Neural Network Training on Encrypted Data with TFHE

Luis Montero, Jordan Frery, Celia Kherfallah, Roman Bredehoft, Andrei Stoian

Abstract

We show that learning gradient based classifiers with **Stochastic Gradient Descent** using **TFHE** and **6-bit quantization** yields accuracies and runtimes comparable with the state of the art. We showcase this approach on **Logistic Regression** and **Multi-Layer-Perceptrons**.

Code available on Github

FHE vs FP32

			-		
Dataset	Model/# params	Quantizatio n bits	Best FHE accuracy	Best FP32 accuracy	Batch latency
Breast cancer	Logistic / 30	6b	98.25%	99.12%	11.8s
Breast cancer	MLP (1 hidden) / 930	4b	98.25%	99.12%	149s
Mortality	Logistic / 10	6b	90.09%	90.47%	7.2s
Mortality	MLP (1 hidden) / 165	4b	87.25%	90.44%	45s
Heart disease	Logistic / 13	6b	88.52%	89.47%	8.02s

Acurracy per batch on Breast Cancer Dataset:

Rounding and Quantization

ZAMA zama.ai/blog github.com/zama-ai/concrete-ml