
Liberate.FHE: A New FHE Library for Bridging
the Gap between Theory and Practice

with a Focus on Performance and Accuracy
Juwhan Kim Hanyul Ryu Donghoon Yoo

DESILO Inc., Seoul, Republic of Korea

Abstract

A new implementation of the Fully Homomorphic Encryption (FHE)

library, namely Liberate.FHE is presented. Its primary focus is per-

formance and accuracy. Despite significant advancements in previ-

ous works, the adoption of modern computing resources, such as

GPU acceleration, has been sparse, and the accuracy of the ho-

momorphic computations could have been better than the theo-

retical predictions. This work addresses the sub-optimal issues by

filling in the missing details regarding practical engineering. Based

on the newly added formulations, a new FHE library is built. Lib-

erate.FHE supports multi-GPU operations natively, and its Applica-

tion Programming Interface (API) is designed to be simple by em-

ploying the most widely used presets. The main idea behind the

design decisions is that non-cryptographers can use the library; it

should be easily hackable and integrated with more extensive soft-

ware frameworks. The resulting implementation can be accessed at

https://github.com/Desilo/liberate-fhe [1].

Major Algorithms in Liberate.FHE

New Channel Prime Selection Method

Liberate.FHE introduces an error-free rescaling method through a

novel channel prime selection approach, leveraging the division by

channel primes to mitigate rescaling errors inherent in RNS-based

FHE systems which use a scale parameter ∆ and a modulus Q =∏L−1
i=0 qi. The proposed method, detailed in Equation 1, optimizes

the selection of channel primes to minimize quadratic deviation er-

rors, crucial formaintaining the accuracy of homomorphic operations

with δ0 = 1. It employs a strategic search for channel primes that
support the Number Theoretic Transform (NTT), adjusting the direc-

tion of the search to balance cumulative deviations. This precise

prime selection, combined with a pre-scaling strategy that adjusts

cipher texts before multiplication, significantly enhances the accu-

racy and efficiency of Liberate.FHE’s cryptographic computations.

δi = ∆2δ2
i−1/q2

i−1 = δ2
i−1

(
∆

qi−1

)2
(1)

Encoding/Decoding using Nega-cyclic FFT

Our packing method innovatively encodes complex numbers into

plaintext for encryption, ensuring nega-cyclic behavior for stable ar-

ray sizes, compatibility with homomorphic operations, and conver-

sion to real numbers, with a focus on minimal accuracy loss. It em-

ploys a novel nega-cyclic FFT, transforming complex arrays for en-

cryption within a finite quotient ring, maintaining permutation com-

mutativity. This approach uses a calculated twister to match polyno-

mial coefficients, integrating smoothly into cryptographic algorithms

without extra scaling, simplifying encryption while maximizing pre-

cision and utility.

Division by the Channel Modulus and Reduction

In the context of Fully Homomorphic Encryption (FHE), a novel

method for precise division by a channel prime is introduced, ad-

dressing the accuracy issues arising from the approximate division

method traditionally used during modulus switching. This method

involves simultaneous division and reduction, optimizing the Residue

Number System (RNS) based computations by leveraging an exact

process along with a necessary rounding technique. This advance-

ment ensures the integrity of the encrypted data’s accuracy through-

out the computation process, significantly enhancing the practical

utility of FHE schemes like CKKS in real-world applications.

x′
i =

∣∣∣(xi+1 − x0) |q0|−1
i+1

∣∣∣
qi+1

(2)

Key Switching

Liberate.FHE utilizes a unique key switching approach, inspired by a

hybrid method [2, 3], focusing on direct operations on the RNS rep-

resentation rather than applying the conventional bitwise decom-

position technique. This method involves transforming two cipher-

texts, ct1 and ct2, through a processwhere ct1 is switched from secret
key sk1 to sk1, with ct2 containing the key switching key (ksk). The
transformation is designed to minimize error terms, leveraging the

RNS representation for efficient computation. This direct approach

simplifies the key switching process, making it more efficient while

ensuring the integrity of the encrypted message.

RNS Basis Extension

The decomposition approach for optimizing RNS representation val-

ues involves a three-part process

Initially focusing on generating a cache of fixed parameters for

efficiency.

Followed by the calculation of a state vector using

predetermined values.

Concluding with a basis extension to integrate unknown values.

This method leverages the ’pow’ function for integer exponentia-

tion within Zqi+1, demonstrating its applicability beyond the initial
partition to encompass arbitrary fixed partitions, streamlining com-

putations in cryptographic operations.

Liberate.FHE Design Philosophy

Liberate.FHE attempts to straighten up the computations by em-

ploying explicit formulae. In other words, formulations in Liber-

ate.FHE is implementation-centric and avoids abstract construc-

tions. Additionally, several design decisions were made to maxi-

mize the usability of the developed software:

Make the number of dependencies minimal.

Make the software easily hackable.

Set the usage of multiple GPUs as the default.

Make the resulting library easily integrated with the

pre-existing software, especially the Artificial Intelligence (AI)

related ones.

The above decisions led to building the library on top of the pop-

ular software package PyTorch. In Liberate.FHE, all the keys and

cipher texts are a collection of PyTorch tensors. In that way, the

inner structures of the data and even the contents stored in them

can be viewed and hacked easily. Also, the very low-level func-

tions such as the Montgomery reduction and the related opera-

tions, Number Theoretic Transform (NTT), and Cryptographically

Secure Pseudo Random Number Generators (CSPRNG) are built

using the NVIDIA CUDA programming language. The Low-level

functions are then attached to the higher-level library functions

using the C-API provided by PyTorch.

Practical Advancements

Data Partitioning over Multiple GPUs

Liberate.FHE optimizes Ring-LWE cipher text processing across

multi-GPU setups, utilizing a tensor chunking strategy that mini-

mizes data movement, balances computational load, and maintains

decryption integrity through a tailored tensor shape for efficient,

high-performance homomorphic encryption. The chunking strategy

is designed to satisfy the following conditions:

A key switching partition always resides in the same device.

The base channel is put into the master GPU.

Special prime channels are replicated in all GPUs.

The partitions are placed in GPUs as exhaustion of one partition

will start the consumption of the next partition at a different

GPU.

Exact Rounding in Rescaling

Our study highlights that the accuracy of rescaling results in FHE

is significantly influenced by the rounding method employed. By

introducing a rounding parameter, ρ = x0/q0, and incorporating it
into the equation 3 . we achieve a more precise solution, enhancing

computational accuracy substantially.(
x

†
0, . . . x

†
L−2

)
, bX mod Q

q0
≡ X ′ mod Q′e (3)

Montgomery Reduction-based Integer Arithmetics

Liberate.FHE enhances FHE multiplication with an optimized Mont-

gomery reduction, tailored for GPUs by using bitwise operations to

perform simultaneous multiplication and reduction without exceed-

ing 64-bit sizes or wasting memory, significantly increasing compu-

tational efficiency.

Cryptographically Secure Pseudo Random Number Generator

(CSPRNG)

The new CSPRNG for Liberated.FHE, designed for enhanced secu-

rity and efficiency in homomorphic encryption, features:

CHACHA20[4] algorithm base for cryptographic robustness.

GPU parallelization via index-based generation for high

performance [5].

Branchless binary tree search, optimizing GPU operations by

avoiding conditional logic.

This streamlined approach addresses security and computational

speed, crucial for encryption/decryption tasks.

Multiparty

Liberate.FHE advances MFHE with an ’n of n’ consent model, merg-

ing distributed trust and privacy [6]. It offers single-key efficiency

and dynamic participant adaptability via individual secret keys and a

shared public key, supported by user-friendly APIs for collaborative,

real-world applications.

Results and Example Codes

Results

Liberate.FHE sets a new benchmark in FHE with key innovations for

unparalleled accuracy and speed. It leverages integer-only opera-

tions via Montgomery Reduction, avoiding floating-point errors, and

optimizes data handling on GPUs for rapid key switching. Its novel

’Rescale Before Multiplication’ strategy, alongside message permu-

tation, guarantees cyclic rotation and integrity, with unique formulas

mitigating rescale and deviation errors, vastly improving accuracy in

homomorphic operations.

Table 1. Liberate.FHE Benchmark∗ (ms)

Operation Liberate.FHE

Key Creation

Secret Key 0.330

Public Key 0.452

Evaluation Key 5.371

Galois Key 90.205

HE Operations

Addition 0.074

Multiplication 11.30

Rotation 6.110

Mean 94.900

Variation 188.000

Round Trip
Encode+Encrypt 1.601

Decrypt+Decode 1.051

* logN=16, scale bits=40, special primes=4, multiplicative levels=34, GPUs=2 (NVIDIAA100)

Example Codes

Conclusions

Liberate.FHE bridges the gap between theoretical FHE and practi-

cal implementation by prioritizing performance, accuracy, and user-

friendliness. Its novel design leverages modern computing resources

like GPUs and simplifies API usage for non-cryptographers, encour-

aging wider adoption and real-world applications of FHE. Further

research directions include investigating bootstrapping on multiple

GPUs, exploring scheme switching between FHE schemes, and de-

veloping flexible and scalable multiparty FHE protocols on Liber-

ate.FHE.

Features in Delivery

CKKS bootstrapping

Multiparty bootstrapping

Liberate.FHE CPU version

IND-CPA-D security for CKKS

References

[1] DESILO, “Liberate.fhe: A new fhe library for bridging the gap between theory and practice

with a focus on performance and accuracy,” 2023.

https://github.com/Desilo/liberate-fhe.

[2] K. Han and D. Ki, “Better bootstrapping for approximate homomorphic encryption.”

Cryptology ePrint Archive, Paper 2019/688, 2019.

https://eprint.iacr.org/2019/688.

[3] J.-C. Bajard, J. Eynard, A. Hasan, and V. Zucca, “A full rns variant of fv like somewhat

homomorphic encryption schemes.” Cryptology ePrint Archive, Paper 2016/510, 2016.

https://eprint.iacr.org/2016/510.

[4] D. Bernstein, “Chacha, a variant of salsa20,” 01 2008.

[5] J. K. Salmon, M. A. Moraes, R. O. Dror, and D. E. Shaw, “Parallel random numbers: As easy as

1, 2, 3,” in SC ’11: Proceedings of 2011 International Conference for High Performance

Computing, Networking, Storage and Analysis, pp. 1–12, 2011.

[6] C. Mouchet, J. Troncoso-Pastoriza, J.-P. Bossuat, and J.-P. Hubaux, “Multiparty homomorphic

encryption from ring-learning-with-errors,” Proceedings on Privacy Enhancing Technologies,

vol. 2021, no. CONF, pp. 291–311, 2021.

Libertate.FHE DocumentationWebsite

Scan this QR code

https://docs.desilo.ai/liberate-fhe FHE.org Conference 2024 hanyul.ryu@desilo.ai

https://github.com/Desilo/liberate-fhe
https://github.com/Desilo/liberate-fhe
https://eprint.iacr.org/2019/688
https://eprint.iacr.org/2016/510
https://docs.desilo.ai/liberate-fhe
mailto:hanyul.ryu@desilo.ai

