Fast Blind Rotation for Bootstrapping FHEs

Binwu Xiang; Jiang Zhang; Yi Deng; Yiran Dai; Dengguo Feng

State Key Laboratory of Cryptology

CRYPTO 2023

Outline

• Preliminaries

- Motivation and Technical Contribution
- New NTRU-based GSW-like Scheme and blind rotation
- Experimental Results and Conclusion

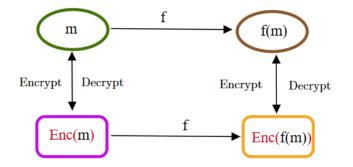
Homomorphic Encryption

Addition and multiplication over ciphertext space

• $Enc(a+b)=Enc(a)+Enc(b) Enc(a \cdot b)=Enc(a) \cdot Enc(b)$

Classification by evaluation function

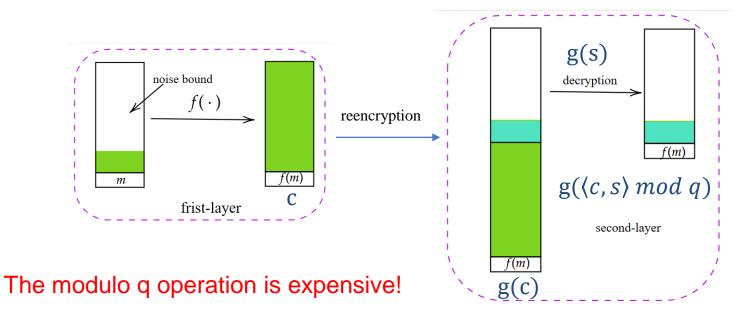
- Partially Homomorphic Encryption
- Somewhat Homomorphic Encryption
- Fully Homomorphic Encryption



Fully Homomorphic Encryption

≻Two-layer framework:

- First layer: Noise-based somewhat HE
- Second-layer: Bootstrapping (Homomorphically computes the decryption of SHE)



Current State of the Art

Three approaches to solve the modulo q operation.

- Digit extraction ([BGV, BFV])
 - Convert $f(\mathbf{c}, \mathbf{s}) = \sum_i c_i s_i \mod q$ to $f'(\mathbf{c}, \mathbf{s}) = \sum_i c_i s_i \mod p^r$
 - Extract the bit decompositions of $\sum_i c_i s_i$ in base p

➢ Function approximation ([CKKS])

• Use math function to approximate the modular function $f(\mathbf{c}, \mathbf{s}) = \sum_i c_i s_i \mod q$

• e.g.
$$\sum_i c_i s_i \mod q \approx \frac{q}{2\pi} \sin\left(\frac{2\pi}{q} \langle \mathbf{c}, \mathbf{s} \rangle\right)$$

Limitations

- Slow bootstrap (20 secs)
- Large FHE parameters => huge BK (10 GB)

Blind Rotation

> Homomorphically decrypt an LWE ciphertext on the exponent.

Definition(q=2N)

Input : LWE ciphertext
$$(\mathbf{a}, b = \sum_{i=0}^{n-1} a_i s_i - \operatorname{noised}(m)) \in \mathbb{Z}_q^{n+1}$$

Rotation polynomial $r(X) \in \mathbb{Z}_Q[X]/X^N + 1$
Evaluation key **EVK**
Output: $g(r(X) \cdot X^{\operatorname{noised}(m)})$

> The modulo q operation can be done for free in the exponent.

 $X^{\mathsf{noised}(m)} = X^{\sum_{i=0}^{n-1} a_i s_i - b \mod q} = X^{-b} X^{\sum_{i=0}^{n-1} a_i s_i}$

> The constant term of $r(X) \cdot X^{\mathsf{noised}(m)}$ is exactly m.

Fast bootstrap (ms) and small parameter size (MB)

State of the art works

- RLWE-based blind rotation:
 - ✓ AP/FHEW [EUROCRYPT 2015]
 - all secret keys distribution,
 - large boot key
 - ✓ GINX/TFHE [EUROCRYPT 2016]
 - limited secret key distribution
 - small boot key
 - ✓ Lee et al. [EUROCRYPT 2023]
 - all secret key distribution,
 - small boot key

- > NTRU-based blind rotation:
 - ✓ FINAL [ASIACRYPT 2022]
 - ✓NTRU-vum [CCS 2022]
 - TFHE-like;
 - limited secret key distribution;
 - small boot key

Outline

- Preliminaries
- Motivation and Technical Contribution
- New NTRU-based GSW-like Scheme and blind rotation
- Experimental Results and Conclusion

Motivation

- Recommended key distributions in [ACC21]: Uniform, Gaussian, and Ternary
- Final[BIP22], NTRU-vum[Klu22] use binary or ternary secrets for performance consideration.
- Potential Problem: small secrets are subject to special attacks [Alb17, AGVW17, SC19, EJK20]
- > Design bootstrapping for large keys may be of independent interest.

Contributions

✓ We design a new NTRU-based GSW-like encryption

- Faster external product
- Faster key-switching and ring automorphism

✓ We propose a new blind rotation using NTRU and ring automorphism

- Performance asymptotically independent from the key distributions
- Comparison (evaluation key size, computational efficiency)

Key distribution	AP, GINX, LEE's	FINAL NTRU-vum
Ternery	better	equal
Uniform and Gussian	better	better

✓ We use our new blind rotation to bootstrap an LWE-based scheme

• 53% faster than TFHE and Smaller evaluation key (18MB)

Outline

- Preliminaries
- Motivation and Technical Contribution
- New NTRU-based GSW-like Scheme and blind rotation
- Experimental Results and Conclusion

NTRU-based GSW-like Scheme

Scalar and Vector ciphertext

- Scalar: $c = \operatorname{NTRU}_{Q,f}(u) := g/f + \Delta u/f \in R_Q$
- Vector $\mathbf{c}' = \operatorname{NTRU}_{Q,f'}(v) := \mathbf{g}/f' + (B^0, B^1, \dots, B^{d-1}) \cdot v \in R_Q^d$
- Homomorphic Multiplication

 $c \odot \mathbf{c}' = \langle \text{BitDecom}_B(c), \mathbf{c}' \rangle = \sum_{i=0}^{d-1} c_i c'_i = \sum_{i=0}^{d-1} c_i g_i / f' + cv \in R_Q$ **External product**

• Let
$$f = f'$$
, we have $c \odot \mathbf{c}' = \left(\sum_{i=0}^{d-1} g_i c_i + gv\right) / f + \Delta \cdot uv / f$

W Key Switching

• Let
$$v = f/f'$$
, we have $c \odot \mathbf{c}' = \left(\sum_{i=0}^{d-1} g_i c_i + g\right)/f' + \Delta \cdot u/f'$

Both External product and Key Switching only need d multiplications on R_Q

New blind rotation

Recall blind rotation: homomorphically decrypt the LWE ciphertext on the exponent

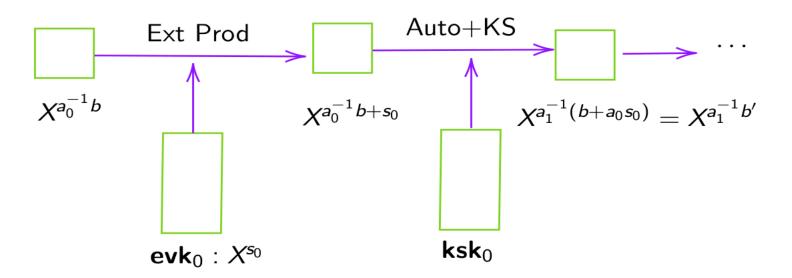
$$r(X)X^{\sum_{i=0}^{n-1}a_is_i-b \mod q} = r(X)X^{-b}X^{\sum_{i=0}^{n-1}a_is_i}$$

➢Basic idea

- ✓ Given a ciphertext NTRU_{f(x)}(X^{s_i}), applying $X \to X^{a_i}$.
- ✓ Perform once key-switching: convert the secret $f(X^{a_i})$ to f(X).

$$\operatorname{NTRU}_{f(X)}(X^{s_i}) \xrightarrow{\operatorname{EvalAuto}} \operatorname{NTRU}_{f(X^{a_i})}(X^{a_is_i}) \xrightarrow{\operatorname{KS}} \operatorname{NTRU}_{f(X)}(X^{a_is_i})$$

New blind rotation



- > The first scalar NTRU ciphertext requires a specific form.
 - Counteracting the impact of automorphism on b
- Proper automorphism ensures the same ciphertext structure .
 - Eg. $X \to X^{a_0 a_1^{-1}}$, in the next iteration, the initial message remains $X^{a_1^{-1}b'}$
- Cost: n external products and n key-switchings

Construction

> Problem I: automorphism exists only for odd numbers in \mathbb{Z}_{2N}

P Transformation:

✓ Set q = N, X^2 has order q in $R = \mathbb{Z}[X]/X^N + 1$

✓ Define $S = \{2i + 1 : 0 \le i \le q - 1\} \subset \mathbb{Z}_{2N}$ is a multiplicative subgroup of \mathbb{Z}_{2N}

✓ Easily check: $\forall w, \hat{w} \in S, w^{-1}, \hat{w}^{-1}, w\hat{w} \in S$

Set $w_i = 2a_i + 1 < 2N$, we have

$$\left[X^{2\sum_{i=0}^{n-1}a_{i}s_{i}} = X^{\sum_{i=0}^{n-1}w_{i}s_{i}} \cdot X^{-\sum_{i=0}^{n-1}s_{i}}\right]$$

✓ Only need extra one external product and one evaluation key.

Construction

Problem II: Accumulator initialization

• Previous Scheme (a polynomial can be viewed as a noiseless ciphertext)

$$\left(0, r(X^{\frac{2N}{q}}) \cdot X^{-\frac{2N}{q}b}\right) = \operatorname{RLWE}\left(r(X^{\frac{2N}{q}}) \cdot X^{-\frac{2N}{q}b}\right)$$

• This feature is not satisfied for our KDM-form encryption:

PDesign the evaluation key carefully.

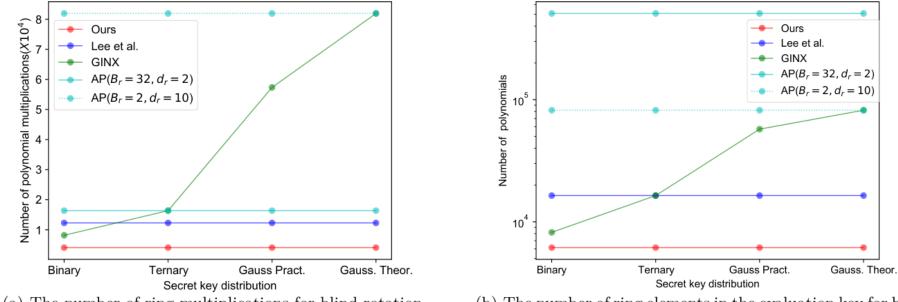
 $\begin{aligned} \mathbf{evk}_0 &= \mathrm{NTRU}'_{Q,f,\tau}(X^{s_0}/f), \\ \mathbf{evk}_n &= \mathrm{NTRU}'_{Q,f,\tau}(X^{-\sum_{i=0}^{n-1} s_i}). \end{aligned} \quad \mathbf{evk}_i = \mathrm{NTRU}'_{Q,f,\tau}(X^{s_i}) \text{ for } 1 \leq i < n, \end{aligned}$

External product still satisfied.

$$u \in R_Q \odot$$
 NTRU $(v/f) \to$ NTRU (uv)

Comparison

Comparison of blind rotations using different first-layer key distributions



(a) The number of ring multiplications for blind rotation.

(b) The number of ring elements in the evaluation key for blind rotation.

Bootstrapping for LWE

>Overview of bootstrapping in FHEW-scheme.

$$\begin{array}{|c|c|c|c|c|} \hline \mathsf{LWE}_{q,\mathbf{s}}(m) & \xrightarrow{\mathsf{BREval}} & \mathsf{ACC} & \xrightarrow{\mathsf{Ext}} & \mathsf{LWE}_{Q,\mathbf{s}'}(m) & \xrightarrow{\mathsf{ModSwitch}} & \mathsf{LWE}_{q,\mathbf{s}}(m) \\ \hline \mathsf{RLWE}_{Q,s'}(r(X)X^{\mathsf{noised}(m)}) & & \\ \end{array}$$

≻Our bootstrapping

$$\begin{array}{c|c} \label{eq:sigma} & & & \\ \end{tabular} & & \\ \end{tabular$$

How to transform NTRU ciphertext into LWE ciphertext?

Bootstrapping for LWE

P Ext: Extract LWE sample form NTRU ciphertext.

- For our NTRU ciphertext c = (g+m)/f
- coefficient vectors: $\mathbf{c} = (c_0, \ldots, c_{N-1}), \mathbf{f} = (f_0, \ldots, f_{N-1})$
- -Treat it as an RLWE ciphertext (a, b = as + e) with

$$a = c, b = 0, s = f$$

-We can extract $LWE_{Q,f}(m) = (\hat{\mathbf{c}} = (c_0, -c_{N-1}, \dots, -c_1), 0)$

Outline

- Preliminaries
- Motivation and Technical Contribution
- New NTRU-based GSW-like Scheme and blind rotation
- Experimental Results and Conclusion

Recommended Parameters

Parameters	Key distrib.	n	q	N	Q	B	Q_{ks}	B_{ks}
STD128 [39]	Ternary	512	1024	1024	2^{27}	2^{7}	2^{14}	2^7
P128T	Ternary	512	1024	1024	$995329 \approx 2^{19.9}$	2^4	2^{14}	2^{7}
P128G	Gaussian	465	1024	1024	$995329 \approx 2^{19.9}$	2^4	2^{14}	2^{7}
STD192 [39]	Ternary	1024	1024	2048	2^{37}	2^{13}	2^{19}	28
P192T	Ternary	1024	1024	2048	$44421121 \approx 2^{25.4}$	2^{9}	2^{19}	28
P192G	Gaussian	870	1024	2048	$44421121 \approx 2^{25.4}$	2^{9}	2^{17}	28

Experimental Results

Algorithms	Parameters	Key	Timings	EVK	KSK	Boots. key
		distrib.	(ms)	(MB)	(MB)	(MB)
FHEW/AP $[22,6]$	STD128 [39]	Ternary	359	1674	224	1898
TFHE/GINX $[19,6]$	STD128 [39]	Ternary	234	54	224	278
Ours	P128T	Ternary	112	18.65	224	242.65
	P128G	Gaussian	100	17.90	203.44	221.34
FHEW/AP [22,6]	STD192 [39]	Ternary	1200	6682	532	7214
TFHE/GINX $[19,6]$	STD192 [39]	Ternary	859	222	532	754
Ours	P192T	Ternary	320	38.10	532	570.10
	P192G	Gaussian	273	34.30	404.41	438.71

Extra 10% improvement over P128T by using Gaussian key

Extra 17% improvement over P192T by using Gaussian key

Thanks!

GitHub home page: https://github.com/SKLC-FHE/CHIFHE

