Functional Bootstrapping for Packed Ciphertexts

Via Homomorphic LUT Evaluation

Introduction

Fully Homomorphic Encryption

- Fully Homomorphic Encryption
- Enables an unlimited number of computations over encrypted data.
- Somewhat HE (SHE) can be constructed from (R)LWE
- Only supports a limited number of multiplications.
- Not FHE.
- Bootstrapping [Gen09]
- Homomorphic evaluation of decryption circuit.
- The message remains the same, introduces a noise with fixed size.
- The main bottleneck of homomorphic computation.

FV (Fan-Vercauteren) Scheme

-Scheme description

- Base ring : $R=\mathbb{Z}[X] / \Phi_{m}(X)$
- Secret key : sk $\in R$, a ternary polynomial with small Hamming weight.
- Message : $\mu(X) \in R_{t}=R / t R$ for plaintext modulus t.
- Ciphertext : $(b, a) \in R_{q}^{2}=(R / q R)^{2}$ for ciphertext modulus q.
- Encrypt : $a \leftarrow \mathscr{U}\left(R_{q}\right), e \leftarrow \chi$, and set $b=-a \cdot \mathrm{sk}+\lfloor q / t\rceil \cdot \mu+e$.
- Decrypt : $\lfloor t / q \cdot(b+a \cdot \mathrm{sk})\rceil=\lfloor t / q \cdot(\lfloor q / t\rceil \cdot \mu+e)\rceil=\mu$.
- Message in the MSB, noise in the LSB.

FV (Fan-Vercauteren) Scheme

- SIMD arithmetic
, For a prime number $p \nmid m, R_{p}=\mathbb{Z}_{p}[X] / \Phi_{m}(X) \cong \prod_{i=1}^{k} \mathbb{Z}_{p}[X] / F_{i}(X)$
- For d, the multiplicative order of p in group $\mathbb{Z}_{m}^{\times}, k=\phi(m) / d$.
- Each $F_{i}(X)$ is a degree d (monic) irreducible polynomial.
- We can perform SIMD arithmetic over $G F\left(p^{d}\right)^{k}$.
- Usually, we encode only the constant term and use \mathbb{Z}_{p}^{k} arithmetic.

FV (Fan-Vercauteren) Scheme

- SIMD arithmetic (2)
, Hensel's lifting lemma gives the relation $R_{p^{s}} \cong \prod_{i=1}^{k} \mathbb{Z}_{p^{s}}[X] / \tilde{F}_{i}(X)$.
- We can use SIMD arithmetic over $\mathbb{Z}_{p^{s}}^{k}$
- Plaintext Change
, In FV context, $p \cdot \vec{m} \in \mathbb{Z}_{p^{s}}^{k}$ is equivalent to $m \in \mathbb{Z}_{p^{s-1}}^{k}$.
\Rightarrow Just a simple change of plaintext modulus! (Change of interpretation...)
- This operation is often referred as 'homomorphic division'.

FV (Fan-Vercauteren) Scheme

- Scale-Invariant Scheme
- Since the message is stored in MSB, FV is invariant to (ciphertext) scaling.
- Given an encryption $\mathrm{ct}=\left(c_{0}, c_{1}\right) \in R_{q}^{2}$ of message $\mu \in R_{t}$,
- $\left(\left\lfloor q^{\prime} / q \cdot c_{0}\right\rceil,\left\lfloor q^{\prime} / q \cdot c_{1}\right\rceil\right) \in R_{q^{\prime}}^{2}$, is still an encryption of μ,
- As long as rounding error does not interfere the message part.

Bootstrapping of FV

Input :ct $=(b, a) \in R_{q}^{2}$ encrypting $\mu(X) \in R_{p}$.

1. ModSwitch (+ Dot Product, SubSum)

- Change the ciphertext modulus to p^{r}
- i.e., generate $\left(b^{\prime}, a^{\prime}\right)=\left(\left\lfloor p^{r} / q \cdot b\right\rceil,\left\lfloor p^{r} / q \cdot a\right\rceil\right) \in R_{p^{r}}^{2}$
- To make the decryption circuit as compact as possible.
- Generate encryption of $\left[b^{\prime}+a^{\prime} \cdot \mathrm{sk}\right]_{p^{r}}=p^{r-s} \cdot \mu+e \in R_{p^{r}}$
- Simply compute $\left(\left\lfloor q / p^{r}\right\rceil \cdot b^{\prime},\left\lfloor q / p^{r}\right\rceil \cdot a^{\prime}\right) \in R_{q}^{2}$
- Embed e into the 'valid' encoding space.
- Note that e is totally random.
- Therefore, the SIMD encoding of $\mathbb{Z}_{p^{r}}^{k}$ may not be valid.
- Can be computed with automorphisms.

Bootstrapping of FV

2. Coeffs2Slots

- Homomorphically move the coefficients of plaintext to the slots.
- i.e., generate encryption of $p^{r-s} \cdot \vec{\mu}+\vec{e} \in \mathbb{Z}_{p^{s}}^{k}$, the coefficient vector of $p^{r-s} \cdot \mu(X)+e(X)$.
- This can be performed with homomorphic matrix multiplication.

3. DigitExtract

- Homomorphically remove the noise part e.
- i.e., generate encryption of $\vec{\mu} \in \mathbb{Z}_{p^{s}}^{k}$.
- Consists of a number of polynomial evaluations.

4. Slots2Coeffs

- Homomorphically move the slots to the coefficients.
- i.e., generate encryption of $\mu(X)$
- Can be performed via a homomorphic matrix multiplication.

Bootstrapping of FV

	Functionality	Coefficients	Message
-	-	$\mu(X) \in R_{p^{s}}$	$\left\{m_{i}\right\}_{1 \leq i \leq k} \in \mathbb{Z}_{p^{s}}^{k}$
ModSwitch	Switch the ciphertext modulus to p^{r}	$p^{r-s} \cdot \mu(X)+e(X) \in R_{p^{r}}$	$?$
Coeffs2Slots	Move the coefficients to slots	$?$	$\left\{p^{r-s} \cdot \mu_{i}+e_{i}\right\} \in \mathbb{Z}_{p^{r}}^{k}$
DigitExtract	Homomorphically remove the noise	$?$	$\left\{\mu_{i}\right\} \in \mathbb{Z}_{p^{s}}^{k}$
Slots2Coeffs	Move the slots to coefficients	$\mu(X) \in R_{p^{s}}$	$\left\{m_{i}\right\}_{1 \leq i \leq k} \in \mathbb{Z}_{p^{s}}^{k}$

Digit Extraction

- Given $u_{r-1} u_{r-2} \ldots u_{0} \in \mathbb{Z}_{p^{r}}$, homomorphically compute $u_{r-1} u_{r-2} \ldots u_{r-s} \in \mathbb{Z}_{p^{s}}$
- There is no polynomial directly compute this.
- We utilise homomorphic division to circumvent this problem.
- There exists a series of 'Digit Extraction Polynomial' $\left\{G_{i}\right\}_{1 \leq i}$.
- $G_{i}(x)=[x]_{p}\left(\bmod p^{i}\right)$
- i.e. Extracts the last digit of the given number.
- Remove LSB iteratively, using digit extraction polynomials.

Digit Extraction

- Input $: u:=u_{r-1} u_{r-2} \ldots u_{0} \in \mathbb{Z}_{p^{r}}$
- Output : $u_{r-1} u_{r-2} \ldots u_{r-s} \in \mathbb{Z}_{p^{r}}$
- $G_{r}(u)=0 \ldots 0 u_{0} \in \mathbb{Z}_{p^{r}}$.
- $u-G_{r}(u)=u_{r-1} \ldots u_{1} 0=p \cdot\left(u_{r-1} \ldots u_{1}\right)$.
- $\left(u-G_{r}(u)\right) / p=u_{r-1} \ldots u_{1} \in \mathbb{Z}_{p^{r-1}}$
- Homomorphic division by p !
- Repeat this procedure for r - s times.
- In practice, there exists a depth optimisation. (See [CH18], [GIKV22])

Our Work

Our Contribution

- Homomorphic LUT evaluation from $\mathbb{Z}_{p^{r}}$ to $\mathbb{Z}_{p^{s}}$
- This is generally a hard task, since it may not be a polynomial function.
- We devise a general evaluation method for arbitrary LUTs.
- Functional bootstrapping for any RLWE encryptions.
- Similar to TFHE, it can bootstrap any RLWE ciphertext regardless the scheme.
- In this work, we focus on FV and CKKS.

Functional Bootstrapping Pipeline

- Usage of 'slim mode' bootstrapping
- In (normal) bootstrapping, digit extraction operates on coefficients.
- Therefore, we use 'slim mode' ([HS18]), which operates on message.
- Slots2Coeffs \rightarrow ModSwitch \rightarrow Coeffs2Slots \rightarrow DigitExtract
- Adds the rounding noise to the message part instead of the coefficients.

Functional Bootstrapping Pipeline

	Functionality	FV	CKKS
Slots2Coeffs	Move the messages to coefficients	$m(X) \in R_{t}$	$\lfloor\Delta \cdot m(X)\rceil \in R$
ModSwitch	Switch the ciphertext modulus to p^{r}	$\left\{\left.\frac{p^{r}}{t} \right\rvert\, \cdot m(X)+e(X) \in R_{p^{r}}\right.$	$\left\lfloor\Delta^{\prime} \cdot m(X)\right\rceil \in R_{p^{r}}$
Coeffs2Slots	Move the coefficients to slots	$\left\{\left.\frac{p^{r}}{t} \right\rvert\, \cdot m_{i}+e_{i}\right\}_{1 \leq i \leq k} \in \mathbb{Z}_{p^{r}}^{k}$	$\left\{\Delta^{\prime} \cdot m_{i}\right\}_{1 \leq i \leq k} \in \mathbb{Z}_{p^{r}}^{k}$
EvalLUT	Evaluate LUT over the slots	$\left\{f\left(m_{i}\right)\right\}_{1 \leq i \leq k} \in \mathbb{Z}_{p^{s}}^{k}$	$\left\{f\left(m_{i}\right)\right\}_{1 \leq i \leq k} \in \mathbb{Z}_{p^{s}}^{k}$

Homomorphic LUT Evaluation $\left(\mathbb{Z}_{p^{r}}\right.$ to $\left.\mathbb{Z}_{p}\right)$

- Given an LUT $F: \mathbb{Z}_{p^{r}} \rightarrow \mathbb{Z}_{p}$
- (Hopefully) there exists a polynomial p such that $p(x)=p^{r-1} \cdot F(x)\left(\bmod p^{r}\right)$.
- Generally, there is no such polynomial p.
- Our observation
- F can be written as a multivariate function of each digit of the input.
- i.e., $F\left(u_{r-1} \ldots u_{0}\right)=\tilde{F}\left(u_{0}, \ldots, u_{r-1}\right)$
- Then, \tilde{F} always has a polynomial representation over \mathbb{Z}_{p}.

Homomorphic LUT Evaluation $\left(\mathbb{Z}_{p^{r}}\right.$ to $\left.\mathbb{Z}_{p}\right)$

- Our method
- Given LUT $F: \mathbb{Z}_{p^{r}} \rightarrow \mathbb{Z}_{p}$, find $\tilde{F}: \mathbb{Z}_{p}^{r} \rightarrow \mathbb{Z}_{p}$ such that $\tilde{F}\left(x_{0}, x_{1}, \ldots, x_{r-1}\right)=F\left(x_{r-1} \ldots x_{0}\right)$.
- During DigitExtract, each digit is extracted.
- More precisely, compute $\left[p^{r-i-1} \cdot u_{r} \ldots u_{i+1} u_{i}\right]_{p^{r-i}}=\left[u_{i}\right]_{p}$.
- Then, evaluate \tilde{F} using each digit.
- Drawback
- (At most) \tilde{F} is of degree $r(p-1)$, with p^{r} terms.
- Computing such polynomial can be time-consuming.

Heaviside Function Evaluation

- (Shifted) Heaviside Function
- The most basic form of step function
$\mathbf{1}_{x<B}(x)= \begin{cases}0 & \text { if } x<B=b_{r-1} \ldots b_{0} \\ 1 & \text { otherwise }\end{cases}$
-Why Heaviside Function?
- LUT for FV-to-FV functional bootstrapping has a form of step function.
- Heaviside function is the easiest form of the step function family.

Heaviside Function Evaluation

- Recurrence Relation

- Define two Heaviside Functions over $\mathbb{Z}_{p^{r-1}}$

$$
\begin{aligned}
& \mathbf{1}_{x<B_{1}}(x)= \begin{cases}0 & \text { if } x<B_{1}:=b_{r-1} \ldots\left(b_{1}+1\right) \\
1 & \text { otherwise }\end{cases} \\
& \mathbf{1}_{x<B_{2}}(x)= \begin{cases}0 & \text { if } x<B_{2}:=b_{r-1} \ldots b_{1} \\
1 & \text { otherwise }\end{cases}
\end{aligned}
$$

- Construct the following recurrence relation.

$$
-\mathbf{1}_{x<B}\left(u_{r-1} \ldots u_{1} u_{0}\right)=\mathbf{1}_{x<b_{0}}\left(u_{0}\right) \cdot \mathbf{1}_{x<B_{1}}\left(u_{r-1} \ldots u_{1}\right)+\mathbf{1}_{x \geq b_{0}}\left(u_{1}\right) \cdot \mathbf{1}_{x<B_{2}}\left(u_{r-1} \ldots u_{1}\right)
$$

Heaviside Function Evaluation

- Recurrence Relation

- $\mathbf{1}_{x<B}\left(u_{r-1} \ldots u_{1} u_{0}\right)=\mathbf{1}_{x<b_{0}}\left(u_{0}\right) \cdot \mathbf{1}_{x<B_{1}}\left(u_{r-1} \ldots u_{1}\right)+\mathbf{1}_{x \geq b_{0}}\left(u_{0}\right) \cdot \mathbf{1}_{x<B_{2}}\left(u_{r-1} \ldots u_{1}\right)$
- $\mathbf{1}_{x<b_{0}}$ and $\mathbf{1}_{x \geq b_{0}}$ has a univariate polynomial representation of u_{0}.
- $\mathbf{1}_{x<B_{1}}, \mathbf{1}_{x<B_{2}}$ can be represented with two LUTs over $\mathbb{Z}_{p^{\prime-2}}$, using the relation.
- In fact, $\mathbf{1}_{x<B_{1}}$ and $\mathbf{1}_{x<B_{2}}$ can be represented with two identical LUTs.

$$
\begin{aligned}
& -\mathbf{1}_{x<B_{1}}\left(u_{r-1} \ldots u_{1}\right)=\mathbf{1}_{x<\left(b_{1}+1\right)} \cdot \mathbf{1}_{x<B_{3}}\left(u_{r-1} \ldots u_{2}\right)+\mathbf{1}_{x \geq\left(b_{1}+1\right)} \cdot \mathbf{1}_{x<B_{4}}\left(u_{r-1} \ldots u_{2}\right) \\
& -\mathbf{1}_{x<B_{2}}\left(u_{r-1} \ldots u_{1}\right)=\mathbf{1}_{x<b_{1}} \cdot \mathbf{1}_{x<B_{3}}\left(u_{r-1} \ldots u_{2}\right)+\mathbf{1}_{x \geq b_{1}} \cdot \mathbf{1}_{x<B_{4}}\left(u_{r-1} \ldots u_{2}\right)
\end{aligned}
$$

- It only requires $2+4+\ldots+2=4 r-4$ univariate polynomial evaluations of degree $p-1$.

Heaviside Function Evaluation

- Algorithm

- Input : Bound $B=b_{r-1} \ldots b_{0} \in \mathbb{Z}_{p^{r}}$ (encrypted) messages $u_{0}, \ldots, u_{r-1} \in \mathbb{Z}_{p}$
- Output : $\mathbf{1}_{x \geq b_{r-1} \ldots b_{0}}\left(u_{r-1} \ldots u_{0}\right)$

$$
\begin{aligned}
& \text { 1. } x_{0} \leftarrow \mathbf{1}_{x \geq b_{r-1}+1}\left(u_{r-1}\right) \\
& \text { 1. } x_{1} \leftarrow \mathbf{1}_{x \geq b_{r-1}}\left(u_{r-1}\right) \\
& \text { 2. } \begin{array}{l}
x_{0} \leftarrow \mathbf{1}_{x<b_{i}+1}\left(u_{i}\right) \cdot x_{0}+\mathbf{1}_{x \geq b_{i}+1}\left(u_{i}\right) \cdot x_{1} \\
x_{1} \leftarrow \mathbf{1}_{x<b_{i}}\left(u_{i}\right) \cdot x_{0}+\mathbf{1}_{x \geq b_{i}}\left(u_{i}\right) \cdot x_{1}
\end{array} \text { for } i=r-2 ; i>0 ; i-=1
\end{aligned}
$$

3. Return $\mathbf{1}_{x<b_{0}}\left(u_{0}\right) \cdot x_{0}+\mathbf{1}_{x \geq b_{0}}\left(u_{0}\right) \cdot x_{1}$

Step Function Evaluation

- Step function is a linear combination of Heaviside functions.

Given an LUT $F(x)=\left\{\begin{array}{cl}\alpha_{1} & \text { if } x<B_{1} \\ \alpha_{2} & \text { if } B_{1} \leq x<B_{2} \\ \vdots & \\ \alpha_{k} & \text { if } B_{k-1} \leq x\end{array}\right.$

We can write $F(x)=\alpha_{1}+\left(\alpha_{2}-\alpha_{1}\right) \cdot F_{1}(x)+\ldots+\left(\alpha_{k}-\alpha_{k-1}\right) \cdot F_{k-1}(x)$
where $F_{i}(x)=\left\{\begin{array}{ll}0 & \text { if } x<B_{i} \\ 1 & \text { otherwise }\end{array}\right.$.

- Remark : One can generalise the recurrence relation as long as $k \leq p$.

Homomorphic LUT Evaluation $\left(\mathbb{Z}_{p^{r}}\right.$ to $\left.\mathbb{Z}_{p^{s}}\right)$

- Our method
- Given $F: \mathbb{Z}_{p^{r}} \rightarrow \mathbb{Z}_{p^{s}}$, define s LUTs $F_{i}: \mathbb{Z}_{p^{r}} \rightarrow \mathbb{Z}_{p}$ which outputs i-th digit of F.
- i.e., $F_{i}(x)=\left[F(x) / p^{i}\right]_{p}(0 \leq i<s)$
, Then, we have $F(x)=\sum_{i=0}^{s-1}\left[F_{i}(x)\right]_{p^{r}} \cdot p^{i}=\sum_{i=0}^{s-1}\left[F_{i}(x)\right]_{p^{r}-i}$.
- Therefore, it remains to compute $\left[F_{i}(x)\right]_{p^{r-i}}$.
\Rightarrow In other words, we need homomorphic lifting.

Homomorphic Lifting

- Input : ct $=(b, a) \in R_{q}^{2}$, an encryption of $\vec{m} \in \mathbb{Z}_{p}^{k}$.
- Compute ct ${ }^{\prime}=\left(\left\lfloor 1 / p^{i-1} \cdot b\right\rceil,\left\lfloor 1 / p^{i-1} \cdot a\right\rceil\right) \in R_{q}^{2} \cdot(+$ SubSum $)$
- ct ${ }^{\prime}$ is an encryption of $\vec{m}+p \cdot \vec{I}$ for some random $\vec{I} \in \mathbb{Z}_{p^{i-1}}^{k}$.
- Evaluating G_{i} returns an encryption of $\vec{m} \in \mathbb{Z}_{p^{i}}$.
- Why does it not need Coeffs2Slots/Slots2Coeffs as in bootstrapping?
- This case, the message is stored in the LSB.
- Conversely, the message is stored in the MSB when bootstrap.
- When i is large enough (i.e., $\|\vec{I}\|_{\infty} \ll p^{i}$), depth consumption can be mitigated with Coeffs2Slots and Slots2Coeffs. (Use low-degree null polynomial from [MHWW24])

Comparison to TFHE-like schemes

	Ours	TFHE	Amortized TFHE (FHEW-like)	Amortized TFHE (FV/CKKS)	Amortized TFHE (Others)
Scheme	This work	[DM14], [CGGI16], [LMK+23]	[MS18], [GPvL23], [MKMS23]	$[$ LLW23], [LW24], [BCKS24]	[LW23], [OPP23]
Remaining Multiplicative Level	\mathbf{O}	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{O}
Large Plaintext Modulus	\mathbf{O}	\mathbf{X}	\mathbf{X}	\mathbf{O}	$\mathbf{\Delta}$
SIMD	\mathbf{O}	\mathbf{X}	\mathbf{O}	\mathbf{O}	\mathbf{O}

Asymptotic Bootstrapping Complexity

	Ephemeral Message Space	Time Complexity		
Traditional Bootstrapping	$\Delta \cdot m+e$	$O\left(\log p^{r}+\log \\|s\\|_{1}\right)$		
General Bootstrapping	$\Delta \cdot e_{1}+e_{2}$	$O\left(\log \left(\\|s\\|_{1}\right)\right)$		
Functional Bootstrapping	$\Delta \cdot m+e$	$O\left(\log p^{r}+\log \\|s\\|_{1}\right)$		

Classification of Existing Works

	BGV/FV	CKKS	FHEW-like
Traditional Bootstrapping	[HS14], [CH18], [GIKV22]	$[C H K+18],[C C S 19]$, [HK20], [LLL+21]..	
General Bootstrapping	[KSS24],[MHWW24]	[KPK+22]	[ADE+21]

Thank you for listening!

