
Revisiting Key Decomposition Techniques for FHE: Simpler, Faster and More Generic

M. G. Belorgey, S. Carpov, N. Gama, S. Guasch, D. Jetchev

FHE.org Conference - 24 Mars 2024

1 / 22



Outline

1 External products:
The missing public-secret product.

2 Auxiliary Gadgets and Bivariate representation
Gadget decomposition of the source of truth
The return of base 2K representation in large depth.

2 / 22



External products: two halves make a whole

Part I - External products: Two halves make a whole

3 / 22



External products: two halves make a whole

External products are omnipresent in FHE

Ring-LWE has never really been about Rings
Ring-LWE FHE was never really about rings.
FHE arithmetic flows from secret linear
combinations, a.k.a. external products:

with small integer polynomial coefficients
over some high precision space (Torus, or big
integers) ∑

ai︸︷︷︸
small int

. ci︸︷︷︸
High Prec

.

External products are omnipresent in FHE
Covers every "tools":
keyswitches (2009), gadget decomposition, relinearization,
products, automorphisms, bootstrappings (2024)

Yet, proper formalization of external products
appeared only from 2016.

TRLWE
x+ y, x− y
a.x for public a ∈ ZN [X]

small integer linear combinations

TRGSW
a.x for secret a
External product

a ∈ {0, 1} cmux (selector)
blindrotate (×Xsecret ν)
(automata)

TFHE Gates API

nand, and,
or, xor, ...
mux

individual bits

a = s polynomials in s
(internal products)

Sublattice Small Ball
(modular ring) (real ring)

4 / 22



External products: two halves make a whole

External products are omnipresent in FHE

Ring-LWE has never really been about Rings
Ring-LWE FHE was never really about rings.
FHE arithmetic flows from secret linear
combinations, a.k.a. external products:

with small integer polynomial coefficients
over some high precision space (Torus, or big
integers) ∑

ai︸︷︷︸
small int

. ci︸︷︷︸
High Prec

.

External products are omnipresent in FHE
Covers every "tools":
keyswitches (2009), gadget decomposition, relinearization,
products, automorphisms, bootstrappings (2024)

Yet, proper formalization of external products
appeared only from 2016.

TRLWE
x+ y, x− y
a.x for public a ∈ ZN [X]

small integer linear combinations

TRGSW
a.x for secret a
External product

a ∈ {0, 1} cmux (selector)
blindrotate (×Xsecret ν)
(automata)

TFHE Gates API

nand, and,
or, xor, ...
mux

individual bits

a = s polynomials in s
(internal products)

Sublattice Small Ball
(modular ring) (real ring)

CKKS API
fixed point slots

slots add
slots mult
slots rotate

BFV API
slots mod p

slots add
slots mult
slots rotate

4 / 22



External products: two halves make a whole

External products vs. relinearization

(a,b) b-S.aTRLWE deg 1

(c,d) d-S.cTRLWE deg 1

(e,f,g) g-S.f+S2.eTRLWE deg 2

BFV or CKKS products

Re
lin

ea
riz

at
io

n Ext. product

C=TRGSW(S)RK=TRLWES(S
2)

(f,g)+RelinRK(0,e) (f,g)+C.(0,e)

Ciphertext Plaintext

(0,e) is encrypted with S2

replace the key with S
(0,e) needs to be
multiplied by S

5 / 22



External products: two halves make a whole

We just need half of the TRGSW

Relinearization needs only half of the TRGSW material
TRGSW was designed for secret × secret products
Relinearization uses secret × public product

Half External Product (i.e. secret-public)

Plaintext: ZN [X] · TN [X] → TN [X]
Ciphertext: HTRGSW(A) b → TRLWE(A · b)

Noise: ε → ≈ Nε

External product from [CGGI16]

Plaintext: ZN [X] · TN [X] → TN [X]
Ciphertext: TRGSW(A) ⊡ TRLWE(b) → TRLWE(A · b)

Noise: ε α → ≈ ∥A∥2 · α

6 / 22



External products: two halves make a whole

Application of half TRGSW products

Relinearization application
Relinearization:

(f, g) + HTRGSW(S2) e

Original external product
Original TRGSW:

TRGSW(A)︸ ︷︷ ︸
C

= (HTRGSW(A)︸ ︷︷ ︸
D

, HTRGSW(SA)︸ ︷︷ ︸
E

)

1 full = 2 halves:
C ⊡ (a, b) = E a + D b

7 / 22



External products: two halves make a whole

Half TRGSW: It is not just syntax!

C ⊡ (a, b) = E a + D b

Approximate decomposition: Faster FHE
Since b needs less precision than a, D b is faster than E a

expect 1 less FFT per external product.

Practical improvements
8 FFTs → 7 FFTs in the original TFHE lib.
Possibility to improve also the Circuit bootstrapping (impacts
TFHE-rs).

IFF
Ts

FF
TsDe

co
m

p
Ve

c-
Ma

t

17% faster
overall: 15% faster

8 / 22



External products: two halves make a whole

Half TRGSW: Improvements in practice!

9 / 22



Auxiliary Gadgets: The return of base-2K

Part II - Auxiliary Gadgets: The return of base-2K

10 / 22



Auxiliary Gadgets: The return of base-2K

First attempts on Chimera

Idash 2018 - a pivoting moment for FHE
Chimera: combine TFHE’s blind-rotate with BFV-style arithmetic
CKKS: first really efficient Full-RNS POC

External Product Formula

Ciphertext layer: prod = GadgetDec(a, b) × Fixed_GSW_key

Arithmetic layer: vector<TN [X]
Huge

> =
level ℓ∑

i=1

ZN [X]
small

· vector<TN [X]
Huge

>

11 / 22



Auxiliary Gadgets: The return of base-2K

Chimera 2019-2020: First steps and failures

vector<TN [X]
Huge

> =
level ℓ∑

i=1

ZN [X]
small

· vector<TN [X]
Huge

>

ZN [X]
small

· TN [X]
Huge

Two big blockers
FFT products: does not take advantage of the small coefficients.
High precision base-2K : carry propagation is prohibitive!

Main resolution: Give up, abort. (<2020) – Separation of concerns
Small depth FHE: Use Approx-decomporition with FP.
Large depth FHE: Use CRT + RNS.

12 / 22



Auxiliary Gadgets: The return of base-2K

Chimera 2019-2020: First steps and failures

vector<TN [X]
Huge

> =
level ℓ∑

i=1

ZN [X]
small

· vector<TN [X]
Huge

>

ZN [X]
small

· TN [X]
Huge

Two big blockers
FFT products: does not take advantage of the small coefficients.
High precision base-2K : carry propagation is prohibitive!

Main resolution: Give up, abort. (<2020) – Separation of concerns
Small depth FHE: Use Approx-decomporition with FP.
Large depth FHE: Use CRT + RNS.

12 / 22



Auxiliary Gadgets: The return of base-2K

Full-RNS CRT-CKKS since 2018

Coeffs space mod XN + 1 mod Q

Coeffs space, mod XN + 1 mod q1, ..., qℓ Evaluation space, mod q1, ..., qℓ

Evaluation space, mod Q

P (X) mod Q P (r1), . . . , P (rN )

P1(X) mod q1

Pℓ(X) mod qℓ

...

P1(r1), . . . , P1(rN ) mod q1

Pℓ(r1), . . . , Pℓ(rN ) mod qℓ

...

CRTs CRTs

NTT mod Q

NTT mod q1

NTT mod qℓ

metric (norm, distance, small)
is still properly defined here!

metric is partially expressible here!

small: same small coordinates ∈ [−B,B] modulo all the qi’s

levels: zero modulo the last qis

gadget def and decomposition here!

Internal products are efficient

Poly lincombs are efficient

not efficient

efficient representation

TnX and ZnX are embedded here! Not used in FHE

TnX

ZnX
w. small
coeffs

embedd
ed

approx, scaled

Looks so square and so perfect that it must be optimal!!

13 / 22



Auxiliary Gadgets: The return of base-2K

[KLSS23]: Breaking news!! Full-RNS was not optimal!

External Product Formula (CRT)

prod = GadgetDec(a, b)) × Fixed_GSW_key ZN [X] mod q1
...

ZN [X] mod qℓ

 =
level ℓ∑

i=1

ZN [X]
small

·

 ZN [X] mod q1
...

ZN [X] mod qℓ


Observation by [KLSS23]

Although the gadget decomposition is small, we still compute ℓ NTT’s per polynomials (so ℓ2 NTT’s in
total)
This is the same as if the gadget decomposition was Huge.

The big idea (simplified scoop!)
Forget/Delay the annoying mod (q1, . . . , qℓ), do the computation over Z!!!

14 / 22



Auxiliary Gadgets: The return of base-2K

[KLSS23]: Breaking news!! Full-RNS was not optimal!

External Product Formula (CRT)

prod = GadgetDec(a, b)) × Fixed_GSW_key
 ZN [X] mod q1

...
ZN [X] mod qℓ

 =
level ℓ∑

i=1

ZN [X]
small

·

 ZN [X] mod q1
...

ZN [X] mod qℓ


 mod q1

...
mod qℓ

Observation by [KLSS23]

Although the gadget decomposition is small, we still compute ℓ NTT’s per polynomials (so ℓ2 NTT’s in
total)
This is the same as if the gadget decomposition was Huge.

The big idea (simplified scoop!)
Forget/Delay the annoying mod (q1, . . . , qℓ), do the computation over Z!!!

14 / 22



Auxiliary Gadgets: The return of base-2K

Chimera 2023: The return of base-2K

[BCGGJ23] Extends the scope of [KLSS23])
If reductions mod (q1, . . . , qℓ) can be delayed and amortized.
Carry propagation too!!!

When we consider base-2k limbs:

TN [X]
Huge

= ZN [X]
small

· 1
2K

+ ZN [X]
small

· 1
22K

+ · · · + ZN [X]
small

· 1
2ℓK

Linear combinations can be done per limb:
ZN [X]
bounded
ZN [X]
bounded

...
ZN [X]
bounded

 =
levelℓ∑
i=1

ZN [X]
small

·


ZN [X]

small
ZN [X]

small
...

ZN [X]
small


and carry propagation is delayed until the very end! (small DFTs, bounded integers!)

15 / 22



Auxiliary Gadgets: The return of base-2K

Chimera 2023: Bivariate representation

Instead of:
TN [X]

Huge
= ZN [X]

small
· 1

2K
+ ZN [X]

small
· 1

22K
+ · · · + ZN [X]

small
· 1

2ℓK

Write:
TN [X]

Huge
= ZN [X]

small
· Y + ZN [X]

small
· Y 2 + · · · + ZN [X]

small
· Y ℓ

Bivariate representation
Carry propagation decoupling formalized by the presence of a variable Y . – hence "Bivariate" representation
Multiplication of Z(X, Y ) do make sense (genuine morphism between lifts over R[X]) – leveraged in BFV
and CKKS internal products.
Fast arithmetic possible product via DFT over X and over Y !!!

16 / 22



Auxiliary Gadgets: The return of base-2K

Chimera 2023: Pros and Cons of the bivariate representation

Wins

External products (half and full) are fastest on base-2K (optimal)
Compatible with automorphisms and internal products (optimal)
Prefix property: modulus rescaling is free (optimal)
CKKS Noise levels: continuous! no gap, no artificial rescaling (optimal)
Parametrization: every parameters flows from the noise level, no mysterious additional moduli (optimal)

Minor Setback
CKKS and BFV: dominant terms improve, negligible terms are a bit larger. (good enough!)

17 / 22



Auxiliary Gadgets: The return of base-2K

Chimera 2023: Key takeways 1

B
ig

-N
u
m

b
e
r 

(F
ro

n
te

n
d
)

CRT

Bivariate

Cyclotomic Arithmetic (Backend)

FFTNTT

RNS-BFV
RNS-CKKS

TFHE (low depth)

+ Also Valid!

+ Also Valid!
(Base-2K) + large depth!

(large depth)

Frontend vs. Backend
The big number mechanism and the cyclotomic mechanism must be decoupled.
All combinations are as efficient (up to a factor 2)
Switching between representations is easy! (i.e. external product to switch between representations)

18 / 22



Auxiliary Gadgets: The return of base-2K

SPQlios-arithmetic: a middle-ground arithmetic API for FHE

Aritmetic over vector/matrices of small integer polynomials. – 3 key operations
1 dft/idft: via an NTT or FFT backend (whichever is faster)
2 vmp_prepare/apply: vector × preprocessed matrix
3 cnv_prepare/apply: (precomputed) vector × vector convolution

It is omnipotent!
Can all CRT and bivariate frontends at any depth!

BlindRotate (CGGI bootstrapping in 6ms).
CKKS and BFV products (depth 30 in 0.3s)
Keyswitches and Automorphisms (depth 30 in 0.2s)

Easier and sufficient target for hardware developers!

19 / 22



Auxiliary Gadgets: The return of base-2K

SPQlios-arithmetic: a middle-ground arithmetic API for FHE

Aritmetic over vector/matrices of small integer polynomials. – 3 key operations
1 dft/idft: via an NTT or FFT backend (whichever is faster)
2 vmp_prepare/apply: vector × preprocessed matrix
3 cnv_prepare/apply: (precomputed) vector × vector convolution

It is omnipotent!
Can all CRT and bivariate frontends at any depth!

BlindRotate (CGGI bootstrapping in 6ms).
CKKS and BFV products (depth 30 in 0.3s)
Keyswitches and Automorphisms (depth 30 in 0.2s)

Easier and sufficient target for hardware developers!

19 / 22



Auxiliary Gadgets: The return of base-2K

Some benchmarks

20 / 22



Auxiliary Gadgets: The return of base-2K

Conclusions and Key Takeways

Key Takeway for hardware developers
FFT or NTT are both valid and will provide efficient FHE in all levels: just pick one.
Aim for native hardware support of the largest possible word size.
64-bit arithmetic is good, 128-bit would be much better!

Key Takeway for FHE libraries developers
Use gadget decompositions as primary software ↔ hardware API.
Do not expose parameters that the end-user won’t be able to set!

Key Takeway for FHE compilers/transpilers developers
CRT frontend is best for large dimension matrix or matrix/vecctor algebra over ciphertexts.
External products can be amortized.
Bivariate frontend is best when internal products are rare (e.g. only external products and automorphisms),
or chained in sequence.
CKKS noise propagation at any plaintext precision is easier. (no clamping to the nearest integer "level")

21 / 22



Auxiliary Gadgets: The return of base-2K

Thank you!

22 / 22


	Background
	External products: two halves make a whole
	Auxiliary Gadgets: The return of base-2K

