Large Domain Homomorphic Evaluation in Levelled Mode

Jean-Philippe Bossuat Malika Izabachène

jeanphilippe.bossuat@gmail.com
malika.izabachene@gmail.com

Disclaimer: The views and opinions expressed in this talk are our own and they do not necessarily represent the views and opinions of our employers.

TABLE OF CONTENTS

(1) INTRODUCTION
(2) LUT EVALUATIONS OVER LARGE DOMAIN
(3) OUR PROPOSAL
(4) EXPERIMENTS

INTRODUCTION

- Functional bootstrapping ${ }^{1}$ allows to evaluate arbitrary discretized functions which are a priori encoded
- However high precision/large domain functional bootstrapping quickly becomes prohibitive

In this talk, we propose a solution based on the Split-Domain approach from Iliashenko et al. [IIMP22], used for the computation of private scores over large domains.
${ }^{1}$ [BR15, BDF18, CIM19, BGGJ18], etc

OVERARCHING GOAL

Client \leftrightarrow Server interaction:
(1) User: selects $m_{0}, m_{2}, \cdots, m_{N-1} \in \mathbb{Z}_{t}$ with N large (or a subset of them where each one is taken for a very large domain);
(2) Server: holds an arbitrary function $f: \mathbb{Z}_{t} \rightarrow \mathbb{Z}_{t^{\prime}}$ with $t^{\prime} \leq t$;

At the end of the interaction, the user receives the evaluations on the selected points $f\left(m_{0}\right), \cdots, f\left(m_{N-1}\right)$, with the server learning nothing about the selected points.

NOTATIONS

- $\mathcal{R}_{q}=\mathbb{Z}_{q}[X] /\left(X^{N}+1\right)$
- $a(X)=\sum_{i=0}^{N-1} a_{i} \cdot X^{i}$
- $\operatorname{coeffs}(a(X))=\mathbf{a}=\left(a_{0}, a_{1}, \ldots, a_{N-1}\right)$
- $\operatorname{RLWE}_{s}(m(X))=(a, b) \in \mathcal{R}_{q}^{2}$, s.t. $a s+b=m(X)+e(X)$
- $\operatorname{LWE}_{s}(m)=(\mathbf{a}, b) \in \mathbb{Z}_{q}^{N+1}$ s.t. $\langle a, s\rangle+b=m+e$

Split Domain approach, [IIMP22]

Allows the user to obtain the successive evaluations:

$$
\operatorname{RLWE}\left(X^{f\left(m_{0}\right)}\right), \cdots, \operatorname{RLWE}\left(X^{f\left(m_{N-1}\right)}\right)
$$

- 1_{H} : one-hot encoding over $[0, N-1]$ and $f: \mathbb{Z}_{N} \rightarrow \mathbb{Z}_{N}$.
- Matrix representation of f :

$$
\mathbf{U}_{f}=\left(\begin{array}{c}
1_{\mathrm{H}}(f(0)) \\
1_{\mathrm{H}}(f(1)) \\
\vdots \\
1_{\mathrm{H}}(f(N-1))
\end{array}\right) \quad \begin{aligned}
& \text { Note that: } \\
& 1_{\mathrm{H}}(m) \times \mathbf{U}_{f}=1_{\mathrm{H}}(f(m))=\operatorname{coeffs}\left(X^{f(m)}\right)
\end{aligned}
$$

- As $1_{\mathrm{H}}(m)=\operatorname{coeffs}\left(X^{m}\right)$, given $\operatorname{RLWE}\left(X^{m}\right)$ and \mathbf{U}_{f}, we could obtain the evaluations $\operatorname{RLWE}\left(X^{f(m)}\right)$.

Split Domain approach, [IIMP22]

How to obtain $\operatorname{RLWE}\left(X^{f(m)}\right)$ given $\operatorname{RLWE}\left(X^{m}\right)=(a, b) \in \mathcal{R}_{q}^{2}$ and \mathbf{U}_{f} ?
$(a, b) \in \mathcal{R}_{q}^{2}$ can be expressed as $(\mathbf{A}, \mathbf{b}) \in \mathbb{Z}_{q}^{N \times N, 1 \times N}$ with:

- A: the anti-circulant Vandermond matrix representation of a
- b : coeffs (b)

Given $\operatorname{RLWE}\left(X^{m}\right)=(a, b)$ and \mathbf{U}_{f}, the server evaluates

$$
(\mathbf{A}, \mathbf{b}) \times \mathbf{U}_{f}=\left(\mathbf{A} \mathbf{U}_{f}, \mathbf{b} \mathbf{U}_{f}\right) \in \mathbb{Z}_{q}^{N \times N, 1 \times N}
$$

This still decrypts correctly under coeffs (s), $\operatorname{BUT}\left(\mathbf{A U}_{f}, \mathbf{b} \mathbf{U}_{f}\right)$ is not a valid RLWE ciphertext because $\mathbf{A U _ { f }}$ is not an anti-circulant Vandermond matrix anymore.

Split Domain approach, [IIMP22]

- Until now we assumed that $\operatorname{Dom}(f) \leq N$
- If $\operatorname{Dom}(f)>N$, $\operatorname{Dom}(f)$ can be expressed as a union of functions with disjoint domains, i.e. $\operatorname{Dom}(f)=\bigcup_{i=0}^{k-1} \operatorname{Dom}\left(f_{i}\right)$, with $k=\left\lceil\frac{\operatorname{Dom}(f)}{N}\right\rceil$.
- Then the client sends a k sized vector with $\operatorname{RLWE}\left(X^{m \bmod N}\right)$ at the $\lfloor m / k\rfloor$-th position and $\operatorname{RLWE}(0)$ at the others.
- And the server evaluates $\left(\mathbf{A U}_{f}, \mathbf{b} \mathbf{U}_{f}\right)=\sum_{i=0}^{k-1}\left(\mathbf{A}_{i} \mathbf{U}_{f_{i}}, \mathbf{b}_{i} \mathbf{U}_{f_{i}}\right)$.

SOME OBSERVATIONS

- To convert back $\left(\mathbf{A U}_{f}, \mathbf{b U}_{f}\right)$ to an RLWE ciphertext, a format-fixing key composed of N switching keys (one for each bit of the secret) is required
- One key-switch is evaluated for each row of $\mathbf{A U}_{f}$, acting as a homomorphic decryption coefficient by coefficient

SOME OBSERVATIONS

- The format-fixing step requires $\mathcal{O}(N)$ key-switching operations per point
- The calculation approach comes from the fact that the result is retrieved as in the exponent as $\operatorname{RLWE}\left(X^{f(m)}\right)$
- This format enables dense packing of the count of each point: $\operatorname{RLWE}\left([\# f(m)=0],[\# f(m)=1] \cdot X, \ldots,[\# f(m)=N-1] \cdot X^{N-1}\right)$, $\mathcal{O}(\sqrt{q})$ counts can be stored per coefficients ${ }^{2}$

[^0]
OUR PROPOSAL

MOTIVATION

Our approach retrieves the successive evaluations as:

$$
\operatorname{RLWE}\left(f\left(m_{0}\right)\right), \cdots, \operatorname{RLWE}\left(f\left(m_{N-1}\right)\right)
$$

We will see how this enables:

- A reduced number of key-switching operations per point
- A reduced number of key-switching keys

HIGH LEVEL OVERVIEW

For a batch of N points

(1) Define a test vector polynomial u_{f}
(2) Evaluate u_{f} on each point
(3) Repack the N points in a single RLWE ciphertext

CUSTOMIZED TEST VECTOR

- Step 1: The user encrypts $c_{m}=\operatorname{RLWE}\left(X^{m}\right)$ for each targeted element m_{i} and sends the ciphertext to the server.
- Step 2: The server defines a polynomial representation of the function f to be evaluated as follows:

$$
u_{f}=f(0)-\sum_{i=1}^{N-1} f(N-i) \cdot X^{i}
$$

- Note that for each ciphertext sent by the client, we have:

$$
c_{m} \cdot u_{f}=\operatorname{RLWE}\left(X^{m}\right) \cdot u_{f}=\operatorname{RLWE}\left(f(m) X^{0}+\star\right)
$$

- Split Domain: the same technique as [IIMP22] can be used

Repack: RLWE \rightarrow LWE CONVERSION

- Let $m=\sum_{i=0}^{N-1} m_{i} \cdot X^{i}$
- Recall that $\operatorname{RLWE}_{s}(m)=(a, b) \in \mathcal{R}_{q}^{2}$ can be expressed as
$(\mathbf{A}, \mathbf{b}) \in \mathbb{Z}_{q}^{N \times N, 1 \times N}$ with \mathbf{A} the anti-circulant Vandermon matrix representation of a and $\mathbf{b}=\operatorname{coeffs}(b)$
- Instead we can view $\operatorname{RLWE}_{s}(m)=(a, b) \in \mathcal{R}_{q}^{2}$ as a structured set of N ciphertexts of the form $\operatorname{LWE}_{\tilde{s}}\left(m_{i}\right)$, with $\tilde{s}=\left(s_{0},-s_{N-1}, \ldots, s_{1}\right)$
- Then the evaluation can be written as

$$
\left(\begin{array}{c}
\operatorname{LWE}\left(\operatorname{coeff}\left(a \cdot X^{0}\right), b[0]\right) \\
\vdots \\
\operatorname{LWE}\left(\operatorname{coeffs}\left(a \cdot X^{N-1}\right), b[N-1]\right)
\end{array}\right) \cdot \mathbf{U}_{f}
$$

producing a new set of $n \leq N \operatorname{LWE}_{\tilde{s}}\left(m_{i}^{\prime}\right)$ ciphertexts

Repack: LWE \rightarrow RLWE CONVERSION

- We can convert an LWE ciphertext $\operatorname{LWE}_{\tilde{s}}\left(m_{i}\right)=(\mathbf{a}, b) \in \mathbb{Z}_{q}^{N+1}$ back to an RLWE ciphertext $\operatorname{RLWE}_{s}\left(m_{i}+\sum_{i=1}^{N} \star \cdot X^{i}\right)=(a, b)$ by setting

$$
(a, b)=\left(\sum_{i=0}^{N-1} a_{i} X^{i}, b+\sum_{i=1}^{N-1} 0 \cdot X^{i}\right) \in \mathcal{R}_{q}^{2}
$$

- Once we have N RLWE ciphertexts of the form $\operatorname{RLWE}\left(m_{i}+\sum_{i=1}^{N-1} \star \cdot X^{i}\right)$, we can repack them into a single RLWE ciphertext $\operatorname{RLWE}\left(\sum_{i=0}^{N-1} m_{i} \cdot X^{i}\right)$

RLWEs \rightarrow RLWE REPACKING

$$
\sum_{i=0}^{N-1} \mathrm{RLWE}\left(m_{i}+\sum_{i=1}^{N-1} \star \cdot X^{i}\right) \cdot X^{i} \xrightarrow{\text { Repack }} \mathrm{RLWE}\left(\sum_{i=0}^{N-1} m_{i} \cdot X^{i}\right)
$$

- RLWE repacking ${ }^{3}$ requires $\mathcal{O}(N)$ automorphisms for N RLWE ciphertexts and makes use $\mathcal{O}(\log (N))$ key-switching keys
- Therefore for N points, this amortizes to $O(1)$ key-switching per point and a total of $\mathcal{O}(\log (N))$ switching keys, which is an asymptotic improvement for both the number of key-switching operations and key-switching keys:
- Key-switching operations: $\mathcal{O}(N) \rightarrow \mathcal{O}(1)$
- Key-switching keys: $\mathcal{O}(N) \rightarrow \mathcal{O}(\log N)$

RESPONSE FORMAT UPDATE

- The query size remains the same since the encoding of the points is unchanged: $\mathcal{O}(n k N \log (q))$, with e, n the number of points, $k=\left\lceil\frac{\operatorname{Dom}(f)}{N}\right\rceil, N$ the ring degree and q the modulus

RESPONSE FORMAT UPDATE

- The response format is the main implication change of our modification, it changes from $\operatorname{RLWE}\left(X^{f\left(m_{i}\right)}\right)$ to $\operatorname{RLWE}\left(f\left(m_{i}\right)\right)$
- The response size is now proportional to $\lceil n / N\rceil N$ since each coefficient can only store one value, and we require that $q \geq \mid \operatorname{lmg}(f)$. Therefor the response size from is changed from $\mathcal{O}(\lceil n / \sqrt{q}\rceil|\operatorname{lmg}(f)| \log (q))$ to $\mathcal{O}(\lceil n / N\rceil N \log (|\operatorname{lmg}(f)|))$
- In other words, the original solution is better when n is large and $|\operatorname{lmg}(f)|$ is small, while the proposed solution is better when n is small (proportionally to q) and $|\operatorname{lmg}(f)|$ is large (proportionally to N)

SUMMARY

Comparison summary of our split-domain approach with the original split-domain for a batch evaluation of n points. We let $k=|\operatorname{Dom}(f)| / N$, where N is the ring degree of \mathcal{R} and q is the ciphertext modulus.

	Query Size	Key-Switching Keys
Original [IMP22]	$\mathcal{O}(n k N \log (q))$	$\mathcal{O}(N)$
Ours	$\mathcal{O}(n k N \log (q))$	$\mathcal{O}(\log (N))$

	Evaluation	Response Size
Original $[$ IIMP22]	$\mathcal{O}_{\text {KeYSwith }}(n N)$	$\mathcal{O}(\lceil n / \sqrt{q}\rceil\|\operatorname{lmg}(f)\| \log (q))$
Ours	$\mathcal{O}_{\text {KeySwith }}(n)$	$\mathcal{O}(\lceil n / N\rceil N \log (\|\operatorname{lmg}(f)\|))$

EXPERIMENTS

EXPERIMENTS - IMPLEMENTATION

We implemented our solution based on the revisited Split-Domain approach from [IIMP22] using the LATTIGO library

https://github.com/tuneinsight/lattigo
and the code is available at
https://github.com/Pro7ech/fhe-org-2024

EXPERIMENTS - PERFORMANCE

- Performance ${ }^{4}$ of our revisited split-domain approach for an univariate function $f(x)$;
- Timings and data size are reported for batches of 2048 points:

$\operatorname{Dom}(f)$	$\operatorname{Img}(f)$	Encryption $[\mathrm{sec}]$	Query $[\mathrm{MB}]$	Evaluation $[\mathrm{sec}]$	Response $[\mathrm{KB}]$	Keys $[\mathrm{MB}]$
$\mathbb{Z}_{2^{12}}$	$\mathbb{Z}_{2^{12}}$	0.64	129	0.219		
$\mathbb{Z}_{2^{13}}$	$\mathbb{Z}_{2^{13}}$	1.25	258	0.240	32	1.5
$\mathbb{Z}_{2^{14}}$	$\mathbb{Z}_{2^{14}}$	2.46	516	0.268		
$\mathbb{Z}_{2^{15}}$	$\mathbb{Z}_{2^{15}}$	4.92	1033	0.320		
$\mathbb{Z}_{2^{16}}$	$\mathbb{Z}_{2^{16}}$	9.95	2066	0.487		

- [IIMP22] 5 for $\mathbb{Z}_{15} \rightarrow \mathbb{Z}_{12}: 0.414 \mathrm{sec} /$ point (or 847 sec for 2048 points)
${ }^{4}$ i9-12900K, 32GB DDR4, Windows 11, Go 1.21
${ }^{5}$ Xeon E5-2630 v2

EXPERIMENTS - PERFORMANCE

- Performance ${ }^{6}$ of our split-domain approach for a bivariate function $g(x, y)=\alpha_{1} f_{1}(x)+\alpha_{2} f_{2}(y)$
- Timings and data size are reported for batches of 2048 points

Dom (g)	$\operatorname{Img}(g)$	Encryption $[\mathrm{sec}]$	Query $[\mathrm{MB}]$	Evaluation $[\mathrm{sec}]$	Response $[\mathrm{KB}]$	Keys $[\mathrm{MB}]$
$\mathbb{Z}_{2^{12}} \times \mathbb{Z}_{2^{12}}$	$\mathbb{Z}_{2^{12}}$	1.26	258	0.235		
$\mathbb{Z}_{2^{13}} \times \mathbb{Z}_{2^{13}}$	$\mathbb{Z}_{2^{13}}$	2.46	516	0.261	32	1.5
$\mathbb{Z}_{2^{14}} \times \mathbb{Z}_{2^{14}}$	$\mathbb{Z}_{2^{14}}$	4.83	1033	0.317		
$\mathbb{Z}^{15} \times \mathbb{Z}_{2^{15}}$	$\mathbb{Z}_{2^{15}}$	9.58	2066	0.418		
$\mathbb{Z}_{2^{16}} \times \mathbb{Z}_{2^{16}}$	$\mathbb{Z}_{2^{16}}$	19.15	4133	0.700		

- [IIMP22] 7 for $\mathbb{Z}_{15} \times \mathbb{Z}_{15} \rightarrow \mathbb{Z}_{12}: 0.820$ sec $/$ point (or 1679 sec for 2048 points)
${ }^{6}$ i9-12900K, 32GB DDR4, Windows 11, Go 1.21
${ }^{7}$ Xeon E5-2630 v2

References I

Guillaume Bonnoron, Léo Ducas, and Max Fillinger, Large FHE gates from tensored homomorphic accumulator, AFRICACRYPT 18 (Antoine Joux, Abderrahmane Nitaj, and Tajjeeddine Rachidi, eds.), LNCS, vol. 10831, Springer, Heidelberg, May 2018, pp. 217-251.

囲 Christina Boura, Nicolas Gama, Mariya Georgieva, and Dimitar Jetchev, CHIMERA: Combining ring-LWE-based fully homomorphic encryption schemes, Cryptology ePrint Archive, Report 2018/758, 2018, https://eprint.iacr.org/2018/758.

目 Jean-François Biasse and Luis Ruiz, FHEW with efficient multibit bootstrapping, LATINCRYPT 2015 (Kristin E. Lauter and Francisco Rodríguez-Henríquez, eds.), LNCS, vol. 9230, Springer, Heidelberg, August 2015, pp. 119-135.

References II

围 Hao Chen, Wei Dai, Miran Kim, and Yongsoo Song, Efficient homomorphic conversion between (ring) LWE ciphertexts, ACNS 21, Part I (Kazue Sako and Nils Ole Tippenhauer, eds.), LNCS, vol. 12726, Springer, Heidelberg, June 2021, pp. 460-479.
Rergiu Carpov, Malika Izabachène, and Victor Mollimard, New techniques for multi-value input homomorphic evaluation and applications, CT-RSA 2019 (Mitsuru Matsui, ed.), LNCS, vol. 11405, Springer, Heidelberg, March 2019, pp. 106-126.
嗇 Ilia Iliashenko, Malika Izabachène, Axel Mertens, and Hilder V. L. Pereira, Homomorphically counting elements with the same property, PoPETs 2022 (2022), no. 4, 670-683.

References III

R Andrey Kim, Maxim Deryabin, Jieun Eom, Rakyong Choi, Yongwoo Lee, Whan Ghang, and Donghoon Yoo, General bootstrapping approach for RLWE-based homomorphic encryption, Cryptology ePrint Archive, Report 2021/691, 2021, https://eprint.iacr.org/2021/691.

[^0]: ${ }^{2}$ Assume $q \approx 2^{k}$ and $m=1 \cdot 2^{k^{\prime}}+e$, then we can perform $\mathcal{O}\left(2^{k^{\prime}}\right)$ additions before $e \geq 2^{k^{\prime}}$ and $\mathcal{O}\left(2^{k-k^{\prime}}\right)$ additions before the message overflows q. The number of additions is maximized when $2^{k-k^{\prime}}=2^{k^{\prime}}=\sqrt{q}$

