Latency |Time per bit
FiLIP-1280 | TFHE | 6624,16254 | 2208, 2322

[HMR20] FiLIP-1216 | TFHE | 5724,14154 | 1908, 2022
FiLIP-144 | TFHE | 7524,18354 | 2508, 2622
FiLIP-1280 | TFHE 1905, 5243 635, 749 >

[CHMS22] FiLIP-1216 | TFHE 1782, 4956 94,708 1
FiLIP-144 | TFHE 426, 1792 142, 256

[CDPP22] FiLIP-144 |FINAL |31.86,872.34|10.64,124.64

This work, Set-I, p = 23 |FiLIP-144 |FINAL 18.8 6.3

This work, Set-II, p = 27 | FiLIP-144 | FINAL 117 16.7

[HMR20] Transciphering, using FiLIP and TFHE for an efficient delegation of computation.
[CHMS22] Towards case-optimized hybrid homomorphic encryption - featuring the elisabeth stream cipher.

Naive approach:

Run binary transciphering logp
times

run bootstrapping to change
the message space from
modulo 2 to modulo p.

KU LEUVEN

[CDPP22] Sortinghat: Efficient private decision tree evaluation via homomorphic encryption and transciphering.

Comparison with Elisabeth-4

Evaluation | Mode Latency (ms) | Time per bit (ms)
Elisabeth-4 | 2 KS, multithreaded 91.143 22.786
Elisabeth-4 | Single KS, multithreaded 103.810 25.953
Elisabeth-4 | 2 KS, monothreaded 1485.0 371.25
Elisabeth-4 | Single KS, monothreaded 1648.6 412.15
Ours Set-I, monothreaded 25.2 6.3

Ours Set-II, monothreaded 71 17.7

* Elisabeth-4 is designed for 4-bits of integers.
* Multithreaded versions of Elisabeth-4 were executed on 12, or 48, or 64 threads.

XU LEUVEN

Summary and conclusion

* We designed a new transciphering method which can be used for any
message precision, for the first time.

* Client does not need to specify the message precision in advance.

* The server can reuse the given data for several application algorithms
by taking only necessary upper bits of data,
depending on the target application,
without running different setups with the client.

* Our method is not a scheme specific design.
* Therefore, one can use any FHE schemes to realize it.

XU LEUVEN

Thank you for your attention!

https://eprint.iacr.org/2023/1531.pdf

26

