
Towards Practical Transciphering for FHE
with Setup Independent of the Plaintext Space

Méaux (University of Luxembourg, Luxembourg)
and Hilder V. L. Pereira (Universidade Estadual de Campinas, Brazil)

Table of Contents

1. Homomorphic encryption and outsourced computation
2. Transciphering
3. Previous works and motivations
4. Our results
5. Summary and conclusion

2

(Fully) Homomorphic Encryption (FHE)

• Allows computations over encrypted data:
• No need to (fully) trust the computing

party when private/confidential data is
handled.

• Application: privacy preserving outsourced
computation such as secure machine
learning (cloud service model)

3

Fully Homomorpic Encryption
• Ciphertexts contain noise to guarantee the security.
• The noise grows over operations, resulting in decryption failure if it is too high.

• To handle the reasonable number of operations, the initial size of ciphertext is set
much bigger than the size of plaintext.

• Expansion factor F = |"#$%&'(&)(||*+,#-(&)(| ≥ 10 in many cases..

4

Privacy preserving protocols
• Back to our applications based on FHE:

• Client sends “encrypted query” to a data
holder or a computing party (server).
• Server runs the requested protocol to

give the correct answer to the client.
• It is well known that

optimal communication complexity is
achievable with FHE.
• What about actual communication cost?

5

Privacy preserving protocols
• Back to our applications based on FHE:

• Client sends “encrypted query” to a data
holder or a computing party (server).
• Ciphertext size on the client side is too

large compared to its underlying
message.
• In the worst case, 2.5KB is uploaded to

send one single bit.
• Too slow for upload!

6

Transciphering
(a.k.a Hybrid Homomorphic Encryption)

• We know that the expansion factor of block/stream cipher is close to 1.
• Why don’t we use block/stream cipher for upload,

then let server transform the query into FHE ciphertext
by running its decryption homomorphically? [NLV11]

• Then we could achieve (almost) optimal communication cost!

7[NLV11]: Can homomorphic encryption be practical?

Transciphering

8

𝑓 = encryption function of a block/stream cipher

Existing works

• Homomorphically Evaluating standard ciphers with algorithmic optimization
• Homomorphic AES evaluations [GHS12, TCB+23,WWL+23]

• Running time improvement : from 4.1 minutes to 30 seconds over 10 years.
• Homomorpihic Trivium evaluation [BOS23]

• Desigining FHE friendly ciphers for efficient transciphering
• Block ciphers: LowMC, PRINCE, CHAGHRI, etc.
• Stream ciphers: FiLIP, PASTA, Elisabeth, Kreyvium, etc.
• And optimizing their homomorphic evaluations…[CDP+22,BOS23]

[GHS12] Homomorphic Evaluation of the AES Circuit
[TCB+23] At Last! A Homomorphic AES Evaluation in Less than 30 Seconds by Means of TFHE
[WWL+23] Fregata: Faster Homomorphic Evaluation of AES via TFHE
[CDP+22] SortingHat: Efficient Private Decision Tree Evaluation via Homomorphic Encryption and Transciphering
[BOS23] Trivial Transciphering With Trivium and TFHE

Check list to build efficient transciphering

Note that transciphering is a preprocessing for FHE based applications.

1. Noise after transciphering
• It is directly related to what kind of operations we can do after transciphering.

2. Computation overhead
• If it takes too long time compared to the main protocol, it is not useful.

10

How efficient are current designs?
Cipher Throughput

(bit/s)
Transciphering
(ms)

Multithreading Noise budget (bits)

Kreyvium (64 bits)
[BOS23]

427 291 Yes N/A (Bootstrapping)

Trivium (64 bits)
[BOS23]

529 259 Yes N/A (Bootstrapping)

Elisabeth-4 (4 bits)
[CHM+22]

44 91 Yes N/A (Bootstrapping)

FiLIP (1 bit)
[CDP+22]

382 2.62 No 6 (log 𝑞 ≈ 16.5)

11[CHM+22] Towards Case-Optimized Hybrid Homomorphic Encryption Featuring the Elisabeth Stream Cipher

This table is not about comparing with one another in one metric but about showing how efficient state-of-art designs are.

Motivation

• What is FHE friendly message space?
• ℤ$- 𝑜𝑟 𝑅$ ≔

ℤ! ;
<"(;)

=
ℤ! ;
;#>?, 𝑚 = 2𝑁,𝑁= a power of 2

• 𝑝(≥ 2) any positive integer for TFHE, FINAL
• 𝑝(≥ 2) any positive integer such that 𝑝 ≡ 1 𝑚𝑜𝑑 𝑚 for BGV/FV.
• Ϝ! is not an ideal choice for existing FHE.

• 𝑝 = 2!" and 𝑚 = 48133 (Chaghri)
• 𝑝 such that 𝑝 − 1 ∤ 3 (PASTA)
• Fixed 𝑝=2 for most of ciphers (FiLIP,LowMC, Kreyvium, etc.)

• Elisabeth cipher is designed for ℤF$ (TFHE functional bootstrapping).

12

Motivation

13

Run 𝑓# over data with precision 4
• Cipher1.Enc(data,sk)

Run 𝑓$ over data with precision 6
• Cipher2.Enc(data,sk)

For a fixed database encrypted under client’s key

It is tiring to change
ciphers per function

ServerClient

Motivation

• With these approaches,
• Client has to send key materials for all ciphers per precision.

(huge memory blowup on server side)
• Client has to run several different setups. (not user-friendly)
• Client has to rely on the security of all used ciphers.

(not ideal from the security point of view)

14

Our design

• We design an efficient transciphering technique which does not
require a fixed message space of FHE schemes.
• Our solution is to “compose” bits into an integer homomorphically.
• Client encrypts each bit of its input data (e.g. 32/64bits), using an FHE friendly

cipher for ℤF and sends them to the server.
• The server

1. homomorphically transforms them into FHE ciphertexts encrypting bits.
2. grabs the upper logp bits from the encrypted bits, transforms them into an logp-bit

integer.
3. uses the output for a target application which requires logp bits precision for input.

• Server repeats the above per application, without interacting with the client.

15

Our instantiation: FiLIP cipher (ℤ!)

• We chose FiLIP cipher for encrypting data elements bit-by-bit
since its homomorphic decryption is already optimized in [CDP+22].

• We modify their algorithms for further optimization of our design.
• 𝜇 ≔ ∑,-./01 𝑏, ⋅ 2,

• The goal is to generate FHE.Enc(𝜇̅ ≔ 𝜇 − (𝜇 𝑚𝑜𝑑 2/02345))
• Instead of generating FHE.Enc(𝑏,) for the desired bits, we generate

FHE.Enc(𝑏, ⋅ 2,) by modifying homomorphic FiLIP decryption
algorithm.
• Parallel computation with logp threads.

• Adding up all logp ciphertexts returns FHE.Enc(𝜇̅).
16[CDP+22] SortingHat: Efficient Private Decision Tree Evaluation via Homomorphic Encryption and Transciphering

Technical detail

Technical detail
• To do:

1. homomorphically evaluate two Boolean functions; XOR function and Threshold function
over ℤ! (we need FHE.Enc(𝑏"⋅ 2")),

2. and combine them efficiently.

• Note that the previous work (SortingHat) dealt with bits only, therefore XOR was
computed via homomorphic addition over ℤF.
• Detail of the functions:

1. Homomorphic XOR over ℤ! : 𝐶# + 𝐶$ − 2𝐶# ⋅ 𝐶$
• We used external product for the multiplication.

2. Homomorphic Threshold function over ℤ! : 𝑇% 𝑎 = ? 1, 𝑖𝑓 𝑊&(𝑎) ≥ 𝑑
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• where 𝑊%(𝑎) the Hamming weight of a binary vector 𝑎.

18

Technical detail

• Solution:
• We use so-called test-polynomial 𝑇(𝑋) to evaluate FHE. Enc(𝑓 𝑚) from
𝑇 𝑋 ⋅ 𝐹𝐻𝐸. 𝐸𝑛𝑐(𝑋I) , where 𝑇(𝑋) depends on 𝑓 .
• We evaluate 𝑇 𝑋 ⋅ 𝐹𝐻𝐸. 𝐸𝑛𝑐(𝑋𝑂𝑅 𝑥?, 𝑥F, … , 𝑥J) by applying

homomorphic XOR over ℤ$ k times.
• We obtain C ≔ 𝐹𝐻𝐸. 𝐸𝑛𝑐(𝑇 𝑋 ⋅ 𝑋𝑂𝑅 𝑥$, 𝑥', … , 𝑥()
• and we can lift the result to the exponent ; C) ≔ 𝐹𝐻𝐸. 𝐸𝑛𝑐(𝑇 𝑋 ⋅ 𝑋*+, -!,…,-")

by computing 𝑋 − 1 ⋅ 𝐶 + 𝑇(𝑋).
• Then we multiply 𝐶′ by 𝐹𝐻𝐸. 𝐸𝑛𝑐(𝑋F⋅L%) for each 𝑦#.
• Finally we obtain 𝐹𝐻𝐸. 𝐸𝑛𝑐(𝑇 𝑋 ⋅ 𝑋;MN)&,…,)' >F⋅Q((L&,⋯,L))).
• Due to the way 𝑇(𝑋) is defined, we get 𝐹𝐻𝐸. 𝐸𝑛𝑐 2S ⋅ 𝑏S .

Implementation result

•We used FINAL library for our proof-of-concept implementation
to use their practical implementation of external product.
• External product: efficiently designed for a product of an integer and

a bit.
• One can use other libraries (e.g. SEAL, HElib, TFHE-rs, …) to implement

our design with larger parameters.

Faculty, department, unit ... 20

Implementation result

21

NTRU
params

N Q q

Set-I 2#& 912829 ≈
2#'.)

92683 ≈
2#!.*

Set-II 2## 1073741
827
≈ 2"&

9209716
≈ 2$#

Noise after transciphering

22

Comparison with other FiLIP evaluation

Faculty, department, unit ... 23

[HMR20] Transciphering, using FiLIP and TFHE for an efficient delegation of computation.
[CHMS22] Towards case-optimized hybrid homomorphic encryption - featuring the elisabeth stream cipher.
[CDPP22] Sortinghat: Efficient private decision tree evaluation via homomorphic encryption and transciphering.

Naïve approach:
1. Run binary transciphering lo𝑔𝑝

times
2. run bootstrapping to change

the message space from
modulo 2 to modulo 𝑝.

Comparison with Elisabeth-4

Faculty, department, unit ... 24

• Elisabeth-4 is designed for 4-bits of integers.
• Multithreaded versions of Elisabeth-4 were executed on 12, or 48, or 64 threads.

Summary and conclusion

• We designed a new transciphering method which can be used for any
message precision, for the first time.
• Client does not need to specify the message precision in advance.
• The server can reuse the given data for several application algorithms

by taking only necessary upper bits of data,
depending on the target application,

without running different setups with the client.
• Our method is not a scheme specific design.
• Therefore, one can use any FHE schemes to realize it.

25

Thank you for your attention!

https://eprint.iacr.org/2023/1531.pdf

26

