
Encrypted Edit Distance for

Real-World Applications

Wouter Legiest, Jan-Pieter D’Anvers, and Ingrid Verbauwhede

COSIC KU Leuven, Belgium

wouter.legiest@esat.kuleuven.be

Edit Distance

• Check the similarity of two strings a and b

• Count number of operations to transform a into b

• Common Operations in academic research:

– Insertion of a character
– Deletion of a character
– Substitution of a character by another
– Transposition of two adjacent characters

• Each edit distance has its allowed operations

Distance Ins/Del Subs Trans

Hamming #  #
Longest Common Subsequence  # #
Levenshtein   #
Damerau-Levenshtein    

• Ex.: Levenshtein distance of ‘kitten’ and ‘sitting’ is 3

Edit Distance in the FHEWorld

• Lots of the optimised plaintext edit distance algorithm uses
and/or

– data-depended branching
– data-depended preprocessing
– small-alphabet specific optimisations
– optimised for unit-costs

=⇒ Two candidates:

– Wagner-Fisher algorithm
– bit-vector algorithm of Myers [1]

∗ Only for unit costs operations; has O(n) time complexity

Wagner-Fisher Algorithm

• Textbook method to calculate edit distance: build up a matrix D

• Each element in the matrix is calculated as:
Di,j = min(Di−1,j + 1;Di,j−1 + 1;Di−1,j−1 + (ai == bj))

• Hard to parallelise; uses dynamic programming
has O(n2) time complexity

Real-World Requirements

• Non-unit cost of operations:
- Insertion and Deletion: 2
- Substitution: 0/1/2

• Alphabet using all numbers, lower and uppercase letters, and
special characters, i.e. |Σ| > 64

• Strings length of |a| = |b| = 132

• Additional (symmetrical) operations, with reduced or zero cost
- Substitution of vowels a←→ e
- Substitution of ‘close letters’ m←→ n
- Transposition of 2chars to 2chars cc←→ ch
- Transposition of 2chars to char dd←→ d

Unit Cost Implementation Results

Algorithm: WF and Myers for unit-cost Levensthein distance
Scheme: TFHE-rs v0.5.3 [2]
Params: Integer: 4× PARAM_MESSAGE_2_CARRY_2_KS_PBS

HL WF: FheUint8 and Myers: FheUint256
System: Dual AMD EPYC™ 73F3 16-Core @ 3.5GHz

Algorithm TFHE-rs API Time per Di,j [ms] Tot time [min]

WF Integer - smart 1067.6 5h 10m
Integer - smart_par 421.0 2h 3m
High Level 495.5 2h 24m

Myers High Level - 10m 55s

Non-unit Implementation Results

Algorithm: Our extended Wagner-Fisher
Scheme: TFHE-rs v0.5.3 [2]
Params: Integer: 4× PARAM_MESSAGE_2_CARRY_2_KS_PBS

High Level: FheUint8
System: Dual AMD EPYC™ 73F3 16-Core @ 3.5GHz

Algorithm TFHE-rs API Time per Di,j [ms] Tot time [min]

WF Integer - smart 1226.2 5h 56m
Integer - smart_par 480.6 2h 20m
High Level 608.0 2h 56m

References & Funding

[1] G.Myers, “A fast bit-vector algorithm for approximate stringmatching based on dynamic
programming,” J. ACM, vol. 46, no. 3, pp. 395–415, 1999.

[2] Zama, TFHE-rs: A Pure Rust Implementation of the TFHE Scheme for Boolean and Integer
Arithmetics Over Encrypted Data, https://github.com/zama-ai/tfhe-rs, 2022.

ERC Adv. Grant No. 101020005; CSF No. VR20192203; FWO Post-doc No. 133185

wouter.legiest@esat.kuleuven.be
https://github.com/zama-ai/tfhe-rs

