

AutoFHE: **Auto**mated Adaption of CNNs for[®] Efficient Evaluation over **FHE**

WEI AO PhD Student

Vishnu Boddeti Professor

wei-ao.github.io

Michigan State University

Toronto, Canada 2024

Secure deep learning under fully homomorprhic encryption

Customer

Customer

Cloud

Customer

Cloud

Cloud

Cloud

Customer

Customer

Cloud

Customer

Cloud

Cloud

Cloud

From Secure Computation to Secure Deep Learning

From Secure Computation to Secure Deep Learning

Initiative: privacy homomorphisms, 1978

1

From Secure Computation to Secure Deep Learning

- **Multiplication**
- Addition
- **Rotation**

$$\operatorname{ReLU}(x) = \max(x, 0)$$

allowed to evaluate

• Security Requirement

- Security Requirement
 - Inference Latency

- Security Requirement
- Inference Latency

- Security Requirement
- Inference Latency

• Security Requirement

• Inference Latency

• Prediction Accuracy

Cryptographic Parameters

• Security Requirement

• Inference Latency

• Prediction Accuracy

Cryptographic Parameters

Cyclotomic polynomial degree $\,$ N

• Security Requirement

• Inference Latency

- Security Requirement
- Inference Latency

- Security Requirement
- Inference Latency

Security Requirement

• Inference Latency

• Security Requirement

• Inference Latency

- Security Requirement
- Inference Latency

Security Requirement

• Inference Latency

Security Requirement

• Inference Latency

• Security Requirement

• Inference Latency

Security Requirement

• Inference Latency

Security Requirement

• Inference Latency

• Security Requirement

• Inference Latency

• Security Requirement

• Inference Latency

• Security Requirement

• Inference Latency

Cryptographic Parameters

$$N,L,Q_\ell = \prod_{i=0}^\ell q_\ell (0 \leq \ell \leq L), K, \ell$$

Cryptographic Parameters

$$N,L,Q_\ell = \prod_{i=0}^\ell q_\ell (0 \leq \ell \leq L),K,h$$

Polynomials: degree -> depth

Cryptographic Parameters

$$N,L,Q_\ell = \prod_{i=0}^\ell q_\ell (0 \leq \ell \leq L), K,h$$

Polynomials: degree -> depth

MPCNN [1]:

[1] Lee, Eunsang, et al. "Low-complexity deep convolutional neural networks on fully homomorphic encryption using multiplexed parallel convolutions." International

Cryptographic Parameters

$$N,L,Q_\ell = \prod_{i=0}^\ell q_\ell (0 \leq \ell \leq L),K,h$$

Polynomials: degree -> depth

MPCNN [1]:

Level 2

[1] Lee, Eunsang, et al. "Low-complexity deep convolutional neural networks on fully homomorphic encryption using multiplexed parallel convolutions." International

Cryptographic Parameters

$$N,L,Q_\ell = \prod_{i=0}^\ell q_\ell (0 \leq \ell \leq L), K,h$$

Polynomial CNNS

Polynomials: degree -> depth

MPCNN [1]:

 ${\rm Level}\; 2$

[1] Lee, Eunsang, et al. "Low-complexity deep convolutional neural networks on fully homomorphic encryption using multiplexed parallel convolutions." International

Cryptographic Parameters

$$N,L,Q_\ell = \prod_{i=0}^\ell q_\ell (0 \leq \ell \leq L),K,h$$

Polynomials: degree -> depth

MPCNN [1]:

Level 2 Level 0

[1] Lee, Eunsang, et al. "Low-complexity deep convolutional neural networks on fully homomorphic encryption using multiplexed parallel convolutions." International

Cryptographic Parameters

$$N,L,Q_\ell = \prod_{i=0}^\ell q_\ell (0 \leq \ell \leq L),K,h$$

Polynomials: degree -> depth

MPCNN [1]:

[1] Lee, Eunsang, et al. "Low-complexity deep convolutional neural networks on fully homomorphic encryption using multiplexed parallel convolutions." International

Polynomials: degree -> depth

MPCNN [1]:

[1] Lee, Eunsang, et al. "Low-complexity deep convolutional neural networks on fully homomorphic encryption using multiplexed parallel convolutions." International

Cryptographic Parameters

$$N,L,Q_\ell = \prod_{i=0}^\ell q_\ell (0 \leq \ell \leq L), K,h$$

Polynomials: degree -> depth

MPCNN [1]:

[1] Lee, Eunsang, et al. "Low-complexity deep convolutional neural networks on fully homomorphic encryption using multiplexed parallel convolutions." International

Cryptographic Parameters $N,L,Q_\ell = \prod_{i=0}^\ell q_\ell (0 \leq \ell \leq L),K,h$

MPCNN [1]:

[1] Lee, Eunsang, et al. "Low-complexity deep convolutional neural networks on fully homomorphic encryption using multiplexed parallel convolutions." International

MPCNN [1]:

[1] Lee, Eunsang, et al. "Low-complexity deep convolutional neural networks on fully homomorphic encryption using multiplexed parallel convolutions." International

MPCNN [1]:

[1] Lee, Eunsang, et al. "Low-complexity deep convolutional neural networks on fully homomorphic encryption using multiplexed parallel convolutions." International

MPCNN [1]:

[1] Lee, Eunsang, et al. "Low-complexity deep convolutional neural networks on fully homomorphic encryption using multiplexed parallel convolutions." International

MPCNN [1]:

[1] Lee, Eunsang, et al. "Low-complexity deep convolutional neural networks on fully homomorphic encryption using multiplexed parallel convolutions." International

Hand-crafted Design of Polynomial for CNNs under FHE

Hand-crafted Design of Polynomial for CNNs under FHE

How to obtain all possible polynomial neural architectures?

Key Insight

Optimize the

Key Insight

Optimize the

instead of the polynomial function

Key Insight

Optimize the

end-to-end polynomial neural architecture

instead of the polynomial function

To meet different requirements in real world

To meet different requirements in real world

• I want a faster response

To meet different requirements in real world

- I want a faster response
- I can wait for an accurate result

$$ext{Forward Propagation} \ egin{array}{lll} & Evo ext{ReLU}(x) = egin{cases} x, & d = 1 \ lpha_2 x^2 + lpha_1 x + lpha_0, & d = 2 \ x \cdot (\mathcal{F}(x) + 0.5)\,, & d > 2 \end{array} \end{cases}$$

High-degree composite polynomial [2]:

$${\mathcal F}(x)=(f_K^{d_K}\circ \cdots \circ f_k^{d_k}\circ \cdots \circ f_1^{d_1})(x), 1\leq k\leq K$$

[2] Lee, Eunsang, Joon-Woo Lee, Jong-Seon No, and Young-Sik Kim. "Minimax approximation of sign function by composite polynomial for homomorphic comparison."

$$ext{Forward Propagation} \ Evo\operatorname{ReLU}(x) = egin{cases} x, & d = 1 \ lpha_2 x^2 + lpha_1 x + lpha_0, & d = 2 \ x \cdot (\mathcal{F}(x) + 0.5)\,, & d > 2 \end{cases}$$

High-degree composite polynomial [2]:

$${\mathcal F}(x)=(f_K^{d_K}\circ\cdots\circ f_k^{d_k}\circ\cdots\circ f_1^{d_1})(x), 1\leq k\leq K$$

• **Pruning**: DeepReDuce, SAFENet, Delphi

[2] Lee, Eunsang, Joon-Woo Lee, Jong-Seon No, and Young-Sik Kim. "Minimax approximation of sign function by composite polynomial for homomorphic comparison."

$$ext{Forward Propagation} \ ext{EvoReLU}(x) = egin{cases} x, & d = 1 \ lpha_2 x^2 + lpha_1 x + lpha_0, & d = 2 \ x \cdot \left(\mathcal{F}(x) + 0.5
ight), & d > 2 \end{cases}$$

High-degree composite polynomial [2]:

$${\mathcal F}(x)=(f_K^{d_K}\circ \cdots \circ f_k^{d_k}\circ \cdots \circ f_1^{d_1})(x), 1\leq k\leq K$$

- **Pruning**: DeepReDuce, SAFENet, Delphi
- **Quadratic**: LoLa, CryptoNets, HEMET

[2] Lee, Eunsang, Joon-Woo Lee, Jong-Seon No, and Young-Sik Kim. "Minimax approximation of sign function by composite polynomial for homomorphic comparison."

$$ext{Forward Propagation} \ ext{EvoReLU}(x) = egin{cases} x, & d = 1 \ lpha_2 x^2 + lpha_1 x + lpha_0, & d = 2 \ x \cdot \left(\mathcal{F}(x) + 0.5
ight), & d > 2 \end{cases}$$

High-degree composite polynomial [2]:

$$\mathcal{F}(x) = (f_K^{d_K} \circ \cdots \circ f_k^{d_k} \circ \cdots \circ f_1^{d_1})(x), 1 \leq k \leq K$$

- **Pruning**: DeepReDuce, SAFENet, Delphi
- Quadratic: LoLa, CryptoNets, HEMET
- High-degree approximation: MPCNN

[2] Lee, Eunsang, Joon-Woo Lee, Jong-Seon No, and Young-Sik Kim. "Minimax approximation of sign function by composite polynomial for homomorphic comparison."

$$ext{Forward Propagation} \ ext{EvoReLU}(x) = egin{cases} x, & d = 1 \ lpha_2 x^2 + lpha_1 x + lpha_0, & d = 2 \ x \cdot (\mathcal{F}(x) + 0.5)\,, & d > 2 \end{cases}$$

High-degree composite polynomial [2]:

$${\mathcal F}(x)=(f_K^{d_K}\circ\cdots\circ f_k^{d_k}\circ\cdots\circ f_1^{d_1})(x), 1\leq k\leq K$$

- **Pruning**: DeepReDuce, SAFENet, Delphi
- Quadratic: LoLa, CryptoNets, HEMET
- High-degree approximation: MPCNN

Differentiable Evolution

[2] Lee, Eunsang, Joon-Woo Lee, Jong-Seon No, and Young-Sik Kim. "Minimax approximation of sign function by composite polynomial for homomorphic comparison."

gradient

Make training more stable
How to **optimize** end-to-end polynomial neural architecture?

How to **optimize** end-to-end polynomial neural architecture?

Multi-Objective evolutionary optimization

Joint search problem

Joint search

Single Objective

- Accuracy
- Latency

Single Objective

- Accuracy
- Latency

Scalarization of Multiple Objectives

 $\alpha \cdot \operatorname{Accuracy} + \beta \cdot \operatorname{Latency}$

Single Objective

- Accuracy
- Latency

Scalarization of Multiple Objectives

 $\alpha \cdot \text{Accuracy} + \beta \cdot \text{Latency}$

• Only generate a single solution

Single Objective

- Accuracy
- Latency

Scalarization of Multiple Objectives

 $\alpha \cdot \text{Accuracy} + \beta \cdot \text{Latency}$

- Only generate a single solution
- Hard to tune balancing weights

Single Objective

- Accuracy
- Latency

Scalarization of Multiple Objectives

 $\alpha \cdot \text{Accuracy} + \beta \cdot \text{Latency}$

- Only generate a single solution
- Hard to tune balancing weights
- Not Pareto optimal

Single Objective

- Accuracy
- Latency

Scalarization of Multiple Objectives

 $\alpha \cdot \operatorname{Accuracy} + \beta \cdot \operatorname{Latency}$

Multi-Objective Optimization

 $\min \{1 - Accuracy, \#Bootstrapping\}$

- Only generate a single solution
- Hard to tune balancing weights
- Not Pareto optimal

Single Objective • Accuracy • Latency Scalarization of Multiple Objectives $\alpha \cdot \operatorname{Accuracy} + \beta \cdot \operatorname{Latency}$

- Only generate a single solution
- Hard to tune balancing weights
- Not Pareto optimal

Multi-Objective Optimization

 $\min \{1 - Accuracy, \#Bootstrapping\}$

• Multiple solutions on the Pareto front

Single Objective • Accuracy • Latency Scalarization of Multiple Objectives $\alpha \cdot \text{Accuracy} + \beta \cdot \text{Latency}$

- Only generate a single solution
- Hard to tune balancing weights
- Not Pareto optimal

Multi-Objective Optimization

 $\min \{1 - Accuracy, \#Bootstrapping\}$

- Multiple solutions on the Pareto front
- No need to tune weights

Single Objective

- Accuracy
- Latency

Scalarization of Multiple Objectives

 $\alpha \cdot \operatorname{Accuracy} + \beta \cdot \operatorname{Latency}$

- Only generate a single solution
- Hard to tune balancing weights
- Not Pareto optimal

Multi-Objective Optimization

 $\min \{1 - Accuracy, \#Bootstrapping\}$

- Multiple solutions on the Pareto front
- No need to tune weights
- Pareto optimal

Multi-Objective Optimization

 $\min \{1 - Accuracy, Depth of polys\}$

Multi-Objective Optimization

 $\min \{1 - Accuracy, Depth of polys\}$

Level 4

Multi-Objective Optimization

 $\min \{1 - Accuracy, Depth of polys\}$

Level 4

Multi-Objective Optimization

 $\min \{1 - Accuracy, \frac{\text{Depth of polys}}{\text{Normalized}}\}$

Level 4

Multi-Objective Optimization

 $\min \{1 - Accuracy, \frac{\text{Depth of polys}}{\text{Normalized}}\}$

Multi-Objective Optimization

 $\min\left\{1-Accuracy, \frac{\text{Depth of polys}}{\text{Polys}}\right\}$

Drop 4 Levels

Multi-Objective Optimization

 $\min\left\{1-Accuracy, \frac{\text{Depth of polys}}{\text{Polys}}\right\}$

Drop 4 Levels

Multi-Objective Optimization

 $\min\left\{1-Accuracy, \frac{\text{Depth of polys}}{\text{Polys}}\right\}$

Drop 4 Levels

 Not necessarily reduce bootstrapping operations

Multi-Objective Optimization

 $\min \{1 - Accuracy, Depth of polys\}$

Multi-Objective Optimization

 $\min \{1 - Accuracy, \#Bootstrapping\}$

Drop 4 Levels

 Not necessarily reduce bootstrapping operations

Multi-Objective Optimization

 $\min \{1 - Accuracy, Depth of polys\}$

Multi-Objective Optimization

 $\min \{1 - Accuracy, \#Bootstrapping\}$

Drop 4 Levels

 Not necessarily reduce bootstrapping operations

Multi-Objective Optimization

 $\min \{1 - Accuracy, Depth of polys\}$

Multi-Objective Optimization

 $\min \left\{1 - \text{Accuracy}, \# \text{Bootstrapping} \right\}$

 Not necessarily reduce bootstrapping operations • Directly reduce bootstrapping operations

Evolutionary Multi-Objective Optimization

Evolutionary Multi-Objective Optimization

- $x_1: ext{EvoReLU}_{11}, ext{EvoReLU}_{12}, ext{EvoReLU}_{13}, ext{EvoReLU}_{14}, \cdots$
- $x_2: \mathrm{EvoReLU}_{21}, \mathrm{EvoReLU}_{22}, \mathrm{EvoReLU}_{23}, \mathrm{EvoReLU}_{24}, \cdots$
- $x_3: \mathrm{EvoReLU}_{31}, \mathrm{EvoReLU}_{32}, \mathrm{EvoReLU}_{33}, \mathrm{EvoReLU}_{34}, \cdots$
- $x_4: \mathrm{EvoReLU}_{41}, \mathrm{EvoReLU}_{42}, \mathrm{EvoReLU}_{43}, \mathrm{EvoReLU}_{44}, \cdots$

- $x_1: \mathrm{EvoReLU}_{11}, \mathrm{EvoReLU}_{12}, \mathrm{EvoReLU}_{13}, \mathrm{EvoReLU}_{14}, \cdots$
- $x_2: \mathrm{EvoReLU}_{21}, \mathrm{EvoReLU}_{22}, \mathrm{EvoReLU}_{23}, \mathrm{EvoReLU}_{24}, \cdots$
- $x_3: \mathrm{EvoReLU}_{31}, \mathrm{EvoReLU}_{32}, \mathrm{EvoReLU}_{33}, \mathrm{EvoReLU}_{34}, \cdots$
- $x_4: \mathrm{EvoReLU}_{41}, \mathrm{EvoReLU}_{42}, \mathrm{EvoReLU}_{43}, \mathrm{EvoReLU}_{44}, \cdots$

population size

#Layers $x_1 : EvoReLU_{11}, EvoReLU_{12}, EvoReLU_{13}, EvoReLU_{14}, \cdots$ $x_2 : EvoReLU_{21}, EvoReLU_{22}, EvoReLU_{23}, EvoReLU_{24}, \cdots$ $x_3 : EvoReLU_{31}, EvoReLU_{32}, EvoReLU_{33}, EvoReLU_{34}, \cdots$

 $x_4: \mathrm{EvoReLU}_{41}, \mathrm{EvoReLU}_{42}, \mathrm{EvoReLU}_{43}, \mathrm{EvoReLU}_{44}, \cdots$

 $x_1: \mathrm{EvoReLU}_{11}, \mathrm{EvoReLU}_{12}, \mathrm{EvoReLU}_{13}, \mathrm{EvoReLU}_{14}, \cdots$

 $x_2: \mathrm{EvoReLU}_{21}, \mathrm{EvoReLU}_{22}, \mathrm{EvoReLU}_{23}, \mathrm{EvoReLU}_{24}, \cdots$

 $x_1: ext{EvoReLU}_{11}, ext{EvoReLU}_{12}, ext{EvoReLU}_{13}, ext{EvoReLU}_{14}, \cdots$ $x_2: ext{EvoReLU}_{21}, ext{EvoReLU}_{22}, ext{EvoReLU}_{23}, ext{EvoReLU}_{24}, \cdots$

 $x_1: ext{EvoReLU}_{11}, ext{EvoReLU}_{12}, ext{EvoReLU}_{13}, ext{EvoReLU}_{14}, \cdots$ $x_2: ext{EvoReLU}_{21}, ext{EvoReLU}_{22}, ext{EvoReLU}_{23}, ext{EvoReLU}_{24}, \cdots$

 $x_1: ext{EvoReLU}_{11}, ext{EvoReLU}_{12}, ext{EvoReLU}_{13}, ext{EvoReLU}_{14}, \cdots$ $x_2: ext{EvoReLU}_{21}, ext{EvoReLU}_{22}, ext{EvoReLU}_{23}, ext{EvoReLU}_{24}, \cdots$

 x_1 : EvoReLU₁₁, EvoReLU₁₂, EvoReLU₁₃, EvoReLU₁₄, ... x_2 : EvoReLU₂₁, EvoReLU₂₂, EvoReLU₂₃, EvoReLU₂₄, ...

 $x_1': \operatorname{EvoReLU}_{21}, \operatorname{EvoReLU}_{12}, \operatorname{EvoReLU}_{23}, \operatorname{EvoReLU}_{14}, \cdots$

 x_1 : EvoReLU₁₁, EvoReLU₁₂, EvoReLU₁₃, EvoReLU₁₄, ... x_2 : EvoReLU₂₁, EvoReLU₂₂, EvoReLU₂₃, EvoReLU₂₄, ...

 $x_1': \mathrm{EvoReLU}_{21}, \mathrm{EvoReLU}_{12}, \mathrm{EvoReLU}_{23}, \mathrm{EvoReLU}_{14}, \cdots$

 $x_2': \text{EvoReLU}_{11}, \text{EvoReLU}_{22}, \text{EvoReLU}_{13}, \text{EvoReLU}_{24}, \cdots$

- $x_1: \mathrm{EvoReLU}_{11}, \mathrm{EvoReLU}_{12}, \mathrm{EvoReLU}_{13}, \mathrm{EvoReLU}_{14}, \cdots$
- $x_2: \mathrm{EvoReLU}_{21}, \mathrm{EvoReLU}_{22}, \mathrm{EvoReLU}_{23}, \mathrm{EvoReLU}_{24}, \cdots$
- $x_3: \mathrm{EvoReLU}_{31}, \mathrm{EvoReLU}_{32}, \mathrm{EvoReLU}_{33}, \mathrm{EvoReLU}_{34}, \cdots$
- $x_4: \mathrm{EvoReLU}_{41}, \mathrm{EvoReLU}_{42}, \mathrm{EvoReLU}_{43}, \mathrm{EvoReLU}_{44}, \cdots$

- $x_1: \mathrm{EvoReLU}_{11}, \mathrm{EvoReLU}_{12}, \mathrm{EvoReLU}_{13}, \mathrm{EvoReLU}_{14}, \cdots$
- $x_2: ext{EvoReLU}_{21}, ext{EvoReLU}_{22}, ext{EvoReLU}_{23}, ext{EvoReLU}_{24}, \cdots$
- $x_3:$ EvoReLU₃₁, EvoReLU₃₂, EvoReLU₃₃, EvoReLU₃₄, ...
- $x_4: ext{EvoReLU}_{41}, ext{EvoReLU}_{42}, ext{EvoReLU}_{43}, ext{EvoReLU}_{44}, \cdots$

- $x_1: \mathrm{EvoReLU}_{11}, \mathrm{EvoReLU}_{12}, \mathrm{EvoReLU}_{13}, \mathrm{EvoReLU}_{14}, \cdots$
- x_2 : EvoReLU₂₁, EvoReLU₂₂, EvoReLU₂₃, EvoReLU₂₄, ...
- $x_3:$ EvoReLU₃₁, EvoReLU₃₂, EvoReLU₃₃, EvoReLU₃₄, ...
- x_4 : EvoReLU₄₁, EvoReLU₄₂, EvoReLU₄₃, EvoReLU₄₄, ...

- x_1 : EvoReLU₁₁, EvoReLU₁₂, EvoReLU₁₃, EvoReLU₁₄, ...
- x_2 : EvoReLU₂₁, EvoReLU₂₂, EvoReLU₂₃, EvoReLU₂₄, ...
- $x_3:$ EvoReLU₃₁, EvoReLU₃₂, EvoReLU₃₃, EvoReLU₃₄, ...
- $x_4: ext{EvoReLU}_{41}, ext{EvoReLU}_{42}, ext{EvoReLU}_{43}, ext{EvoReLU}_{44}, \cdots$

- $x_1': \operatorname{EvoReLU}_{11}, \operatorname{EvoReLU}_{12}, \operatorname{EvoReLU}_{13}', \operatorname{EvoReLU}_{14}, \cdots$
- $x_2': \operatorname{EvoReLU}_{21}, \operatorname{EvoReLU}_{22}, \operatorname{EvoReLU}_{23}', \operatorname{EvoReLU}_{24}, \cdots$
- $x'_3: extsf{EvoReLU}'_{31}, extsf{EvoReLU}_{32}, extsf{EvoReLU}_{33}, extsf{EvoReLU}_{34}, \cdots$
- $x'_4: \mathrm{EvoReLU}_{41}, \mathrm{EvoReLU}_{42}', \mathrm{EvoReLU}_{43}, \mathrm{EvoReLU}_{44}, \cdots$

 x_3 dominates x_6, x_7 , and x_8 i.e. x_3 is better than x_6, x_7 , and x_8

one generation

How to **fine-tune** polynomial CNNs?

How to **fine-tune** polynomial CNNs?

Neural network adaption

ReLU Network
$$\longrightarrow$$
 Conv \rightarrow BN \rightarrow ReLU \rightarrow Conv \rightarrow BN \rightarrow ReLU \rightarrow trainable weights

Fine-tuning objective

$$\mathcal{L}_{train} = (1- au)\mathcal{L}_{CE} + au\mathcal{L}_{KL}$$

Fine-tuning objective

• Inherit representation learning ability

$$\mathcal{L}_{train} = (1- au)\mathcal{L}_{CE} + au\mathcal{L}_{KL}$$

Fine-tuning objective

$$\mathcal{L}_{train} = (1- au)\mathcal{L}_{CE} + au\mathcal{L}_{KL}$$

- Inherit representation learning ability
- Adapt trainable weights to EvoReLU

Experiments on encrypted CIFAR10 dataset under FHE

Experimental Setup

Experimental Setup

Dataset: CIFAR10

50,000 training images

10,000 test images

32x32 resolution, 10 classes

[3]Alex Krizhevsky. CIFAR example images (online).

Experimental Setup

Dataset: CIFAR10

50,000 training images

10,000 test images

32x32 resolution, 10 classes

Hardware & Software

Amazon AWS, r5.24xlarge

96 CPUs, 768 GB RAM

Microsoft SEAL, 3.6

aws			Contac	t Us Suppo	ort v En	glish v My	Account *	Sign In	Create an AWS A	ccount
roducts	Solutions	Pricing	Documenta	tion Lear	n Part	ner Netwo	rk AWS Ma	arketplace	Customer Enab	ler > Q
Amazon EC2										
	Overview	Features	Pricing	Instance Typ	oes 🔻	FAQs 0	Getting Starte	d Resourc	es 🕶	
	PAGE CON	TENT		r5.8xlarç	je 32	256	EBS- Only	10	6,800	
Gener		l Purpose		r5.12xlar	ge 48	384	EBS- Only	10	9,500	
	Compu Optimi	te zed		r5.16xlar	ge 64	512	EBS Only	20	13,600	
	Memor	Memory		r5.24xlar	ge 96	768	EBS- Only	25	19,000	
Optimized										

plane		. He	-	X	*	+	9	-18-	-	
auto					-	No.			-	*
bird	Sec.	5	2			4	1	M	2	W.
cat	a state			Sul.		1	E.	đ.	A.	
deer	D.	48	\mathcal{L}	m [*]		Y	Y	and a	T	
dog	37%.	1	No.	3 .	1 Ann	(Alle	9	Ta B	A	No.
frog	S	and the						5		5
horse	-	-	A.	\mathbf{F}	P	HETAN	-31	20	1	N
ship	A.	S.S.S.		~			1	NET	and y	.
truck									-	64

[3] Alex Krizhevsky. CIFAR example images (online).

Latency and Accuracy Trade-offs under FHE

Approach	MPCNN		
Venue	ICML22		
Scheme	CKKS		
Polynomial	high- degree		
Layerwise	no		
Strategy	approx		
Arch	manual		

Latency and Accuracy Trade-offs under FHE

Approach	MPCNN	AESPA
Venue	ICML22	arXiv22
Scheme	CKKS	CKKS
Polynomial	high- degree	low- degree
Layerwise	no	no
Strategy	approx	train
Arch	manual	manual

Latency and Accuracy Trade-offs under FHE

Approach	MPCNN	AESPA	REDsec
Venue	ICML22	CML22 arXiv22	
Scheme	CKKS	CKKS	TFHE
Polynomial	high- degree	low- degree	n/a
Layerwise	no	no	n/a
Strategy	approx	train	train
Arch	manual	manual	manual

Latency and Accuracy Trade-offs under FHE

Approach	MPCNN	AESPA	REDsec	AutoFHE
Venue	ICML22	arXiv22	NDSS23	USENIX24
Scheme	CKKS	CKKS	TFHE	CKKS
Polynomial	high- degree	low- degree	n/a	mixed
Layerwise	no	no	n/a	yes
Strategy	approx	train	train	adapt
Arch	manual	manual	manual	search

Multiplicative Depth of Layerwise EvoReLU

Layerwise EvoReLU

Conclusion

• Multi-objective optimization generates Pareto-effective solutions to meet different requirements

- Multi-objective optimization generates Pareto-effective solutions to meet different requirements
- Joint optimization of layerwise EvoReLU and bootstrapping results in optimal polynomial neural architectures

- Multi-objective optimization generates Pareto-effective solutions to meet different requirements
- Joint optimization of layerwise EvoReLU and bootstrapping results in optimal polynomial neural architectures
- Adapted neural networks can inherit representation learning ability from ReLU networks