#### Simpler and Faster BFV Bootstrapping for Arbitrary Plaintext Modulus from CKKS

Jaehyung Kim<sup>1</sup> Jinyeong Seo<sup>2</sup> Yongsoo Song<sup>2</sup>

<sup>1</sup>CryptoLab Inc. <sup>2</sup>Seoul National University

A (1) < A (1) < A (1) </p>

#### **Homomorphic Encryption**

Crypto schemes that enable computation in encrypted state.

- **BGV & BFV**: Support modular operations on integers.
- CKKS: Supports approximate operations on complex numbers.
- **TFHE**: Supports bitwise operations.

Common issue: the number of homomoprhic operations is bounded.

#### Bootstrapping

Special operations that refresh the number of remaining operations.

- BGV & BFV: Digit extraction [HS15]
- CKKS: Approximate modular reduction [Che+18]
- TFHE: Blind rotation [Chi+16]

・ 同 ト ・ ヨ ト ・ ヨ ト …

#### Motivation

The known BFV bootstrapping method so far has some limitations.

- The efficiency highly depends on the plaintext modulus.
- Only a specific form of plaintext modulus is usable.

#### This Work

We design a novel BFV bootstrapping method.

- Utilizes CKKS bootstrapping as a subroutine.
- Supports arbitrary plaintext modulus.
- Provides flexible performance depending on the bootstrapping quality.

#### Overview

- Review of BFV bootstrapping
- Review of CKKS bootstrapping
- Our new BFV bootstrapping
- Experimental results

- E > - E >

#### Notations

- $\Phi_M(X)$ : the *M*-th cyclotomic polynomial
- $R = \mathbb{Z}[X]/\Phi_M(X)$
- *q*: ciphertext modulus
- t: plaintext modulus
- $R_q = R/qR$ , a quotient ring of R

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

# BFV Bootstrapping

э

#### BFV

**Plaintext Space.** Supports homomorphic operations over  $R_t = R/tR$ 

• With the packing method, it supports SIMD arithmetics over  $\mathbb{Z}_t$ .

**Ciphertext Structure.** A BFV ciphertext  $ct = (c_0, c_1) \in R_q^2$  satisfies

$$c_0 + c_1 \cdot s = \Delta m + e \pmod{q}$$

where  $m \in R_t$ ,  $\Delta = \lfloor q/t \rceil$  and  $e \in R$  with  $\|e\|_{\infty} < \Delta/2$ .



・ 同 ト ・ ヨ ト ・ ヨ ト …

## **BFV Bootstrapping**

After each homomorphic operation, the size of noise  $\|e\|_{\infty}$  grows.

• For further operations, we need to decrease  $||e||_{\infty}$  while preserving m

 $\begin{array}{l} \underline{\mathsf{BFV}}.\underline{\mathsf{Boot}}(\mathrm{ct})\to\mathrm{ct'}\colon \text{Given a ciphertext ct}=(c_0,c_1)\in R_q^2 \text{ with }\\ \hline c_0+c_1\cdot s=\Delta m+e \pmod{q}, \text{ it outputs a ciphertext ct'}=(c_0',c_1')\in R_q^2 \\ \text{with } c_0'+c_1'\cdot s=\Delta m+e' \pmod{q} \text{ where } \|e'\|_{\infty} \ll \|e\|_{\infty}. \end{array}$ 



- Its functionality can be parametrized as  $(q, t, B_{\text{in}}, B_{\text{out}})$  where  $\|e\|_{\infty} < B_{\text{in}}$  and  $\|e'\|_{\infty} < B_{\text{out}}$ .
- We call the ratio  $B_{\rm in}/B_{\rm out}$  the denoising factor.

## **Digit Extraction**

The previous framework for the BFV bootstrapping [HS15].

• Plaintext modulus is set to  $t = p^r$  for some prime p.



Key step: homomorphic evaluation of the map  $x \mapsto \lfloor x/p^r \rceil \pmod{p^v}$ .

- Recent studies [CH18; Gee+23; OPP23] focused on improving this.
- Provides optimal performance when p is a small prime.

# CKKS Bootstrapping

э

- 4 回 ト 4 三 ト 4 三 ト

## CKKS

Plaintext Space. Supports approximate homomorphic operations over R

 $\bullet$  With the packing method, it supports approx SIMD operations over  $\mathbb{C}.$ 

**Ciphertext Structure.** A CKKS ciphertext  $(c_0, c_1) \in R_q^2$  satisfies the followings for  $m \in R$ .

$$c_0 + c_1 \cdot s = m \pmod{q}$$

Note: There is no strict distinction between plaintext and noise in CKKS.



## **CKKS** Bootstrapping

After each homomorphic operation, the ciphertext modulus q decreases.

• For further operations, we need to increase *q* while almost preserving *m* 

 $\begin{array}{l} \underline{\mathsf{CKKS}.\mathsf{Boot}(\mathsf{ct}) \to \mathsf{ct}'}: \mbox{ Given a ciphertext } \mathsf{ct} = (c_0, c_1) \in R^2_{q_{\mathrm{in}}} \mbox{ with } \\ \hline c_0 + c_1 \cdot s = m \mbox{ (mod } q_{\mathrm{in}}), \mbox{ it outputs a ciphertext } \mathsf{ct}' = (c_0', c_1') \in R^2_{q_{\mathrm{out}}} \\ \mbox{ with } c_0' + c_1' \cdot s = m' \mbox{ (mod } q_{\mathrm{out}}) \mbox{ such that } m' \approx m \mbox{ and } q_{\mathrm{out}} \gg q_{\mathrm{in}}. \end{array}$ 



- Its functionality can be parametrized as  $(q_{in}, q_{out}, B_{in}, B_{out})$  where  $||m||_{\infty} < B_{in}$  and  $||m m'||_{\infty} < B_{out}$ .
- We call the ratio  $B_{\rm in}/B_{\rm out}$  the precision.

## Approximate Modular Reduction

The basic framework for the CKKS bootstrapping [Che+18].



Key step: approximate evaluation of the map  $x \mapsto [x]_{q_{in}}$ .

- Recent studies [JM22; Lee+21; Lee+22] focused on improving this.
- The performance depends on the **precision**.

## Our Method

3

### Noise Extraction

Key observation: the noise *e* can be extracted if  $\Delta | q$  (i.e., t | q).

$$c_0 + c_1 \cdot s = \Delta m + e \pmod{q}$$
  
 $[c_0]_{\Delta} + [c_1]_{\Delta} \cdot s = e \pmod{\Delta}$ 



<u>Note</u>: the ciphertext modulus decreases to  $\Delta$ .

< ∃ ►

### Approximate Lifting

We can regard  $([c_0]_{\Delta}, [c_1]_{\Delta})$  as a **CKKS ciphertext** encrypting the noise е.

Idea: we can apply CKKS.Boot of functionality  $(\Delta, q, B_{in}, B_{out})$  on  $([c_0]_{\Delta}, [c_1]_{\Delta})$  to raise the ciphertext modulus from  $\Delta$  to q.

For  $(c'_0, c'_1) \leftarrow CKKS.Boot([c_0]_{\Delta}, [c_1]_{\Delta})$ , it holds that:

$$c_0' + c_1' \cdot s = e' pprox e \pmod{q}$$
 where  $\|e\|_\infty < B_{ ext{in}}$  and  $\|e - e'\|_\infty < B_{ ext{out}}.$ 



Simpler & Faster BFV Boostrapping

### Subtraction.

Finally, subtracting  $(c'_0, c'_1)$  from  $(c_0, c_1)$  finishes BFV bootstrapping of functionality  $(q, t, B_{in}, B_{out})$ 

$$(c_0 - c_0') + (c_1 - c_1') \cdot s = \Delta m + (e - e') \pmod{q}$$

<u>Note</u>: the noise decrease from  $\|e\|_{\infty} < B_{in}$  to  $\|e - e'\|_{\infty} < B_{out}$ .

#### Theorem

Let  $\Delta | q$ . Given a CKKS.Boot with functionality  $(\Delta, q, B_{in}, B_{out})$ , one can instantiate BFV.Boot of with functionality  $(q, t, B_{in}, B_{out})$ .

 $\underline{Note}:$  the precision of CKKS.Boot directly translate to the denoising factor of BFV.Boot

## **Overall Pipeline**



æ

<ロト < 四ト < 三ト < 三ト

## META-BTS

Issue: We need a high-precision CKKS bootstrapping.

- Ordinary CKKS bootstrapping only supports dozens of bits precision.
- In BFV bootstrapping, the denoising factor is usually hundreds of bits.

<u>Solution</u>: We employ META-BTS method [Bae+22] for CKKS.Boot.

- It provides **arbitrary precision** CKKS bootstrapping by iterating low-precision CKKS boostrapping.
  - ► To attain *kn*-bits precision, it iterates *n*-bits CKKS bootstrapping *k* times.
  - ▶ Precision can be easily adjusted by modifying the iteration count *k*.
- It provides **asymptotically faster** time complexity in achieving high-precision CKKS boostrapping.

Unexpected feature: We can adjust the denoising factor in BFV.Boot by changing the iteration count in CKKS.Boot.

2

イロト イボト イヨト イヨト

Performance comparison with digit extraction

- We compare the performance with the state-of-the-art digit extraction method [Gee+23] for 51-bits sized plaintext modulus
- Denoising factors are set to 121-bits.
- [Gee+23] sets  $t = 2^{51}$ , a power of small prime, for the efficiency.

Table: BFV bootstrapping functionality used in the benchmark

|          | q         | t       | B <sub>in</sub> | $B_{\rm out}$ |
|----------|-----------|---------|-----------------|---------------|
| [Gee+23] | 1200 bits | 51 bits | 1137 bits       | 1006 bits     |
| Ours     | 1200 bits | 51 bits | 1077 bits       | 949 bits      |

Table: Full bootstrapping performance.

|          | Plaintext<br>modulus | Ring<br>dimension | Boot<br>time (sec) | Amortized boot<br>time (ms/coeff) |
|----------|----------------------|-------------------|--------------------|-----------------------------------|
| [Gee+23] | 2 <sup>51</sup>      | 42336             | 1344+              | 31.7+                             |
| Ours     | $pprox 2^{51}$       | 32768             | 35.5               | 1.08                              |

Effect of plaintext modulus in our method

Table: Bootstrapping performance for various plaintext moduli.

| q        | t               | B <sub>in</sub> | B <sub>out</sub> | Boot time      |
|----------|-----------------|-----------------|------------------|----------------|
|          | 54 bits         |                 |                  |                |
| 791 bits | <b>144</b> bits | 376 bits        | 16 bits          | <b>392</b> sec |
|          | 234 bits        |                 |                  |                |

The bootstrapping times are identical since it internally runs the same CKKS bootstrapping.

• The precision of the underlying CKKS bootstrappings is identical.

#### Effect of denoising factor in our method

Figure: Bootstrapping time with respect to the denoising factor.



Bootstrapping time grows linearly with denoising factor.

• The iteration count in META-BTS grows linearly with precision.

## Conclusion

We design a novel BFV bootstrapping method

- It does not inherit previous limitations of digit extraction.
- One can freely set plaintext modulus as one's need.
- It can adjust bootstrapping quality depending on situations.

We incorporate CKKS bootstrapping as a subroutine.

- Performance advance in CKKS bootstrapping leads to BFV boostrapping.
- Hardware acceleration of CKKS bootstrapping is directly applicable.

Thank you !

#### https://eprint.iacr.org/2024/109

3

#### References I

[Bae+22] Youngjin Bae et al. "Meta-bts: Bootstrapping precision beyond the limit". In: Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security. 2022, pp. 223–234 (cit. on p. 19).

[CH18] Hao Chen and Kyoohyung Han. "Homomorphic lower digits removal and improved FHE bootstrapping". In: Annual International Conference on the Theory and Applications of Cryptographic Techniques. Springer. 2018, pp. 315–337 (cit. on p. 9).

[Che+18] Jung Hee Cheon et al. "A full RNS variant of approximate homomorphic encryption". In: International Conference on Selected Areas in Cryptography. Springer. 2018, pp. 347–368 (cit. on pp. 2, 13).

#### References II

[Chi+16] Ilaria Chillotti et al. "Faster fully homomorphic encryption: Bootstrapping in less than 0.1 seconds". In: *international conference on the theory and application of cryptology and information security*. Springer. 2016, pp. 3–33 (cit. on p. 2).

[Gee+23] Robin Geelen et al. "On polynomial functions modulo pe and faster bootstrapping for homomorphic encryption". In: Annual International Conference on the Theory and Applications of Cryptographic Techniques. Springer. 2023, pp. 257–286 (cit. on pp. 9, 21).

[HS15] Shai Halevi and Victor Shoup. "Bootstrapping for HElib". In: Advances in Cryptology–EUROCRYPT 2015 (2015), pp. 641–670 (cit. on pp. 2, 9).

## References III

[JM22] Charanjit S Jutla and Nathan Manohar. "Sine series approximation of the mod function for bootstrapping of approximate HE". In: Annual International Conference on the Theory and Applications of Cryptographic Techniques. Springer. 2022, pp. 491–520 (cit. on p. 13).

[Lee+21] Joon-Woo Lee et al. "High-precision bootstrapping of RNS-CKKS homomorphic encryption using optimal minimax polynomial approximation and inverse sine function". In: Annual International Conference on the Theory and Applications of Cryptographic Techniques. Springer. 2021, pp. 618–647 (cit. on p. 13).

<日<br />
<</p>

### References IV

[Lee+22] Yongwoo Lee et al. "High-Precision Bootstrapping for Approximate Homomorphic Encryption by Error Variance Minimization". In: Annual International Conference on the Theory and Applications of Cryptographic Techniques. Springer. 2022, pp. 551–580 (cit. on p. 13).

[OPP23] Hiroki Okada, Rachel Player, and Simon Pohmann. "Homomorphic polynomial evaluation using Galois structure and applications to BFV bootstrapping". In: International Conference on the Theory and Application of Cryptology and Information Security. Springer. 2023, pp. 69–100 (cit. on p. 9).

く 何 ト く ヨ ト く ヨ ト