Privacy-Preserving Functional Database Exploration with Lattigo

Jean-Philippe Bossuat

jeanphilippe.bossuat@gmail.com

Disclaimer: The views and opinions expressed in this talk are my own and they do not

necessarily represent the views and opinions of my employer.

Jean-Philippe Bossuat

jeanphilippe.bossuat@gmail.com

1 INTRODUCTION

2 THEORY & IMPLEMENTATION

3 PERFORMANCE

INTRODUCTION

INTRODUCTION

- This presentation is aimed at showcasing how LATTIGO can be used to implement a very diverse circuit solving a practical use case
- The constructions used in this presentation are based on a joint work with **Malika Izabachène**, that will be accessible on ePrint in the coming days
- LATTIGO is an open-source Go module that implements RLWE based homomorphic-encryption primitives and Multiparty-Homomorphic-Encryption (MHE) based protocols
- LATTIGO was originally developed at the EPFL Laboratory for Data Security by Jean-Philippe Bossuat and Christian Mouchet, supervised by Juan Troncoso, and since 2022 it has been maintained by Tune Insight SA

- A scientist (the Client) would like to conduct a large-scale medical study requiring patients with **specific combinations of attributes**
- To be funded, the scientist must first conduct a preliminary feasibility study to assess if there are enough subjects available in a patient database (the Server) meeting the study criteria
- To protect the **IP of the study** the Server should not learn anything about the selection criteria
- To protect the **privacy of the patients**, the Client should only learn a binary value: if there are enough patients meeting the selection criteria in the Server's database.

Given:

- A database ${\cal P}$ that consists in a $n\times h$ patient matrix
- A list of h scoring functions
- An individual score threshold t_0
- A global count threshold t_1

We want to answer the following question in a privacy preserving (and efficient) way:

Does \mathcal{P} contains at least t_1 patients whose individual score is at least equal to t_0 ?

THEORY & IMPLEMENTATION

Overview of the circuit:

$$\mathsf{Thresh}_{\mathsf{Enc}(t_1)}\left(\sum_{i=0}^{n-1}\mathsf{Thresh}_{\mathsf{Enc}(t_0)}\left(\sum_{j=0}^{h-1}\mathsf{Enc}(f_j)\otimes\mathcal{P}[i][j]\right)\right)$$

- \mathcal{P} : $n \times h$ database
- f_j : attribute scoring functions $\mathbb{R}_{[a,b]} \to \mathbb{Z}_p$
- *t*₀: individual selection threshold
- t_1 : global selection threshold
- Tresh $_t(x) = 1$ if $x \ge t$ else 0

IMPLEMENTATION - Overview

This circuit is interesting because it makes use of:

- Encrypted Lookup Tables: evaluation of the private scoring functions $Enc(f_j)$
- Ring-Packing: repacking the individual private scores
- **Ring-Merging**: merging the small degree ciphertext of the individual scores into large degree ciphertexts
- Scheme-Switching: switching from coefficient packed messages to CKKS SIMD encoded messages
- Private Thresholds with CKKS: local and global private selection over the encrypted scores
- Bootstrapping with CKKS to evaluate the private thresholds

The implementation is available at

https://github.com/Pro7ech/fhe-org-2024

Let

•
$$f: \mathbb{R}_{[a,b]} \to \mathbb{R}$$

• $g: \mathbb{R}_{[a,b]} \to \mathbb{R}_{[0,1]}: y = \frac{1}{2}(\frac{2x-b-a}{b-a}+1)$

Then, given a discretization factor of 1/N, we can encode f on a polynomial of $\mathbb{R}[X]/(X^N+1)$ as

$$\mathcal{F}(X) = f'(0) - \sum_{i=1}^{N-1} f'\left(g^{-1}\left(\frac{N-i}{N}\right)\right) \cdot X^i$$

and for $x \in [a, b]$, we have

 $X^{\lfloor Ng(x) \rceil} \cdot \mathsf{RLWE}(\mathcal{F}(X)) \approx \mathsf{RLWE}(f(x)X^0 + \star)$

with an error bounded by $|f(x) - f(x \pm \frac{b-a}{N})|$

This step is not a native operation in any of the HE schemes in LATTIGO . But It can be implemented from the lower-level packages rlwe and ring:

- **()** Encode f on a []float64 of size N with the method described above
- Encode the []float64 on an rlwe.Plaintext using the hefloat.Encoder
- Second the rlwe.Plaintext on an rlwe.Ciphertext using the rlwe.Encryptor

The code for this step is located in the files

- function.go
- server.go (for the API call)

The evaluation step of the encrypted scoring function is done as:

$$\mathsf{RLWE}(\sum_{j=0}^{h-1} f_j(x_j) X^0 + \star) \approx \sum_{j=0}^{h-1} \mathsf{NTT}(X^{\lfloor Ng(x_j) \rfloor}) \cdot \mathsf{RLWE}(\mathcal{F}_j(X))$$

and can be carried out with basic polynomial arithmetic of the ring package:

- ring.NTT(p0, p1 ring.Poly)
- ring.MulCoeffsMontgomery(p0, p1, p2 ring.Poly)
- ring.MulCoeffsMontgomeryThenAdd(p0, p1, p2 ring.Poly)

- Each evaluation of **Encrypted Scoring Function** step returns an RLWE whose first coefficient is the evaluation of $f(x_i)$
- We can homomorphically repack N of those coefficients in a single RLWE ciphertext:

$$\sum_{i=0}^{N-1} \mathsf{RLWE}(m_i + \star) \cdot X^i \xrightarrow{\mathsf{Repack}} \mathsf{RLWE}\left(\sum_{i=0}^{N-1} m_i \cdot X^i\right)$$

 $\bullet\,$ This reduces the number of ciphertexts by a factor of N

LATTIGO has a native support of **Ring-Packing** through the API of the rlwe.Evaluator which enables to pack a hash map containing indexed rlwe.Ciphertext from 0 to N-1 into a single rlwe.Ciphertext:

- Method: rlwe.Evaluator.Pack
- Input: map[int]*rlwe.Ciphertext
- Output: rlwe.Ciphertext

The code for this step is located in the files

- repacking.go
- repacking_keys.go
- server.go (for the API call)

- The output of the **Ring-Packing** step returns RLWE ciphertexts whose ring degree is small, e.g. $N=2^{12}$
- Scheme-Switching to CKKS makes uses of the CKKS bootstrapping, which requires a ring degree $N' = 2^{16}$ (for security)
- We can merge N'/N RLWE ciphertexts of degree N into a single RLWE ciphertext of degree N':

$$\sum_{j=0}^{N'/N-1} \mathsf{RLWE}\left(\sum_{i=0}^{N-1} m_{jN+i} \cdot X^{i}\right) \cdot X^{j}$$

$$\downarrow \mathsf{Merge}$$

$$\mathsf{RLWE}\left(\sum_{j=0}^{N'/N-1} \left(\sum_{i=0}^{N-1} m_{jN+i} \cdot X^{iN'/N}\right) \cdot X^{j}\right)$$

LATTIGO has native support for switching RLWE ciphertext dimensions through key-switching and Ring-Merging can be implemented in only a few lines of code:

 $\mathsf{RLWE}_{2N} \leftarrow \mathsf{KeySwitch}_{\pi(s) \to s'}(\pi(\mathsf{RLWE}_N) + X \cdot \pi(\mathsf{RLWE}_N))$

- $\pi: X \to X^2: {\tt rlwe.SwitchCiphertextRingDegreeNTT}$
- KeySwitch : rlwe.Evaluator.ApplyEvaluationKey

The code for this step is located in the files:

- repacking.go
- repacking_keys.go
- server.go (for the API call)

- The **Scheme Switching** step homomorphically encodes the values and raises the modulus to enable further computations
- This is equivalent to a CKKS bootstrapping that skips the last step (SlotsToCoeffs):
 - **ModRaise**: raises the ciphertext to the largest modulus
 - **②** CoeffsToSlots: homomorphically encodes the ciphertext
 - **EvalMod**: homomorphically evaluates the modular reduction
 - (SlotsToCoeffs: homomorphically decodes the ciphertext)

IMPLEMENTATION - Scheme-Switching & Bootstrappian

LATTIGO supports for CKKS bootstrapping with out of the box default parameters, as well as advanced parameterization, enabling custom instantiation as well as custom circuit composition:

- bootstrapping.Evaluator
- ullet .ScaleDown: scales the ciphertext down to Q_0
- .ModUp: raises the ciphertext modulus from ${\it Q}_0$ to ${\it Q}_L$
- .CoeffsToSlots: homomorphic encoding
- .EvalMod: homomorphic modular reduction
- .SlotsToCoeffs: homomorphic decoding

The code for this step is located in the files

- bootstrapping.go
- scheme_switching.go
- server.go (for the API call)

Let

$$\mathsf{Thresh}_t(x) : \begin{cases} 1 & \text{if } x \ge t \\ 0 & \text{otherwise} \end{cases} \quad \mathsf{and} \quad \mathsf{Sign}(x) : \begin{cases} 1 & \text{if } x > 0 \\ 0.5 & \text{if } x = 0 \\ -1 & \text{otherwise} \end{cases}$$

then $\mathsf{Thresh}_t(x) = \frac{1}{2}\mathsf{Sign}(x-t) + \frac{1}{2}$ and we can evaluate Sign in the interval $[-1, -2^{-\alpha}] \cup [2^{-\alpha}, 1]$ with precision β by using a composition of successive minimax approximations^1

This approach requires to scales x - t to the interval [-1, 1], which is done during the local threshold by a normalization factor $1/\sum \max f_j$ and during the global threshold by a normalization factor 1/p

¹Lee et al, Minimax Approximation of Sign Function by Composite Polynomial for Homomorphic Comparison

IMPLEMENTATION - Threshold

LATTIGO has native support for comparison, through the hefloat.ComparisonEvaluator. The user can generate and provide a custom mimimax composite approximation that suits the application needs

- Local Private Threshold: $[-1,-2^{-8}\cup[2^{-8},1]$ with precision $\beta=14,$ total depth of 12
- Global Private Threshold: $[-1,-2^{-16}]\cup[2^{-16},1]$ with precision $\beta=9.4,$ total depth of 20
- hefloat.ComparisonEvaluator.Step

To avoid $x = t_i$ in both cases, which would returns 0.5, we add a small bias to x - t that is half the smallest difference between two possible values of x

The code for this step is located in the files

server.go

PUTTING IT ALL TOGETHER

The client generates:

- The necessary evaluation keys
- The h encrypted scoring functions $[\mathsf{Enc}(f[0]),\ldots,\mathsf{Enc}(f[h-1])$
- The local encrypted threshold $\mathsf{Enc}(t_0)$ and normalization factor $\mathsf{Enc}(1/\sum\max(f_j))$
- The global encrypted threshold $Enc(t_1)$

and sends them to the server

- **②** The server evaluates $\operatorname{Enc}(y[i]) = \sum X^{\mathcal{P}[i][j]} \cdot \operatorname{Enc}(f[j])$
- **③** The server packs the Enc(y[i]) into RLWE low-degree ciphertexts
- The server merge the low-degree RLWE ciphertexts into large-degree RLWE ciphertexts
- The server scheme-switches the large-degree RLWE ciphertexts into CKKS ciphertexts
- The server evaluates the private local-thresholds and aggregates all values
- The server evaluates the final private global-threshold

PERFORMANCE

PERFORMANCE - PARAMETERS

- Set I: Encrypted Lookup-Table & Ring-Packing
- Set II-V: Ring-Merging
- Set V: Local & Global Thresholds
- Set VI: Scheme-Switching & Bootstrapping

Set	$\log(N)$	$\log(Q)$	$\log(P)$	$\log(QP)$	h	λ
I	12	60	48	108	2N/3	128
	13	60	48	108	2N/3	> 128
	14	60	48	108	2N/3	> 128
IV	15	60	48	108	2N/3	> 128
V	16	$60 + 8 \cdot 45$	158	578	192	> 128
VI	16	$ \begin{array}{r} 60 + 8 \cdot 45 + 3 \cdot 39 \\ + 8 \cdot 60 + 4 \cdot 56 \end{array} $	$5 \cdot 61$	1546	192	128

Set	Size [MB]	
Ring Packing Keys	3.25	
Ring Merging Keys	7.5	
Bootstrapping Keys	7395	
$RLWE(f_j)$	2.01	
$RLWE(t_0)$ & $RLWE(1/\sum \max(f_j))$	18	
$RLWE(t_1)$	9	
Total	≈ 7435	

 $\bullet\,$ Timings for a database of 2^{19} entries single threaded^2

Operation	Total	Amortized
Client Initialization	22.7s	43μ s
Server Initialization	10.3s	19μ s
Private Functions & Packing	436.6s	832μ s
Scheme-Switching	64.2s	$122 \mu s$
Private-Threshold Local	327.1s	$624 \mu s$
Private-Threshold Global	49.9s	95μ s
Total	910.8s	1.737ms

• Peak of 22GB of RAM, most of it being due to the size of the bootstrapping keys and the plaintext matrices for the homomorphic encoding/decoding during the bootstrapping

²i9-12900K, 64GB DDR5, Windows 11, Go 1.22

OTHER CONSIDERATIONS

- In many real-world settings, data are distributed across several databases that may be independently managed. Computing the circuit without leaking becomes a secure multiparty computation (MPC) problem
- LATTIGO supports multiparty homomorphic encryption (MHE) schemes that enable an efficient MPC protocol. We have recently released **Helium**, a first implementation of such a protocol

https://github.com/tuneinsight/lattigo
https://github.com/ChristianMct/helium