

Revisiting Oblivious Top-kSelection with Applications to Secure k-NN Classification

Kelong Cong¹, **Robin Geelen**², Jiayi Kang², and Jeongeun Park² ¹Zama, and ²COSIC, KU Leuven FHE.org Conference, March 24, 2024

Outline

1 Oblivious Algorithms for Secure Computation

Oblivious Top-k Selection

3 Application: Secure *k*-NN Classification

④ Summary and Conclusion

FHE supports secure computation outsourcing

Program expansion in homomorphic branching

- Program expansion when converting input-dependent plaintext programs into ciphertext programs
- Example of program expansion:

Program expansion in homomorphic branching

- Program expansion when converting input-dependent plaintext programs into ciphertext programs
- Example of program expansion:

- Homomorphically compute branch $b = \mathbb{1}(X < a)$
- $\begin{array}{c} 2 \\ Y = y_2 \end{array} \begin{array}{c} 2 \\ Y = (1-b) \cdot y_1 + b \cdot y_2 \end{array}$

Program expansion in homomorphic branching

- Program expansion when converting input-dependent plaintext programs into ciphertext programs
- Example of program expansion:

Homomorphically compute branch $b = \mathbb{1}(X < a)$

 $\begin{array}{c} 2 \quad \text{Homomorphically evaluate} \\ Y = y_2 \end{array} \quad \begin{array}{c} 2 \quad \text{Homomorphically evaluate} \\ Y = (1-b) \cdot y_1 + b \cdot y_2 \end{array}$

Both child nodes need to be visited

Oblivious programs and their network realization

Definition

(*Data-*)oblivious programs are algorithms whose sequence of operations and memory accesses are independent of inputs.

Oblivious programs and their network realization

Definition

(*Data-*)oblivious programs are algorithms whose sequence of operations and memory accesses are independent of inputs.

• Example: sorting *d* elements

- Quicksort has complexity $\mathcal{O}(d \log d)$ but is not oblivious
- Practical oblivious sorting methods have complexity $\mathcal{O}(d\log^2 d)$

Oblivious programs and their network realization

Definition

(*Data-*)oblivious programs are algorithms whose sequence of operations and memory accesses are independent of inputs.

Example: sorting *d* elements

- Quicksort has complexity $\mathcal{O}(d \log d)$ but is not oblivious
- Practical oblivious sorting methods have complexity $\mathcal{O}(d\log^2 d)$
- Oblivious programs are visualized as networks

$$m_0 \xrightarrow{m_1(m_0, m_1)} m_1 \xrightarrow{m_1(m_0, m_1)} m_1 \xrightarrow{m_1(m_0, m_1)} m_1$$

Comparator

Sorting 4 elements obliviously

Example: Batcher's odd-even sorting network

Built from recursive sortings followed by merge

Example: Batcher's odd-even sorting network

Built from recursive sortings followed by merge

Batcher's odd-even sorting network has

- Complexity $S(d) = \mathcal{O}(d \log^2 d)$
- Depth $\mathcal{O}(\log^2 d)$

Outline

Oblivious Algorithms for Secure Computation

2 Oblivious Top-k Selection

3 Application: Secure *k*-NN Classification

④ Summary and Conclusion

Motivation for Top-k selection problem

Definition

A Top-k algorithm selects the k smallest elements from an array of d elements.

- ▶ In huge information space, only *k* most important records are of interest:
 - 1 Define a proper scoring function
 - 2 Compute score of all d records
 - 3 Return the k records with the highest scores

Motivation for Top-k selection problem

Definition

A Top-k algorithm selects the k smallest elements from an array of d elements.

- ▶ In huge information space, only *k* most important records are of interest:
 - 1 Define a proper scoring function
 - 2 Compute score of all d records
 - 3 Return the k records with the highest scores
- Example applications include
 - k-nearest neighbors classification
 - Recommender systems
 - Genetic algorithms

Popular oblivious Top-*k* **methods**

- First category: oblivious sorting, then discard d k irrelevant elements
 - Batcher's odd-even merge sort with complexity $\mathcal{O}(d\log^2 d)$ and depth $\mathcal{O}(\log^2 d)$
 - Comparison matrix with complexity $\mathcal{O}(d^2)$ and constant depth

Popular oblivious Top-*k* **methods**

- First category: oblivious sorting, then discard d k irrelevant elements
 - Batcher's odd-even merge sort with complexity $\mathcal{O}(d\log^2 d)$ and depth $\mathcal{O}(\log^2 d)$
 - Comparison matrix with complexity $\mathcal{O}(d^2)$ and constant depth
- Second category: compute minimum k times
 - Complexity $\mathcal{O}(kd)$ and depth $\mathcal{O}(k\log d)$

Alekseev's oblivious Top-k for 2k elements

- Realization using two building blocks:
 - Sorting network of size k
 - Pairwise comparison

Alekseev's oblivious Top-k for 2k elements

- Realization using two building blocks:
 - Sorting network of size k
 - Pairwise comparison

Can be generalized to Top-k out of d elements

Alekseev's oblivious Top-k for d elements

► Top-*k* complexity is $\mathcal{O}(d \log^2 k)$ if $S(k) = \mathcal{O}(k \log^2 k)$

Alekseev's oblivious Top-k for d elements

► Top-*k* complexity is $\mathcal{O}(d \log^2 k)$ if $S(k) = \mathcal{O}(k \log^2 k)$

Realizes k-merge as pairwise comparison + sorting: complexity k + S(k)

Improvement I: order-preserving merge

- Batcher's odd-even sorting network uses alternative merge
 - Truncate to k-merge by removing redundant comparators
 - Complexity reduction from $\mathcal{O}(k\log^2 k)$ to $\mathcal{O}(k\log k)$

(a) Alekseev's 3-merge

(b) Our 3-merge

Improvement I: oblivious Top-k from truncation

Network realization for Top-3 of 16 elements

Improvement I: comparison

- ► Same asymptotic complexity as Alekseev: $\mathcal{O}(d \log^2 k)$ comparators
- Our solution contains fewer comparators in practice

Revisiting Yao's oblivious Top-k

► Andrew Yao improved Alekseev's Top-*k* using an unbalanced recursion

Selecting Top-4 of 9 elements using Yao's method

Revisiting Yao's oblivious Top-k

► Andrew Yao improved Alekseev's Top-*k* using an unbalanced recursion

Selecting Top-4 of 9 elements using Yao's method

k ≪ √d: complexity is O(d log k)
k ≫ √d: complexity is asymptotically higher than O(d log² k)

Improvement II: combining our method with Yao's

- Combined network recursively calls our or Yao's method
- Slightly improves on the better method in some cases

Outline

Oblivious Algorithms for Secure Computation

Oblivious Top-k Selection

3 Application: Secure *k*-NN Classification

4 Summary and Conclusion

Introduction to *k*-Nearest Neighbors

- Simple machine learning algorithm with broad applications
 - Plagiarism detection, image classification, intrusion detection, ...
 - Lazy learning: no training phase

Introduction to k-Nearest Neighbors

Three-step method:

- 1 Compute distance between target vector and d database vectors
- 2 Find k closest database vectors and corresponding labels
- 3 Class assignment is majority vote of these k labels

Secure *k*-NN threat model

- Client sends encrypted k-NN query to server
- Server returns encrypted classification result

Homomorphic realization of *k*-NN

1 Compute distance between target vector and d database vectors

Homomorphic realization of *k*-NN

- 1 Compute distance between target vector and d database vectors
- 2 Find k closest database vectors and corresponding labels
 - Top-k network is built from comparators
 - Each comparator uses two programmable bootstrappings

$$(\mathsf{dist}_0, \mathsf{label}_0) \underbrace{(\mathsf{dist}_i, \mathsf{label}_i)}_{(\mathsf{dist}_1, \mathsf{label}_1)} \underbrace{(\mathsf{dist}_{1-i}, \mathsf{label}_{1-i})}_{(\mathsf{dist}_{1-i}, \mathsf{label}_{1-i})}$$

using $i = \arg\min(\mathsf{dist}_0, \mathsf{dist}_1)$

Homomorphic realization of *k*-NN

- 1 Compute distance between target vector and d database vectors
- 2 Find k closest database vectors and corresponding labels
 - Top-k network is built from comparators
 - Each comparator uses two programmable bootstrappings

$$(\mathsf{dist}_0, \mathsf{label}_0) \underbrace{(\mathsf{dist}_i, \mathsf{label}_i)}_{(\mathsf{dist}_1, \mathsf{label}_1)} \underbrace{(\mathsf{dist}_{1-i}, \mathsf{label}_{1-i})}_{(\mathsf{dist}_{1-i}, \mathsf{label}_{1-i})}$$

using $i = \arg\min(\mathsf{dist}_0, \mathsf{dist}_1)$

3 Class assignment is majority vote of these k labels

Performance for MNIST dataset

Implementation in TFHE-rs

		Comparators		Duration (s)		
k	d	[ZS21] [†]	Ours	[ZS21] [†]	Ours	Speedup
3	40	780	93	30	18	1.7 ×
	457	104196	1136	4248	202	21.0 ×
	1000	499500	2493	20837	441	47.2 ×
$\lfloor \sqrt{d} \rfloor$	40	780	143	33	28	1.2 ×
	457	104196	3412	4402	530	8.3 ×
	1000	499500	9121	21410	1252	17.1 ×

[†]Zuber and Sirdey: Efficient homomorphic evaluation of k-NN classifiers

Outline

Oblivious Algorithms for Secure Computation

Oblivious Top-k Selection

3 Application: Secure *k*-NN Classification

4 Summary and Conclusion

Conclusion

- > An oblivious Top-k algorithm with complexity
 - $\mathcal{O}(d \log^2 k)$ in general
 - $\mathcal{O}(d\log k)$ for small $k \ll \sqrt{d}$

Conclusion

- > An oblivious Top-k algorithm with complexity
 - $\mathcal{O}(d \log^2 k)$ in general
 - $\mathcal{O}(d\log k)$ for small $k \ll \sqrt{d}$
- ▶ Implementation of a secure *k*-NN classifier in TFHE-rs
 - Feasible for database of 1000 records: $47 \times$ faster than [ZS21]

Conclusion

- An oblivious Top-k algorithm with complexity
 - $\mathcal{O}(d \log^2 k)$ in general
 - $\mathcal{O}(d\log k)$ for small $k \ll \sqrt{d}$
- ▶ Implementation of a secure *k*-NN classifier in TFHE-rs
 - Feasible for database of 1000 records: 47 \times faster than [ZS21]
- \blacktriangleright Top-k is an important submodule for various other applications

Thank you for your attention!

ia.cr/2023/852