AutoFHE: Automated Adaption of CNNs for Efficient Evaluation over FHE

Michigan State University
Toronto, Canada 2024

Secure deep learning under fully homomorprhic encryption

Deep Learning as a Service (DLaaS)

Deep Learning as a Service (DLaaS)

Customer

Deep Learning as a Service (DLaaS)

Customer

Deep Learning as a Service (DLaaS)

Cloud

Deep Learning as a Service (DLaaS)

Cloud

Deep Learning as a Service (DLaaS)

Secure DLaaS under Fully Homomorphic Encryption (FHE)

Secure DLaaS under Fully Homomorphic Encryption (FHE)

Customer

Secure DLaaS under Fully Homomorphic Encryption (FHE)

Customer

Secure DLaaS under Fully Homomorphic Encryption (FHE)

Secure DLaaS under Fully Homomorphic Encryption (FHE)

Secure DLaaS under Fully Homomorphic Encryption (FHE)

Cloud

Secure DLaaS under Fully Homomorphic Encryption (FHE)

From Secure Computation to Secure Deep Learning

From Secure Computation to Secure Deep Learning

Initiative: privacy
homomorphisms, 1978

From Secure Computation to Secure Deep Learning

2
Craig's Blueprint uses
Ideal lattices, 2009

Initiative: privacy
homomorphisms, 1978

From Secure Computation to Secure Deep Learning

From Secure Computation to Secure Deep Learning

From Secure Computation to Secure Deep Learning

From Secure Computation to Secure Deep Learning

Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs)

CNNs under Homomorphic Encryption (HE)

Deep CNNs under Fully Homomorphic Encryption (FHE)

Deep CNNs under Fully Homomorphic Encryption (FHE)

Level:
number of multiplications
allowed to evaluate

Deep CNNs under Fully Homomorphic Encryption (FHE)

Level:
number of multiplications
allowed to evaluate

Deep CNNs under Fully Homomorphic Encryption (FHE)

Level:
number of multiplications
allowed to evaluate

Deep CNNs under Fully Homomorphic Encryption (FHE)

Level:
number of multiplications
allowed to evaluate

Deep CNNs under Fully Homomorphic Encryption (FHE)

Level:
number of multiplications
allowed to evaluate

Deep CNNs under Fully Homomorphic Encryption (FHE)

Level:
number of multiplications
allowed to evaluate

Deep CNNs under Fully Homomorphic Encryption (FHE)

Level:
number of multiplications
allowed to evaluate

Deep CNNs under Fully Homomorphic Encryption (FHE)

Level:
number of multiplications
allowed to evaluate

Deep CNNs under Fully Homomorphic Encryption (FHE)

Level:
number of multiplications
allowed to evaluate

Deep CNNs under Fully Homomorphic Encryption (FHE)

Deep CNNs under Fully Homomorphic Encryption (FHE)

Deep CNNs under Fully Homomorphic Encryption (FHE)

- Security Requirement

Deep CNNs under Fully Homomorphic Encryption (FHE)

- Security Requirement
- Inference Latency

Deep CNNs under Fully Homomorphic Encryption (FHE)

- Security Requirement
- Inference Latency
- Prediction Accuracy

Deep CNNs under Fully Homomorphic Encryption (FHE)

- Security Requirement
- Inference Latency
- Prediction Accuracy

Deep CNNs under Fully Homomorphic Encryption (FHE)

- Security Requirement

Cryptographic Parameters

- Inference Latency
- Prediction Accuracy

Deep CNNs under Fully Homomorphic Encryption (FHE)

- Security RequirementN

Cryptographic Parameters

Cyclotomic polynomial degree

- Inference Latency
- Prediction Accuracy

Deep CNNs under Fully Homomorphic Encryption (FHE)

- Security Requirement

```
Cryptographic Parameters
Cyclotomic polynomial degree
\(N\)
Level
Cryptographic Parameters
```



```\(N\)\(L\)
```

- Inference Latency
- Prediction Accuracy

Deep CNNs under Fully Homomorphic Encryption (FHE)

- Security Requirement

[^0]- Inference Latency
- Prediction Accuracy

Deep CNNs under Fully Homomorphic Encryption (FHE)

- Security Requirement
Cryptographic Parameters
Cyclotomic polynomial degree
N
Level
L
Modulus $\quad Q_{\ell}=\prod_{i=0}^{\ell} q_{\ell}, 0 \leq \ell \leq L$
Bootstrapping depth
K
Cryptographic Parameters
Cyclotomic polynomial degree
N
Level
L
$Q_{\ell}=\prod_{i=0}^{\ell} q_{\ell}, 0 \leq \ell \leq L$

.

- Inference Latency
- Prediction Accuracy

Deep CNNs under Fully Homomorphic Encryption (FHE)

- Security Requirement
Cryptographic Parameters
Cyclotomic polynomial degree $\quad N$
Level
L
Modulus $\quad Q_{\ell}=\prod_{i=0}^{\ell} q_{\ell}, 0 \leq \ell \leq L$
Bootstrapping depth
K
Hamming weight h
Cryptographic Parameters
Cyclotomic polynomial degree
N
Level
L
Bootstrapping depth
Hamming weight
h
- Inference Latency
- Prediction Accuracy

Deep CNNs under Fully Homomorphic Encryption (FHE)

- Security Requirement
Cryptographic Parameters
Cyclotomic polynomial degree $\quad N$
Level
L
Modulus $\quad Q_{\ell}=\prod_{i=0}^{\ell} q_{\ell}, 0 \leq \ell \leq L$
Bootstrapping depth
K
Hamming weight h
Cryptographic Parameters
yclotomic polynomial degree $\quad N$
Level
L
Bootstrapping depth
Hamming weight
h
- Inference Latency
- Prediction Accuracy

Deep CNNs under Fully Homomorphic Encryption (FHE)

- Security Requirement

Cryptographic Parameters

Cyclotomic polynomial degree $\quad N$

Level

Modulus $\quad Q_{\ell}=\prod_{i=0}^{\ell} q_{\ell}, 0 \leq \ell \leq L$

Bootstrapping depth

Hamming weight

- Inference Latency

Polynomial CNNS

- Prediction Accuracy

Deep CNNs under Fully Homomorphic Encryption (FHE)

- Security Requirement

Cryptographic Parameters

Cyclotomic polynomial degree
N

Level

Modulus $\quad Q_{\ell}=\prod_{i=0}^{\ell} q_{\ell}, 0 \leq \ell \leq L$

Bootstrapping depth

Hamming weight

- Inference Latency

Polynomial CNNS

Conv, BN, pooling, FC layers: packing

Deep CNNs under Fully Homomorphic Encryption (FHE)

- Security Requirement

Cryptographic Parameters

Cyclotomic polynomial degree

Level
L

Modulus $\quad Q_{\ell}=\prod_{i=0}^{\ell} q_{\ell}, 0 \leq \ell \leq L$

Bootstrapping depth

Hamming weight

- Inference Latency

Polynomial CNNS

Conv, BN, pooling, FC layers: packing

Polynomials: degree -> depth

Deep CNNs under Fully Homomorphic Encryption (FHE)

- Security Requirement

Cryptographic Parameters

Cyclotomic polynomial degree
N

Level
L

Modulus $\quad Q_{\ell}=\prod_{i=0}^{\ell} q_{\ell}, 0 \leq \ell \leq L$

Bootstrapping depth

Hamming weight

- Inference Latency

Polynomial CNNS

Conv, BN, pooling, FC layers: packing

Polynomials: degree -> depth

Number of layers: ResNet20, ResNet32

Deep CNNs under Fully Homomorphic Encryption (FHE)

- Security Requirement

Cryptographic Parameters

Cyclotomic polynomial degree
N

Level L

Modulus $\quad Q_{\ell}=\prod_{i=0}^{\ell} q_{\ell}, 0 \leq \ell \leq L$

Bootstrapping depth

Hamming weight

- Inference Latency

Polynomial CNNS

Conv, BN, pooling, FC layers: packing

Polynomials: degree -> depth

Number of layers: ResNet20, ResNet32

Input image resolution

Deep CNNs under Fully Homomorphic Encryption (FHE)

- Security Requirement

Cryptographic Parameters

Cyclotomic polynomial degree

Level
L

Modulus $\quad Q_{\ell}=\prod_{i=0}^{\ell} q_{\ell}, 0 \leq \ell \leq L$

Bootstrapping depth

Hamming weight
K
h

- Inference Latency

Polynomial CNNS

Conv, BN, pooling, FC layers: packing

Polynomials: degree -> depth

Number of layers: ResNet20, ResNet32

Input image resolution

Channels/kernels

Deep CNNs under Fully Homomorphic Encryption (FHE)

- Security Requirement

Cryptographic Parameters

Cyclotomic polynomial degree $\quad N$

Level

Modulus $\quad Q_{\ell}=\prod_{i=0}^{\ell} q_{\ell}, 0 \leq \ell \leq L$

Bootstrapping depth

Hamming weight
K h

- Inference Latency
- Prediction Accuracy

Polynomial CNNS

Conv, BN, pooling, FC layers: packing

Polynomials: degree -> depth

Number of layers: ResNet20, ResNet32

Input image resolution

Channels/kernels

Deep CNNs under Fully Homomorphic Encryption (FHE)

- Security Requirement

Cryptographic Parameters

Cyclotomic polynomial degree $\quad N$

Level

Modulus $\quad Q_{\ell}=\prod_{i=0}^{\ell} q_{\ell}, 0 \leq \ell \leq L$
Bootstrapping depth

Hamming weight
K h

- Inference Latency

Polynomial CNNS

Number of layers: ResNet20, ResNet32

Input image resolution

Channels/kernels

Deep CNNs under Fully Homomorphic Encryption (FHE)

- Security Requirement

Cryptographic Parameters

Cyclotomic polynomial degree $\quad N$

Level

Modulus $\quad Q_{\ell}=\prod_{i=0}^{\ell} q_{\ell}, 0 \leq \ell \leq L$
Bootstrapping depth

Hamming weight
K h

- Inference Latency

Number of layers: ResNet20, ResNet32

Input image resolution

Channels/kernels

Hand-crafted Design of Polynomial for CNNs under FHE

Cryptographic Parameters

$$
N, L, Q_{\ell}=\prod_{i=0}^{\ell} q_{\ell}(0 \leq \ell \leq L), K, h
$$

Polynomial CNNS

Polynomials: degree -> depth

Hand-crafted Design of Polynomial for CNNs under FHE

Cryptographic Parameters

Polynomial CNNS

Polynomials: degree -> depth

Hand-crafted Design of Polynomial for CNNs under FHE

Cryptographic Parameters

Polynomial CNNS

$$
N, L, Q_{\ell}=\prod_{i=0}^{\ell} q_{\ell}(0 \leq \ell \leq L), K, h
$$

MPCNN [1]:

Hand-crafted Design of Polynomial for CNNs under FHE

Cryptographic Parameters

Polynomial CNNS

Polynomials: degree -> depth

MPCNN [1]:

Hand-crafted Design of Polynomial for CNNs under FHE

Cryptographic Parameters

Polynomial CNNS

Polynomials: degree -> depth

MPCNN [1]:

```
Convolution
Level }
```


Hand-crafted Design of Polynomial for CNNs under FHE

Cryptographic Parameters

Polynomial CNNS

Polynomials: degree -> depth

MPCNN [1]:

Hand-crafted Design of Polynomial for CNNs under FHE

Cryptographic Parameters

Polynomial CNNS

Polynomials: degree -> depth

MPCNN [1]:

Level 2 Level 0

Hand-crafted Design of Polynomial for CNNs under FHE

Cryptographic Parameters

Polynomial CNNS

Polynomials: degree -> depth

MPCNN [1]:

Hand-crafted Design of Polynomial for CNNs under FHE

Cryptographic Parameters

Polynomial CNNS
$N, L, Q_{\ell}=\prod_{i=0}^{\ell} q_{\ell}(0 \leq \ell \leq L), K, h$

MPCNN [1]:

Hand-crafted Design of Polynomial for CNNs under FHE

Cryptographic Parameters

$$
N, L, Q_{\ell}=\prod_{i=0}^{\ell} q_{\ell}(0 \leq \ell \leq L), K, h
$$

MPCNN [1]:

Hand-crafted Design of Polynomial for CNNs under FHE

Cryptographic Parameters

Polynomial CNNS

Polynomials: degree -> depth

MPCNN [1]:

Level $2 \quad$ Level $0 \quad$ Level $0 \quad$ Level 16

[1] Lee, Eunsang, et al. "Low-complexity deep convolutional neural networks on fully homomorphic encryption using multiplexed parallel convolutions." International

Hand-crafted Design of Polynomial for CNNs under FHE

Cryptographic Parameters

Polynomial CNNS

Polynomials: degree -> depth

MPCNN [1]:

Hand-crafted Design of Polynomial for CNNs under FHE

Cryptographic Parameters

Polynomial CNNS

Polynomials: degree -> depth

MPCNN [1]:

[^1]
Hand-crafted Design of Polynomial for CNNs under FHE

Cryptographic Parameters

MPCNN [1]:

[^2]Hand-crafted Design of Polynomial for CNNs under FHE

Hand-crafted Design of Polynomial for CNNs under FHE

Hand-crafted Design of Polynomial for CNNs under FHE

Hand-crafted Design of Polynomial for CNNs under FHE

How to obtain all possible polynomial neural architectures?

Key Insight

Optimize the

Key Insight

Optimize the

instead of the polynomial function

Key Insight

Optimize the

end-to-end polynomial neural architecture instead of the polynomial function

Optimization of End-to-End Polynomial Neural Architecture

Optimization of End-to-End Polynomial Neural Architecture

Optimization of End-to-End Polynomial Neural Architecture

Optimization of End-to-End Polynomial Neural Architecture

Optimization of End-to-End Polynomial Neural Architecture

	Solution 3 Solution 2 Solution 1
	Bootstrapping

Optimization of End-to-End Polynomial Neural Architecture

Optimization of End-to-End Polynomial Neural Architecture

Optimization of End-to-End Polynomial Neural Architecture

To meet different requirements in real world

Optimization of End-to-End Polynomial Neural Architecture

To meet different requirements in real world

- I want a faster response

Optimization of End-to-End Polynomial Neural Architecture

To meet different requirements in real world

- I want a faster response
- I can wait for an accurate result

AutoFHE: Automated Adaption of CNNs under FHE

AutoFHE: Automated Adaption of CNNs under FHE

AutoFHE: Automated Adaption of CNNs under FHE

AutoFHE: Automated Adaption of CNNs under FHE

AutoFHE: Automated Adaption of CNNs under FHE

| Non-Arithmetic
 Neural Network\rightarrowPolynomial
 Neural Nets |
| :--- | :--- |

AutoFHE: Automated Adaption of CNNs under FHE

AutoFHE: Automated Adaption of CNNs under FHE

AutoFHE: Automated Adaption of CNNs under FHE

AutoFHE: Automated Adaption of CNNs under FHE

AutoFHE

 Neural Network \rightarrow Neural Nets

EvoReLU: Evolutionary Mixed-Degree Polynomial Approximation of ReLU

High-degree composite polynomial [2]:

$$
\mathcal{F}(x)=\left(f_{K}^{d_{K}} \circ \cdots \circ f_{k}^{d_{k}} \circ \cdots \circ f_{1}^{d_{1}}\right)(x), 1 \leq k \leq K
$$

EvoReLU: Evolutionary Mixed-Degree Polynomial Approximation of ReLU

Forward Propagation

$$
\operatorname{EvoReLU}(x)= \begin{cases}x, & d=1 \\ \alpha_{2} x^{2}+\alpha_{1} x+\alpha_{0}, & d=2 \\ x \cdot(\mathcal{F}(x)+0.5), & d>2\end{cases}
$$

- Pruning: DeepReDuce, SAFENet, Delphi

High-degree composite polynomial [2]:

$$
\mathcal{F}(x)=\left(f_{K}^{d_{K}} \circ \cdots \circ f_{k}^{d_{k}} \circ \cdots \circ f_{1}^{d_{1}}\right)(x), 1 \leq k \leq K
$$

EvoReLU: Evolutionary Mixed-Degree Polynomial Approximation of ReLU

Forward Propagation

$$
\operatorname{EvoReLU}(x)= \begin{cases}x, & d=1 \\ \alpha_{2} x^{2}+\alpha_{1} x+\alpha_{0}, & d=2 \\ x \cdot(\mathcal{F}(x)+0.5), & d>2\end{cases}
$$

- Pruning: DeepReDuce, SAFENet, Delphi
- Quadratic: LoLa, CryptoNets, HEMET

High-degree composite polynomial [2]:

$$
\mathcal{F}(x)=\left(f_{K}^{d_{K}} \circ \cdots \circ f_{k}^{d_{k}} \circ \cdots \circ f_{1}^{d_{1}}\right)(x), 1 \leq k \leq K
$$

EvoReLU: Evolutionary Mixed-Degree Polynomial Approximation of ReLU

Forward Propagation

$$
\operatorname{EvoReLU}(x)= \begin{cases}x, & d=1 \\ \alpha_{2} x^{2}+\alpha_{1} x+\alpha_{0}, & d=2 \\ x \cdot(\mathcal{F}(x)+0.5), & d>2\end{cases}
$$

- Pruning: DeepReDuce, SAFENet, Delphi
- Quadratic: LoLa, CryptoNets, HEMET
- High-degree approximation: MPCNN

High-degree composite polynomial [2]:

$$
\mathcal{F}(x)=\left(f_{K}^{d_{K}} \circ \cdots \circ f_{k}^{d_{k}} \circ \cdots \circ f_{1}^{d_{1}}\right)(x), 1 \leq k \leq K
$$

EvoReLU: Evolutionary Mixed-Degree Polynomial Approximation of ReLU

Forward Propagation

$$
\operatorname{EvoReLU}(x)= \begin{cases}x, & d=1 \\ \alpha_{2} x^{2}+\alpha_{1} x+\alpha_{0}, & d=2 \\ x \cdot(\mathcal{F}(x)+0.5), & d>2\end{cases}
$$

- Pruning: DeepReDuce, SAFENet, Delphi
- Quadratic: LoLa, CryptoNets, HEMET
- High-degree approximation: MPCNN

High-degree composite polynomial [2]:

$$
\mathcal{F}(x)=\left(f_{K}^{d_{K}} \circ \cdots \circ f_{k}^{d_{k}} \circ \cdots \circ f_{1}^{d_{1}}\right)(x), 1 \leq k \leq K
$$

- Differentiable Evolution

$$
\begin{array}{r}
\quad \frac{\text { Backward Propagation }}{} \\
\frac{\partial \operatorname{EvoReLU}(x)}{\partial x}= \begin{cases}1, & d=1 \\
2 \alpha_{2} x+\alpha_{1}, & d=2 \\
\partial \operatorname{ReLU}(x) / \partial x, & d>2\end{cases}
\end{array}
$$

$$
=\left\{\begin{array}{ll}
1, & d=1 \\
2 \alpha_{2} x+\alpha_{1}, & d=2 \\
\partial \operatorname{ReLU}(x) / \partial x, & d>2
\end{array} \bullet\right. \text { Gradient }
$$

$$
\frac{d=1}{\partial \operatorname{EvoReLU}(x)} \begin{array}{ll}
1, & d=2 \\
2 \alpha_{2} x+\alpha_{1}, & \text { Gradient } \\
\partial \operatorname{ReLU}(x) / \partial x, & d>2
\end{array} \text { Gradient }
$$

$$
\frac{\partial \operatorname{EvoReLU}(x)}{\partial x}=\left\{\begin{array}{lll}
1, & d=1 \\
2 \alpha_{2} x+\alpha_{1}, & d=2 \\
\partial \operatorname{ReLU}(x) / \partial x, & d>2 & \bullet \text { Gradient } \\
& \text { Gradient } \\
& \text { Straight-through estimated }
\end{array}\right.
$$

$$
\frac{\partial \operatorname{EvoReLU}(x)}{\partial x}=\left\{\begin{array}{lll}
1, & d=1 \\
2 \alpha_{2} x+\alpha_{1}, & d=2 & \text { Gradient } \\
\partial \operatorname{ReLU}(x) / \partial x, & d>2 & \text { Gradient } \\
& \text { Straight-through estimated }
\end{array}\right.
$$

- Make training more stable

How to optimize end-to-end polynomial neural architecture?

How to optimize end-to-end polynomial neural architecture?

Multi-Objective evolutionary optimization

Joint Search for Layerwise EvoReLU and Bootstrapping Operations

Joint search problem

Joint Search for Layerwise EvoReLU and Bootstrapping Operations

Joint Search for Layerwise EvoReLU and Bootstrapping Operations

Multi-objective optimization

Joint Search for Layerwise EvoReLU and Bootstrapping Operations

Joint search
problem \longrightarrow Multi-objective
optimization

Joint Search for Layerwise EvoReLU and Bootstrapping Operations

Multi-objective

\qquad $>$

- Flexible Architecture

Joint Search for Layerwise EvoReLU and Bootstrapping Operations

Multi-objective
optimization

- Flexible Architecture
- On-demand Bootstrapping

Multi-Objective Optimization

Multi-Objective Optimization

Single Objective

- Accuracy
- Latency

Multi-Objective Optimization

Single Objective

- Accuracy
- Latency

Scalarization of Multiple Objectives
$\alpha \cdot$ Accuracy $+\beta \cdot$ Latency

Multi-Objective Optimization

Single Objective

- Accuracy
- Latency

Scalarization of Multiple Objectives
$\alpha \cdot$ Accuracy $+\beta \cdot$ Latency

Multi-Objective Optimization

Single Objective

- Accuracy
- Latency
- Only generate a single solution

Scalarization of Multiple Objectives
$\alpha \cdot$ Accuracy $+\beta \cdot$ Latency

Multi-Objective Optimization

Single Objective

- Accuracy
- Latency
- Only generate a single solution
- Hard to tune balancing weights

Scalarization of Multiple Objectives
$\alpha \cdot$ Accuracy $+\beta \cdot$ Latency

Multi-Objective Optimization

Single Objective

- Accuracy
- Latency
- Only generate a single solution
- Hard to tune balancing weights
- Not Pareto optimal

Multi-Objective Optimization

Single Objective

- Accuracy
- Latency
- Only generate a single solution
- Hard to tune balancing weights
- Not Pareto optimal

Scalarization of Multiple Objectives
$\alpha \cdot$ Accuracy $+\beta \cdot$ Latency

Multi-Objective Optimization

$$
\min \{1-\text { Accuracy }, \# \text { Bootstrapping }\}
$$

Multi-Objective Optimization

Single Objective

- Accuracy
- Latency

Scalarization of Multiple Objectives
$\alpha \cdot$ Accuracy $+\beta \cdot$ Latency

Multi-Objective Optimization
$\min \{1$ - Accuracy, \#Bootstrapping $\}$

- Only generate a single solution
- Hard to tune balancing weights
- Not Pareto optimal
- Multiple solutions on the Pareto front

Multi-Objective Optimization

Single Objective

- Accuracy
- Latency

Scalarization of Multiple Objectives
$\alpha \cdot$ Accuracy $+\beta \cdot$ Latency

- Only generate a single solution
- Hard to tune balancing weights
- Not Pareto optimal
- Multiple solutions on the Pareto front
- No need to tune weights

Multi-Objective Optimization

Single Objective

- Accuracy
- Latency

Scalarization of Multiple Objectives
$\alpha \cdot$ Accuracy $+\beta \cdot$ Latency

- Only generate a single solution
- Hard to tune balancing weights
- Not Pareto optimal
- Multiple solutions on the Pareto front
- No need to tune weights
- Pareto optimal

Multi-Objective Optimization

Multi-Objective Optimization

Multi-Objective Optimization
$\min \{1-$ Accuracy, Depth of polys $\}$

Multi-Objective Optimization

Multi-Objective Optimization
$\min \{1-$ Accuracy, Depth of polys $\}$

Level 4

Multi-Objective Optimization

Multi-Objective Optimization
$\min \{1-$ Accuracy, Depth of polys $\}$

Level 4

Multi-Objective Optimization

Multi-Objective Optimization
$\min \{1-$ Accuracy, Depth of polys $\}$

Level 4

Multi-Objective Optimization

Multi-Objective Optimization
$\min \{1-$ Accuracy, Depth of polys $\}$

Level $4 \quad$ Depth 9

Multi-Objective Optimization

Multi-Objective Optimization

Multi-Objective Optimization

Multi-Objective Optimization
$\min \{1-$ Accuracy, Depth of polys $\}$

Level $4 \quad$ Depth 9

Drop 4 Levels

- Not necessarily reduce bootstrapping operations

Multi-Objective Optimization

Multi-Objective Optimization
$\min \{1-$ Accuracy, Depth of polys $\}$

Level 4

Drop 4 Levels

- Not necessarily reduce bootstrapping operations

Multi-Objective Optimization

Multi-Objective Optimization
$\min \{1-$ Accuracy, Depth of polys $\}$

Multi-Objective Optimization
$\min \{1$ - Accuracy, \#Bootstrapping $\}$

Level 4

Depth 9

Drop 4 Levels

- Not necessarily reduce bootstrapping operations

Multi-Objective Optimization

Multi-Objective Optimization
$\min \{1-$ Accuracy, Depth of polys $\}$

Level 4

Drop 4 Levels

- Not necessarily reduce bootstrapping operations

Multi-Objective Optimization
$\min \{1-$ Accuracy, \#Bootstrapping $\}$

- Directly reduce bootstrapping operations

Evolutionary Multi-Objective Optimization

Evolutionary Multi-Objective Optimization

Evolutionary Multi-Objective Optimization

$x_{1}:$ EvoReLU $_{11}$, EvoReLU $_{12}$, EvoReLU $_{13}$, EvoReLU ${ }_{14}, \cdots$ $x_{2}:$ EvoReLU $_{21}$, EvoReLU $_{22}$, EvoReLU $_{23}$, EvoReLU $_{24}, \cdots$ $x_{3}:$ EvoReLU $_{31}$, EvoReLU $_{32}$, EvoReLU $_{33}$, EvoReLU $_{34}, \cdots$ $x_{4}:$ EvoReLU $_{41}$, EvoReLU $_{42}$, EvoReLU $_{43}$, EvoReLU $_{44}, \cdots$

Evolutionary Multi-Objective Optimization

Evolutionary Multi-Objective Optimization

Evolutionary Multi-Objective Optimization

$x_{1}:$ EvoReLU $_{11}$, EvoReLU $_{12}$, EvoReLU $_{13}$, EvoReLU ${ }_{14}, \cdots$
$x_{2}:$ EvoReLU $_{21}$, EvoReLU $_{22}$, EvoReLU $_{23}$, EvoReLU $_{24}, \cdots$

Evolutionary Multi-Objective Optimization

$x_{1}:$ EvoReLU $_{11}$, EvoReLU $_{12}$, EvoReLU $_{13}$, EvoReLU $_{14}, \cdots$
$x_{2}:$ EvoReLU $_{21}$, EvoReLU $_{22}$, EvoReLU $_{23}$, EvoReLU $_{24}, \cdots$

Evolutionary Multi-Objective Optimization

Evolutionary Multi-Objective Optimization

Evolutionary Multi-Objective Optimization

$x_{1}^{\prime}:$ EvoReLU $_{21}$, EvoReLU $_{12}$, EvoReLU $_{23}$, EvoReLU $_{14}, \cdots$

Evolutionary Multi-Objective Optimization

$x_{1}:$ EvoReLU $_{11}$, EvoReLU $_{12}$, EvoReLU $_{13}$, EvoReLU $_{14}, \ldots$
$x_{2}:$ EvoReLU $_{21}$, EvoReLU $_{22}$, EvoReLU $_{23}$, EvoReLU $_{24}, \cdots$

$x_{1}^{\prime}:$ EvoReLU $_{21}$, EvoReLU $_{12}$, EvoReLU $_{23}$, EvoReLU ${ }_{14}, \cdots$ $x_{2}^{\prime}:$ EvoReLU $_{11}$, EvoReLU $_{22}$, EvoReLU $_{13}$, EvoReLU $_{24}, \cdots$

Evolutionary Multi-Objective Optimization

$x_{1}:$ EvoReLU $_{11}$, EvoReLU $_{12}$, EvoReLU $_{13}$, EvoReLU $_{14}, \cdots$
$x_{2}:$ EvoReLU $_{21}$, EvoReLU $_{22}$, EvoReLU $_{23}$, EvoReLU ${ }_{24}, \cdots$
$x_{3}: \mathrm{EvoReLU}_{31}$, EvoReLU $_{32}$, EvoReLU $_{33}$, EvoReLU $_{34}, \cdots$
$x_{4}:$ EvoReLU $_{41}$, EvoReLU $_{42}$, EvoReLU $_{43}$, EvoReLU $_{44}, \cdots$

Evolutionary Multi-Objective Optimization

$x_{1}:$ EvoReLU $_{11}$, EvoReLU $_{12}$, EvoReLU $_{13}$, EvoReLU $_{14}, \cdots$
$x_{2}:$ EvoReLU $_{21}$, EvoReLU $_{22}$, EvoReLU $_{23}$, EvoReLU $_{24}, \cdots$
$x_{3}: \operatorname{EvoReLU}_{31}$, EvoReLU $_{32}$, EvoReLU $_{33}$, EvoReLU $_{34}, \cdots$
$x_{4}: \mathrm{EvoReLU}_{41}$, EvoReLU $_{42}$, EvoReLU $_{43}$, EvoReLU $_{44}, \cdots$

Evolutionary Multi-Objective Optimization

$x_{1}:$ EvoReLU $_{11}$, EvoReLU $_{12}$, EvoReLU $_{13}$, EvoReLU $_{14}, \cdots$
$x_{2}:$ EvoReLU $_{21}$, EvoReLU $_{22}$, EvoReLU $_{23}$, EvoReLU $_{24}, \cdots$
$x_{3}: \operatorname{EvoReLU}_{31}$, EvoReLU $_{32}$, EvoReLU $_{33}$, EvoReLU $_{34}, \cdots$
$x_{4}: \mathrm{EvoReLU}_{41}$, EvoReLU $_{42}$, EvoReLU $_{43}$, EvoReLU $_{44}, \cdots$

Evolutionary Multi-Objective Optimization

$x_{1}:$ EvoReLU $_{11}$, EvoReLU $_{12}$, EvoReLU $_{13}$, EvoReLU $_{14}, \cdots$
$x_{2}:$ EvoReLU $_{21}$, EvoReLU $_{22}$, EvoReLU $_{23}$, EvoReLU $_{24}, \cdots$
$x_{3}: \operatorname{EvoReLU}_{31}$, EvoReLU $_{32}$, EvoReLU $_{33}$, EvoReLU $_{34}, \cdots$
$x_{4}:$ EvoReLU $_{41}$, EvoReLU $_{42}$, EvoReLU $_{43}$, EvoReLU $_{44}, \cdots$

$x_{1}^{\prime}:$ EvoReLU $_{11}$, EvoReLU $_{12}$, EvoReLU $_{13}^{\prime}$, EvoReLU $_{14}, \cdots$ $x_{2}^{\prime}:$ EvoReLU $_{21}$, EvoReLU $_{22}$, EvoReLU $_{23}^{\prime}$, EvoReLU $_{24}, \cdots$ $x_{3}^{\prime}: \mathrm{EvoReLU}_{31}^{\prime}$, EvoReLU $_{32}$, EvoReLU $_{33}$, EvoReLU $_{34}, \cdots$ $x_{4}^{\prime}:$ EvoReLU $_{41}$, EvoReLU $_{42}^{\prime}$, EvoReLU $_{43}$, EvoReLU $_{44}, \cdots$

Evolutionary Multi-Objective Optimization

x_{3} dominates x_{6}, x_{7}, and x_{8}
i.e. x_{3} is better than x_{6}, x_{7}, and x_{8}

Evolutionary Multi-Objective Optimization

Evolutionary Multi-Objective Optimization

one generation

search budget

How to fine-tune polynomial CNNs?

How to fine-tune polynomial CNNs?

Neural network adaption

Trainable Weight Adaption and Knowledge Transferring

ReLU Network $\xrightarrow[\rightarrow]{\rightarrow \text { Conv }} \rightarrow \mathrm{BN} \rightarrow$ ReLU \rightarrow Conv \rightarrow BN \rightarrow ReLU \rightarrow

Trainable Weight Adaption and Knowledge Transferring

Trainable Weight Adaption and Knowledge Transferring

Trainable Weight Adaption and Knowledge Transferring

Trainable Weight Adaption and Knowledge Transferring

Fine-tuning objective
$\mathcal{L}_{\text {train }}=(1-\tau) \mathcal{L}_{C E}+\tau \mathcal{L}_{K L}$

Trainable Weight Adaption and Knowledge Transferring

Fine-tuning objective

- Inherit representation learning ability
$\mathcal{L}_{\text {train }}=(1-\tau) \mathcal{L}_{C E}+\tau \mathcal{L}_{K L}$

Trainable Weight Adaption and Knowledge Transferring

Fine-tuning objective
$\mathcal{L}_{\text {train }}=(1-\tau) \mathcal{L}_{C E}+\tau \mathcal{L}_{K L}$

- Inherit representation learning ability
- Adapt trainable weights to EvoReLU

Experiments on encrypted CIFAR10 dataset under FHE

Experimental Setup

Experimental Setup

Dataset：CIFAR10	plane	$\underline{1}$	\wedge	－	20	\checkmark	－	3	W	\cdots	$\underline{-1}$
50，000 training images 10，000 test images 32×32 resolution， 10 classes	auto	或	4	䢒	5	运	5－3	－	國	Hin	5
	bird	袻	5	2	0	Hix	4	3	3	－${ }^{3}$	1
	cat	E\％	5	5480	5.	5䜌	\％	䐴	［1］	N	랏
	deer	140	5	1	तr	\％${ }^{4}$	9	${ }^{\text {¢ }}$	17	W10	気至
	dog	80	A	\times	\cdots	15	＊	－	［1］	（1）	Th
	frog	5	c	，	甸	5	\％	H	5	閥	5
	horse	5	20	产	W1	（7）	nnt	気䢒	24	7010	V1
	ship	＊	8	5	－	－	5	－	∞	2	－
	truck	4	需	H	5		4．	5	14	5	Cola

Experimental Setup

Latency and Accuracy Trade-offs under FHE

Approach	MPCNN
Venue	ICML22
Scheme	CKKS
Polynomial	high- degree
Layerwise	no
Strategy	approx
Arch	manual

Latency and Accuracy Trade-offs under FHE

Approach	MPCNN	AESPA
Venue	ICML22	arXiv22
Scheme	CKKS	CKKS
Polynomial	high- degree	low- degree
Layerwise	no	no
Strategy	approx	train
Arch	manual	manual

Latency and Accuracy Trade-offs under FHE

Approach	MPCNN	AESPA	REDsec
Venue	ICML22	arXiv22	NDSS23
Scheme	CKKS	CKKS	TFHE
Polynomial	high- degree	Iow- degree	n/a
Layerwise	no	no	n/a
Strategy	approx	train	train
Arch	manual	manual	manual

Latency and Accuracy Trade-offs under FHE

Approach	MPCNN	AESPA	REDsec	AutoFHE
Venue	ICML22	arXiv22	NDSS23	USENIX24
Scheme	CKKS	CKKS	TFHE	CKKS
Polynomial	high- degree	low- degree	n/a	mixed
Layerwise	no	no	n/a	yes
Strategy	approx	train	train	adapt
Arch	manual	manual	manual	search

Multiplicative Depth of Layerwise EvoReLU

Layerwise EvoReLU

Conclusion

AutoFHE

AutoFHE

\square Wei's Homepage

Paper, Code \& Online Slides

AutoFHE optimizes end-to-end polynomial neural architecture

AutoFHE

\square Wei's Homepage

Paper, Code \& Online Slides

AutoFHE optimizes end-to-end polynomial neural architecture

- Multi-objective optimization generates Pareto-effective solutions to meet different requirements

AutoFHE

\square Wei's Homepage

Paper, Code \& Online Slides

AutoFHE optimizes end-to-end polynomial neural architecture

- Multi-objective optimization generates Pareto-effective solutions to meet different requirements
- Joint optimization of layerwise EvoReLU and bootstrapping results in optimal polynomial neural architectures

AutoFHE

\square Wei's Homepage

Paper, Code \& Online Slides

AutoFHE optimizes end-to-end polynomial neural architecture

- Multi-objective optimization generates Pareto-effective solutions to meet different requirements
- Joint optimization of layerwise EvoReLU and bootstrapping results in optimal polynomial neural architectures
- Adapted neural networks can inherit representation learning ability from ReLU networks

[^0]: Cryptographic Parameters

 Cyclotomic polynomial degree
 N

 Level
 L

 Modulus $\quad Q_{\ell}=\prod_{i=0}^{\ell} q_{\ell}, 0 \leq \ell \leq L$
 L

[^1]: [1] Lee, Eunsang, et al. "Low-complexity deep convolutional neural networks on fully homomorphic encryption using multiplexed parallel convolutions." International

[^2]: [1] Lee, Eunsang, et al. "Low-complexity deep convolutional neural networks on fully homomorphic encryption using multiplexed parallel convolutions." International

