Convolution-friendly Image Compression in FHE

Axel Mertens ¹ Georgio Nicolas ¹ Sergi Rovira ²

¹ imec-COSIC, KU-Leuven

²WiSeCom, Universitat Pompeu Fabra (UPF)

April 25, 2024

- Image processing on a server
 - Server doesn't know the image
 - Client doesn't necessarily know the process
- Compression for efficient data transfer
- Processing with convolutional filters
- Applications:
 - Cloud image processing
 - Secret satelite image search

Image: A mathematical states and a mathem

- Compression:
 - Ciphertext compression: Can be combined with our technique. [MDK23]
 - [FLS23]: More general than for images, but no decompression without decryption. Only works for very sparse data.
- Image Processing:
 - Zama's Encrypted Image Filtering: Convolutional filters with Concrete

2

メロト メロト メヨト メヨ

≣ ▶ ∢ ≣ ▶ April 25, 2024 2

・ロン ・日ン ・ヨン・

≣ ▶ ∢ ≣ ▶ April 25, 2024 2

イロト イロト イヨト

Image Compression in FHE

April 25, 2024

3

イロト イロト イヨト

Metrics:

- Structural Similarity Index: metric for image quality, based on human perception $\rightarrow SSI \ge 0.9$ is a good quality.
 - ightarrow SSI \geq 0.95 is a very high quality.
- Compression ratio: how many bits are needed to represent 100 (uncompressed) bits

- Lossy compression
- Natural images
- Can choose degree of compression
- Discrete Cosine Transform (DCT)
- Huffman Coding

3

Image: A mathematical states and a mathem

O Split into blocks (8x8)

2 Level

- Oiscrete Cosine Transform
- Quantization
- Lossless encoding

154	123	123	123	123	123	123	136
192	180	136	154	154	154	136	123
254	198	154	154	180	154	123	123
239	180	136	180	180	166	123	123
180	154	136	167	166	149	136	136
128	136	123	136	154	180	198	154
123	105	110	149	136	136	180	166
110	136	123	123	123	136	154	136
	154 192 254 239 180 128 123 110	154 123 192 180 254 198 239 180 180 154 128 136 123 105 110 136	154 123 123 192 180 136 254 198 154 239 180 136 180 154 136 128 136 123 123 105 110 110 136 123	154 123 123 123 192 180 136 154 254 198 154 154 239 180 136 180 180 154 136 167 128 136 123 136 123 105 110 149 110 136 123 123	154 123 123 123 123 192 180 136 154 154 254 198 154 154 180 239 180 136 180 180 180 154 136 167 166 128 136 123 136 154 120 105 110 149 136 110 136 123 123 123	154 123 123 123 123 123 192 180 136 154 154 154 254 198 154 154 180 154 239 180 136 180 180 166 180 154 136 167 166 149 128 136 123 136 154 180 128 136 123 136 154 180 128 136 123 136 154 180 128 136 123 136 154 180 129 105 110 149 136 136 130 123 123 123 136 143	154 123 123 123 123 123 123 192 180 136 154 154 154 154 136 254 198 154 154 180 154 123 239 180 136 180 180 166 123 180 154 136 167 166 149 136 180 154 136 167 166 149 136 123 136 123 136 154 180 198 124 136 123 136 154 180 198 125 136 110 149 136 136 180 130 123 123 123 136 123 136 149

Figure: The original image (block)

- O Split into blocks (8x8)
- 2 Level
- Oiscrete Cosine Transform
- Quantization
- Lossless encoding

 $M_{i,j} \in [0, 255]$ to $M_{i,j} \in [-128, 127]$

26	-5	-5	-5	-5	-5	-5	8
64	52	8	26	26	26	8	-18
126	70	26	26	52	26	-5	-5
111	52	8	52	52	38	-5	-5
52	26	8	39	38	21	8	8
0	8	-5	8	26	52	70	26
-5	-23	-18	21	8	8	52	38
-18	8	-5	-5	-5	8	26	8

Figure: Leveled image block

O Split into blocks (8x8)

2 Level

- Oiscrete Cosine Transform
- Quantization
- Lossless encoding

 $M^{DCT} = DCT \cdot M \cdot DCT^{T}$, where DCT is the DCT matrix.

162.3	40.6	20.0	72.3	30.3	12.5	-19.7	-11.5
30.5	108.4	10.5	32.3	27.7	-15.5	18.4	-2.0
-94.1	-60.1	12.3	-43.4	-31.3	6.1	-3.3	7.1
-38.6	-83.4	-5.4	-22.2	-13.5	15.5	-1.3	3.5
-31.3	17.9	-5.5	-12.4	14.3	-6.0	11.5	-6.0
-0.9	-11.8	12.8	0.2	28.1	12.6	8.4	2.9
4.6	-2.4	12.2	6.6	-18.7	-12.8	7.7	12.0
-10.0	11.2	7.8	-16.3	21.5	0.0	5.9	10.7

Figure: DCT of image block

- O Split into blocks (8x8)
- 2 Level
- Oiscrete Cosine Transform
- Quantization
- Lossless encoding

 $M_{i,j}^Q = round(\frac{M_{DCT,i,j}}{Q_{i,j}})$, where Q is a standardized quantization matrix.

10	4	2	5	1	0	0	0
3	9	1	2	1	0	0	0
-7	-5	1	-2	-1	0	0	0
-3	-5	0	-1	0	0	0	0
-2	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Figure: Quantized image block

メロト メロト メヨト メ

- Split into blocks (8x8)
- 2 Level
- Oiscrete Cosine Transform
- Quantization
- Lossless encoding

 $Zigzag(M^Q)$ transforms the matrix into a vector, now ready for encoding.

10	4	2	5	1	0	0	0
3	9	1	2	1	0	0	0
-7	-5	1	-2	-1	0	0	0
-3	-5	0	-1	0	0	0	0
-2	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Figure: Zigzag of quantized block

- Split into blocks (8x8)
- 2 Level
- Oiscrete Cosine Transform
- Quantization
- Lossless encoding

 $Zigzag(M^Q)$ transforms the matrix into a vector, now ready for encoding.

10	4	2-	-	1	0	0	0
3	8	1	2	1	0	0	0
	-5	1	-2	-1	0	0	0
-3	-5	0	-1	0	0	0	0
-2	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Figure: Zigzag of quantized block

- Split into blocks (8x8)
- 2 Level
- Oiscrete Cosine Transform
- Quantization
- Lossless encoding

 $Zigzag(M^Q)$ transforms the matrix into a vector, now ready for encoding.

10	•	2	>			0	0
3	8	1	2		0	0	0
-	-5	·		-1	0	0	0
1	5	8	-1	0	0	0	0
-2	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Figure: Zigzag of quantized block

- Split into blocks (8x8)
- 4 Level
- Oiscrete Cosine Transform
- Quantization
- Lossless encoding

 $Zigzag(M^Q)$ transforms the matrix into a vector, now ready for encoding.

Figure: Zigzag of quantized block

・ロト ・四ト ・ヨト ・ヨト

э

- Data compression uses predictability in the data, such that the entropy of the data increases with compression.
- Encoding example: Huffman
 - Construct a code specific for the data
 - Frequent symbols will get shorter binary representation
 - Rare symbols might get represented longer than they are
 - On average, this results in compression
 - Without data-specific code, compression is weaker
- Issues: Training is expensive + variable length code

- Split into blocks (8x8)
- 4 Level
- Oiscrete Cosine Transform
- Quantization
- Lossless encoding

- Lossy due to quantization
- Encoding uses predictability after quantization
- DCT consists of two matrix multiplications

Image: A math a math

 Quantization consists of an elementwise matrix multiplication and rounding

- Compression schemes have bad worst-case behaviour
- Homomorphic encryption intrinsically creates worst-case behaviour \rightarrow No variable-length coding without conditional branching
- For privacy, we require constant compression factor and constant algorithm time

Figure: Information leakage from knowing only the compression factor of each block

- Cut off a constant number of ending zeros
- On average: cut off between 30 and 40 values
- Very efficient, constant time, and constant compression

Image: A matrix

Pixel-wise processing

- for the most basic applications \rightarrow inversion, brightening ...
- clear/secret multiplications

Convolutional filters

different (3x3) kernels for different tasks

 \rightarrow edge detection, blurring, sharpening ...

• clear/secret multiplications and additions

Figure: Illustration of a convolutional filter

Convolution-friendly compression

- Instead of 8x8 blocks, split the image into 6x6 blocks
- Pad each block with the neighbouring pixels
- The 8x8 blocks now have only a 6x6 part that is unique

154	123	123	123	123	123	123	136
192	180	136	154	154	154	136	123
254	198	154	154	180	154	123	123
239	180	136	180	180	166	123	123
180	154	136	167	166	149	136	136
128	136	123	136	154	180	198	154
123	105	110	149	136	136	180	166
110	136	123	123	123	136	154	136

Figure: Convolution on a 6x6 block needs an 8x8 block

Quantization matrices

- 8x8: well studied, great image quality
- 16x16: used in some video compressions. Slightly lesser quality.
- More compression for 16x16

3

An FHE scheme allows us to perform arbitrary computations over encrypted data.
 Enc(m1 △ m2) = Enc(m1) △ Enc(m2)

• We can think of it as a commutative diagram:

• State-of-the-art schemes: BGV, B/FV, CKKS and TFHE.

A D F A B F A B F A

An FHE scheme allows us to perform arbitrary computations over encrypted data.
 Enc(m1 △ m2) = Enc(m1) △ Enc(m2)

• We can think of it as a commutative diagram:

• State-of-the-art schemes: BGV, B/FV, CKKS and TFHE.

A D F A B F A B F A

- Message space: $\mathbb{C}^{N/2}$
- Plaintext space: $\mathcal{R} := \mathbb{Z}[X]/\langle X^N + 1
 angle$
- Ciphertext space: \mathcal{R}_q^2 , where $\mathcal{R}_q := \mathbb{Z}_q[X]/\langle X^N+1
 angle$
- Native support for floating-point numbers.
- Great packing capabilities

$$\mathbb{C}^{N/2} \xrightarrow{\mathsf{Encode}} \mathcal{R} \xrightarrow{\mathsf{Encrypt}} \mathcal{R}_q^2$$

• It offers parallel computation in a SIMD manner.

Image: A mathematical states and a mathem

- Message space: $\mathbb{C}^{N/2}$
- Plaintext space: $\mathcal{R} := \mathbb{Z}[X]/\langle X^N + 1 \rangle$
- Ciphertext space: $\mathcal{R}_{m{q}} := \mathbb{Z}_{m{q}}[X]/\langle X^{N}+1
 angle$
- Native support for floating-point numbers. \longrightarrow easy to implement JPEG
- Great packing capabilities

$$\mathbb{C}^{N/2} \xrightarrow{\mathsf{Encode}} \mathcal{R} \xrightarrow{\mathsf{Encrypt}} \mathcal{R}_q^2$$

• It offers parallel computation in a SIMD manner.

- Message space: $\mathbb{C}^{N/2}$
- Plaintext space: $\mathcal{R} := \mathbb{Z}[X]/\langle X^N + 1
 angle$
- Ciphertext space: $\mathcal{R}_{m{q}} := \mathbb{Z}_{m{q}}[X]/\langle X^{N}+1
 angle$
- Native support for floating-point numbers. \longrightarrow easy to implement JPEG
- \bullet Great packing capabilities \longrightarrow compact representation of encrypted images

$$\mathbb{C}^{N/2} \xrightarrow{\mathsf{Encode}} \mathcal{R} \xrightarrow{\mathsf{Encrypt}} \mathcal{R}_q^2$$

• It offers parallel computation in a SIMD manner.

- Message space: $\mathbb{C}^{N/2}$
- Plaintext space: $\mathcal{R} := \mathbb{Z}[X]/\langle X^N + 1 \rangle$
- Ciphertext space: $\mathcal{R}_{m{q}} := \mathbb{Z}_{m{q}}[X]/\langle X^{N}+1
 angle$
- \bullet Native support for floating-point numbers. \longrightarrow easy to implement JPEG
- \bullet Great packing capabilities \longrightarrow compact representation of encrypted images

$$\mathbb{C}^{N/2} \xrightarrow{\mathsf{Encode}} \mathcal{R} \xrightarrow{\mathsf{Encrypt}} \mathcal{R}_q^2$$

• It offers parallel computation in a SIMD manner. ----- efficient image processing

- Message space: $\mathbb{C}^{N/2}$
- Plaintext space: $\mathcal{R} := \mathbb{Z}[X]/\langle X^N + 1 \rangle$
- Ciphertext space: $\mathcal{R}_{m{q}} := \mathbb{Z}_{m{q}}[X]/\langle X^{N}+1
 angle$
- Native support for floating-point numbers. \longrightarrow easy to implement JPEG
- \bullet Great packing capabilities \longrightarrow compact representation of encrypted images

$$\mathbb{C}^{N/2} \xrightarrow{\mathsf{Encode}} \mathcal{R} \xrightarrow{\mathsf{Encrypt}} \mathcal{R}_q^2$$

• It offers parallel computation in a SIMD manner. ----- efficient image processing

-									
x_1^1	x_2^1	x_3^1		x_8^1	 x_{N-7}^1	x_{N-6}^{1}	x_{N-5}^{1}		x_N^1
x_{1}^{2}	x_{2}^{2}	x_{3}^{2}		x ² ₈	x_{N-7}^{2}	x_{N-6}^{2}	x_{N-5}^{2}		x_N^2
x_1^3	x_{2}^{3}	x_{3}^{3}		x_{8}^{3}	x_{N-7}^{3}	x_{N-6}^{3}	x_{N-5}^{3}		x_N^3
÷			$\gamma_{\rm L}$		÷			$\gamma_{\rm c}$	
x_{1}^{8}	x_{2}^{8}	x_{3}^{8}		x_{8}^{8}	 x_{N-7}^{8}	x_{N-6}^{8}	x_{N-5}^{8}		x_N^8
:									
x_{1}^{N-7}	x_{2}^{N-7}	x_{3}^{N-7}		x_8^{N-7}	 x_{N-7}^{N-7}	x_{N-6}^{N-7}	x_{N-5}^{N-7}		x_N^{N-7}
x_1^{N-6}	x_{2}^{N-6}	x_3^{N-6}		x_8^{N-6}	 x_{N-7}^{N-6}	x_{N-6}^{N-6}	x_{N-5}^{N-6}		x_N^{N-6}
x_{1}^{N-5}	x_{2}^{N-5}	x_{3}^{N-5}		x_{8}^{N-5}	 x_{N-7}^{N-5}	x_{N-6}^{N-5}	x_{N-5}^{N-5}		x_N^{N-5}
			γ_{1}						
x_1^N	x_2^N	x_3^N		x_8^N	 x_{N-7}^N	x_{N-6}^N	x_{N-5}^N		x_N^N

x_1^1	x_{2}^{1}	x13		x_{8}^{1}		x_{N-7}^1	x_{N-6}^1	x_{N-5}^1		x_N^1					
x_1^2	x_{2}^{2}	x_{3}^{2}	and the second second	*8		x_{N-7}^{2}	x_{N-6}^{2}	x_{N-5}^{2}	10000	x_N^2					
x_1^3	x_{2}^{3}	x_{3}^{3}		x_{8}^{3}		* ³ N-7	x_{N-6}^3	x_{N-5}^3		x_N^3					
1			14						1	Construction of the					
x_{1}^{8}	x_{2}^{8}	x_{3}^{8}		*8 8		* ⁸ _N -7	x^{8}_{N-6}	* ⁸ _{N-5}		x_N^8	and the second sec				
		· ·····			and the second second							x_1^1	x_2^1	x_3^1	 x_8^1
x_1^{N-7}	x_{2}^{N-7}	x_{3}^{N-7}		x_8^{N-7}		x_{N-7}^{N-7}	x_{N-6}^{N-7}	x_{N-5}^{N-7}	and the second	x_N^{N-7}		x_1^2	x_{2}^{2}	x_{3}^{2}	x_{8}^{2}
x_1^{N-6}	x_{2}^{N-6}	x ₃ ^{N-6}		x_8^{N-6}		x_{N-7}^{N-6}	x_{N-6}^{N-6}	x_{N-5}^{N-6}		x_N^{N-6}	Commission and Commission	x_1^3	x_{2}^{3}	*3	x_{8}^{3}
x1 ^{N-5}	x_{2}^{N-5}	x ₃ ^{N-5}		x ₈ ^{N-5}		x_{N-7}^{N-5}	x_{N-6}^{N-5}	x_{N-5}^{N-5}	The second	x_N^{N-5}	Same and the second		and the second second		
											and the second se	x_{1}^{8}	x_{2}^{8}	x83	 #8
x_1^N	x_2^N	x_3^N		x_8^N		x_{N-7}^N	x_{N-6}^N	x_{N-5}^N		x_N^N					

■ のへで

イロト イロト イヨト イヨト

x_1^1	x_2^1	x_3^1		x_8^1	 x_{N-7}^1	$\frac{1}{x_N^1 \ge 6}$	x_{N-5}^{1}		x_N^1	
x_1^2	x_{2}^{2}	x_{3}^{2}		x_{8}^{2}	x_{N-7}^{2}	x_{N-6}^{2}	x_{N-5}^{2}		x_N^2	
x_1^3	x_{2}^{3}	x_{3}^{3}		x_{8}^{3}	x_{N-7}^{3}	x_{N-6}^{3}	x_{N-5}^{3}		x_N^3	
- :			γ_{1}		÷			γ_{1}		
x_{1}^{8}	x_{2}^{8}	x_{3}^{8}		x_{8}^{8}	 x^{8}_{N-7}	x^{8}_{N-6}	x^{8}_{N-5}		x_N^8	$x_{N-7}^{*}x_{N-6}^{*}x_{N-5}^{*}\cdots x_{N}^{*}$
1										$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
x_1^{N-7}	x_{2}^{N-7}	x3 ^{N-7}		x ₈ ^{N-7}	 x_{N-7}^{N-7}	x_{N-6}^{N-7}	x_{N-5}^{N-7}		x_N^{N-7}	x_1^2 x_2^2 x_3^2 x_8^2 x_N^2
x_1^{N-6}	x_{2}^{N-6}	x_3^{N-6}		x_8^{N-6}	 x_{N-7}^{N-6}	x_{N-6}^{N-6}	x_{N-5}^{N-6}		x_N^{N-6}	
x_1^{N-5}	x_{2}^{N-5}	x_{3}^{N-5}		x_{8}^{N-5}	 x_{N-7}^{N-5}	x_{N-6}^{N-5}	x_{N-5}^{N-5}		x_N^{N-5}	
										x_1^8 x_2^8 x_3^8 x_8^8
x_1^N	x_2^N	x_3^N		x_8^N	 x_{N-7}^N	x_{N-6}^N	x_{N-5}^N		x_N^N	

Axel Mertens, Sergi Rovira

Image Compression in FHE

x_1^1	x_2^1	x_3^1		x_{8}^{1}	 x_{N-7}^{1}	x_{N-6}^{1}	x_{N-5}^{1}		x_N^1	
x_1^2	x_{2}^{2}	x_{3}^{2}		x28	x_{N-7}^{2}	x_{N-6}^{2}	x_{N-5}^{2}		x_N^2	
x_1^3	x_{2}^{3}	x_{3}^{3}		x ³ 8	x_{N-7}^{3}	x_{N-6}^{3}	x_{N-5}^{3}		x_N^3	$x_{N-7}^{N-7}x_{N-6}^{N-7}x_{N-6}^{N-7}$
:			1		:			÷.,		
x_1^8	x_{2}^{8}	x_{3}^{8}		x 8 8	 x^{8}_{N-7}	x^{8}_{N-6}	x^{8}_{N-5}		* ⁸	$x_{N-7}^{*}x_{N-6}^{*}x_{N-5}^{*}\cdots x_{N}^{*}$
:										$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
x_1^{N-7}	x_{2}^{N-7}	x_3^{N-7}		x_8^{N-7}	 x_{N-7}^{N-7}	x_{N-6}^{N-7}	x_{N-5}^{N-7}		x_N^{N-7}	x_1^2 x_2^2 x_3^2 x_8^2 x_N^3 x_N^N
x_1^{N-6}	x_{2}^{N-6}	x_3^{N-6}		x_8^{N-6}	 x_{N-7}^{N-6}	x_{N-6}^{N-6}	x_{N-5}^{N-6}		x_N^{N-6}	$x_1^3 x_2^3 x_3^3 x_8^3$
x_1^{N-5}	x_2^{N-5}	x_3^{N-5}		x_8^{N-5}	 x_{N-7}^{N-5}	x_{N-6}^{N-5}	x_{N-5}^{N-5}		x_N^{N-5}	
										$x_1^8 x_2^8 x_3^8 x_8^8$
x_1^N	x_2^N	x_3^N		x_8^N	 x_{N-7}^N	x_{N-6}^{N}	x_{N-5}^N		x_N^N	

< □ ▶ < 클 ▶ < 클 ▶ < 클 ▶ 클 ∽ 였 (~ April 25, 2024

			x_{N-7}^{N-7}	x_{N-6}^{N-7}	x	N - 7 N - 5		•	x_N^{N-7}
	x_{N-}^{1}	x_{N}^{1}	-6 x _N ¹	-5		x_N^1]	x_N^{N-6}
x_{1}^{1}	x_{2}^{1}	x_{3}^{1}		x_8^1		x_N^2	_	_	
x_{1}^{2}	x_{2}^{2}	x_{3}^{2}		x_{8}^{2}		x_N^3			x_N^N
x_{1}^{3}	x_{2}^{3}	x_{3}^{3}		x_{8}^{3}			╢		
:			$\gamma_{\rm el}$			x_N^8	_	/	locks
x_1^8	x_{2}^{8}	x_{3}^{8}		x_{8}^{8}		/	/		

Axel Mertens, Sergi Rovira

Image Compression in FHE

< □ ▶ < 콜 ▶ < 콜 ▶ < 콜 ▶] 의 오 ↔ April 25, 2024

			x_{N-7}^{N-7}	x_{N-6}^{N-7}	x_{N-5}^{N-7}		x_N^{N-7}
	x_{N-}^{1}	$-7 x_{N-1}^1$	$-6 x_{N-1}^1$	-5			x_N^{N-6}
x_1^1	x_{2}^{1}	x_{3}^{1}		x_8^1	x_N^2		
x_{1}^{2}	x_{2}^{2}	x_{3}^{2}		x_{8}^{2}	x_N^3		x_N^N
x_{1}^{3}	x_{2}^{3}	x_{3}^{3}		x_{8}^{3}		-11	
:			14				Blocks
x_{1}^{8}	x_{2}^{8}	x_{3}^{8}		x_{8}^{8}		/	

ct_1^1	ct_2^1	ct_3^1		ct_8^1
ct_1^2	ct_2^2	ct_3^2		ct_8^2
ct_1^3	ct_2^3	ct_3^3		ct_8^3
:			14. 14.	
ct_1^8	ct_2^8	ct_3^8		ct_8^8

$$\mathsf{ct}_1^1 = Enc(x_1^1, x_9^1, \dots, x_{N-7}^1, \dots, x_{N-7}^{N-7})$$

Encryption

			x_{N-7}^{N-7}	x_{N-6}^{N-7}	x_{N-5}^{N-7}		x_N^{N-7}
	x_{N}^{1}	$-7 x_{N-1}^1$	$-6 x_{N-}^1$	-5			x_N^{N-6}
x_1^1	x_2^1	x_3^1		x_8^1		, - 11	
x_{1}^{2}	x_{2}^{2}	x_{3}^{2}		x_{8}^{2}	x_N^3	, - 11	x_N^N
x_{1}^{3}	x_{2}^{3}	x_{3}^{3}		x_{8}^{3}		┛	
:			14		x_N^8		Blocks
x_{1}^{8}	x_{2}^{8}	x_{3}^{8}		x_{8}^{8}		/	

ct_1^1	ct_2^1	ct_3^1		ct_8^1
ct_1^2	ct_2^2	ct_3^2		ct_8^2
ct_1^3	ct_2^3	ct_3^3		ct_8^3
:			- N.	
ct_1^8	ct_2^8	ct_3^8		ct_8^8

$$\mathsf{ct}_8^8 = Enc(x_8^8, x_{16}^8, \dots, x_N^8, \dots, x_N^N)$$

Encryption

- The number of ciphertexts needed to encrypt an image is equal to 64 cutting point.
- We can **pack multiple images** (and images with multiple colour channels) with the **same number of ciphertexts**.
- We can apply **pixel-wise operations and convolutions** to all the blocks of an image (or to multiple images) **in parallel**.

3

< □ > < 同 > < 回 > < Ξ > < Ξ

- We use the CKKS implementation of OpenFHE
- Leveled approach, with depth = 9
- Standard parameters for 128-bits of security
- Simulation of client and server done in a desktop with an Intel Core i7-13700 and 32gb of RAM
- 4 settings:
 - O Pixel-wise processing on 8x8 blocks
 - Onvolutional processing on 8x8 blocks
 - Pixel-wise processing on 16x16 blocks
 - Onvolutional processing on 16x16 blocks

Image: A matrix

image size	setting	decompression	processing	compression	t ot a	SSI	compression ratio
256×256	1	8s	< 1s	5s	13s	0.95	100:34.4
252×252	2	11.3s	4s	9s	24.5s	0.935	100:83.3
256×256	3	39.5	1s	29s	69.5s	0.91	100:24.6
252×252	4	60s	19s	62s	131s	0.905	100:35.7
512×512	1	7.5s	$< 1 { m s}$	5s	13.5s	0.95	100:34.4
510 imes 510	2	11s	4s	9s	24s	0.935	100:83.3
512×512	3	39s	< 1s	29s	68s	0.92	100:24.6
504 imes 504	4	50s	18.5s	62s	130.5s	0.92	100:35.7
1024 imes 1024	1	8s	$< 1 { m s}$	5s	13s	0.98	100:34.4
1020×1020	2	11s	4s	9.7s	24.7s	0.975	100:83.3
1024 imes 1024	3	41 s	< 1 s	29s	70s	0.96	100:24.6
1022×1022	4	61.5s	19s	62s	142.5s	0.97	100:35.7
2048×2048	1	107s	1s	70s	178s	0.98	100:34.4
2046×2046	2	107s	36.5s	79s	222.5s	0.98	100:83.3
2048×2048	3	137s	$< 1 { m s}$	99.5s	236.5s	0.975	100:24.6
2044 imes 2044	4	136s	41.5s	136s	313.5s	0.975	100:35.7

Table: Experimental results (server-side). Each timing is for one 8-bit greyscale image of mentioned dimensions. The values are averaged over a few randomly selected images: 8 images of 512×512 , 4 images for other dimensions.

• • • • • • • • • • • •

- Formally prove that entropy encoding is impractical in FHE.
- More complex image processing eg. object detection, face recognition, etc.

Thank you!

- axel.mertens@esat.kuleuven.be
- georgio.nicolas@esat.kuleuven.be
- sergi.rovira@upf.edu
- Preprint: https://eprint.iacr.org/2024/559
- Code: https://github.com/icip-24/img-processing-fhe

- Nils Fleischhacker, Kasper Green Larsen, and Mark Simkin, How to compress encrypted data, Advances in Cryptology - EUROCRYPT 2023 - 42nd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Lyon, France, April 23-27, 2023, Proceedings, Part I (Carmit Hazay and Martijn Stam, eds.), Lecture Notes in Computer Science, vol. 14004, Springer, 2023, pp. 551–577.
- Rasoul Akhavan Mahdavi, Abdulrahman Diaa, and Florian Kerschbaum, HE is all you need: Compressing FHE ciphertexts using additive HE, CoRR abs/2303.09043 (2023).