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Introduction



Fully Homomorphic Encryption
• Fully Homomorphic Encryption 
‣ Enbles n unlimited number of computtions over encrypted dt. 

• Somewht HE (SHE) cn be constructed from (R)LWE 
‣Only supports  limited number of multiplictions. 

‣Not FHE. 

• Bootstrpping [Gen09] 
‣Homomorphic evlution of decryption circuit. 

‣The messge remins the sme, introduces  noise with fixed size. 

‣The min bottleneck of homomorphic computtion.



FV (Fan-Vercauteren) Scheme
• Scheme description 

‣ Bse ring :  

‣ Secret key : ,   ternry polynomil with smll Hmming weight. 

‣Messge :  for plintext modulus . 

‣ Ciphertext :  for ciphertext modulus .  

- Encrypt : , , nd set . 

- Decrypt : . 

- Messge in the MSB, noise in the LSB.

R = ℤ[X]/Φm(X)

𝗌𝗄 ∈ R

μ(X) ∈ Rt = R/tR t

(b, a) ∈ R2
q = (R/qR)2 q

a ← 𝒰(Rq) e ← χ b = − a ⋅ 𝗌𝗄 + ⌊q/t⌉ ⋅ μ + e

⌊t/q ⋅ (b + a ⋅ 𝗌𝗄)⌉ = ⌊t/q ⋅ (⌊q/t⌉ ⋅ μ + e)⌉ = μ



FV (Fan-Vercauteren) Scheme

• SIMD rithmetic 

‣ For  prime number ,   

- For , the multiplictive order of  in group , . 

- Ech  is  degree  (monic) irreducible polynomil. 

‣We cn perform SIMD rithmetic over . 

‣ Usully, we encode only the constnt term nd use  rithmetic.

p ∤ m Rp = ℤp[X]/Φm(X) ≅
k

∏
i=1

ℤp[X]/Fi(X)

d p ℤ×
m k = ϕ(m)/d

Fi(X) d

GF(pd)k

ℤk
p



FV (Fan-Vercauteren) Scheme

• SIMD rithmetic (2) 

‣Hensel’s lifting lemm gives the reltion . 

‣We cn use SIMD rithmetic over . 

• Plintext Chnge 

‣ In FV context,  is equivlent to . 

➡Just  simple chnge of plintext modulus! (Chnge of interprettion…) 

‣ This opertion is often referred s ‘homomorphic division’. 

Rps ≅
k

∏
i=1

ℤps[X]/F̃i(X)

ℤk
ps

p ⋅ ⃗m ∈ ℤk
ps m ∈ ℤk

ps−1



FV (Fan-Vercauteren) Scheme
• Scle-Invrint Scheme 
‣ Since the messge is stored in MSB, FV is invrint to (ciphertext) scling. 

‣Given n encryption  of messge , 

-  is still n encryption of , 

- As long s rounding error does not interfere the messge prt.

𝖼𝗍 = (c0, c1) ∈ R2
q μ ∈ Rt

(⌊q′ /q ⋅ c0⌉, ⌊q′ /q ⋅ c1⌉) ∈ R2
q′ 

μ

q′ < q

q′ > q



Bootstrapping of FV
Input :  encrypting . 

1. ModSwitch (+ Dot Product, SubSum) 
‣ Chnge the ciphertext modulus to  

- i.e., generte  

- To mke the decryption circuit s compct s possible. 

‣Generte encryption of  

- Simply compute  

‣ Embed  into the ‘vlid’ encoding spce. 

- Note tht  is totlly rndom. 

- Therefore, the SIMD encoding of  my not be vlid. 

- Cn be computed with utomorphisms.

𝖼𝗍 = (b, a) ∈ R2
q μ(X) ∈ Rps

pr

(b′ , a′ ) = (⌊pr /q ⋅ b⌉, ⌊pr /q ⋅ a⌉) ∈ R2
pr

[b′ + a′ ⋅ 𝗌𝗄]pr = pr−s ⋅ μ + e ∈ Rpr

(⌊q/pr⌉ ⋅ b′ , ⌊q/pr⌉ ⋅ a′ ) ∈ R2
q

e

e

ℤk
pr



Bootstrapping of FV
2. Coeffs2Slots 
‣Homomorphiclly move the coefficients of plintext to the slots. 

- i.e., generte encryption of , the coefficient vector of . 

- This cn be performed with homomorphic mtrix multipliction. 

3. DigitExtrct 

‣Homomorphiclly remove the noise prt . 

- i.e., generte encryption of . 

- Consists of  number of polynomil evlutions. 

4. Slots2Coeffs 

‣Homomorphiclly move the slots to the coefficients. 

- i.e., generte encryption of  

- Cn be performed vi  homomorphic mtrix multipliction.

pr−s ⋅ ⃗μ + ⃗e ∈ ℤk
ps pr−s ⋅ μ(X) + e(X)

e

⃗μ ∈ ℤk
ps

μ(X)



Bootstrapping of FV
Functionality Coefficients Message

- -

ModSwitch    Switch the ciphertext modulus to ?

Coeffs2Slots Move the coefficients to slots ?

DigitExtrct Homomorphically remove the noise ?

Slots2Coeffs Move the slots to coefficients

pr pr−s ⋅ μ(X) + e(X) ∈ Rpr

{pr−s ⋅ μi + ei} ∈ ℤk
pr

{μi} ∈ ℤk
ps

μ(X) ∈ Rps {mi}1≤i≤k ∈ ℤk
ps

μ(X) ∈ Rps {mi}1≤i≤k ∈ ℤk
ps



Digit Extraction
• Given , homomorphiclly compute  

‣ There is no polynomil directly compute this. 

‣We utilise homomorphic division to circumvent this problem. 

‣ There exists  series of ‘Digit Extrction Polynomil’ . 

-  

- i.e. Extrcts the lst digit of the given number. 

‣ Remove LSB itertively, using digit extrction polynomils.

ur−1ur−2…u0 ∈ ℤpr ur−1ur−2…ur−s ∈ ℤps

{Gi}1≤i

Gi(x) = [x]p (mod pi)



Digit Extraction
• Input     :  

• Output :  

‣ . 

‣ . 

‣  

➡ Homomorphic division by ! 

‣ Repet this procedure for  times. 

‣ In prctice, there exists  depth optimistion. (See [CH18], [GIKV22])

u := ur−1ur−2…u0 ∈ ℤpr

ur−1ur−2…ur−s ∈ ℤpr

Gr(u) = 0…0u0 ∈ ℤpr

u − Gr(u) = ur−1…u10 = p ⋅ (ur−1…u1)

(u − Gr(u))/p = ur−1…u1 ∈ ℤpr−1

p

r − s



Our Work



Our Contribution

• Homomorphic LUT evlution from  to  

‣ This is generlly  hrd tsk, since it my not be  polynomil function. 

‣We devise  generl evlution method for rbitrry LUTs.  

• Functionl bootstrpping for ny RLWE encryptions. 

‣Similr to TFHE, it cn bootstrp ny RLWE ciphertext regrdless the scheme. 

‣ In this work, we focus on FV nd CKKS.

ℤpr ℤps



Functional Bootstrapping Pipeline

• Usge of ‘slim mode’ bootstrpping 

‣ In (norml) bootstrpping, digit extrction opertes on coefficients. 

‣ Therefore, we use ‘slim mode’ ([HS18]), which opertes on messge. 

- Slots2Coeffs ModSwitch Coeffs2Slots DigitExtrct 

- Adds the rounding noise to the messge prt insted of the coefficients.

→ → →



Functional Bootstrapping Pipeline
Functionality FV CKKS

Slots2Coeffs Move the messages to coefficients

ModSwitch    Switch the ciphertext modulus to

Coeffs2Slots Move the coefficients to slots

EvlLUT Evaluate LUT over the slots

pr

m(X) ∈ Rt ⌊Δ ⋅ m(X)⌉ ∈ R

⌊ pr

t ⌉ ⋅ m(X) + e(X) ∈ Rpr ⌊Δ′ ⋅ m(X)⌉ ∈ Rpr

{⌊ pr

t ⌉ ⋅ mi + ei}
1≤i≤k

∈ ℤk
pr {Δ′ ⋅ mi}1≤i≤k

∈ ℤk
pr

{f(mi)}1≤i≤k
∈ ℤk

ps {f(mi)}1≤i≤k
∈ ℤk

ps



Homomorphic LUT Evaluation (  to )ℤpr ℤp

• Given n LUT  

‣ (Hopefully) there exists  polynomil  such tht . 

‣Generlly, there is no such polynomil . 

• Our observtion 

‣  cn be written s  multivrite function of ech digit of the input. 

- i.e.,  

‣ Then,  lwys hs  polynomil representtion over .

F : ℤpr → ℤp

p p(x) = pr−1 ⋅ F(x) (mod pr)

p

F

F(ur−1…u0) = F̃(u0, …, ur−1)

F̃ ℤp



Homomorphic LUT Evaluation (  to )ℤpr ℤp

• Our method 

‣Given LUT , find  such tht . 

‣ During DigitExtrct, ech digit is extrcted. 

- More precisely, compute . 

‣ Then, evlute  using ech digit. 

• Drwbck 

‣ (At most)  is of degree , with  terms. 

‣ Computing such polynomil cn be time-consuming.

F : ℤpr → ℤp F̃ : ℤr
p → ℤp F̃(x0, x1, …, xr−1) = F(xr−1…x0)

[pr−i−1 ⋅ ur…ui+1ui]pr−i = [ui]p

F̃

F̃ r(p − 1) pr



Heaviside Function Evaluation
• (Shifted) Heviside Function 

‣ The most bsic form of step function 

‣  

• Why Heviside Function? 

‣ LUT for FV-to-FV functionl bootstrpping 
hs  form of  step function. 

‣Heviside function is the esiest form of the 
step function fmily.

1x<B(x) = {0  if x < B = br−1…b0

1 otherwise



Heaviside Function Evaluation
• Recurrence Reltion 

‣ Define two Heviside Functions over  

-  

-  

‣ Construct the following recurrence reltion. 

-

ℤpr−1

1x<B1
(x) = {0  if x < B1 := br−1…(b1 + 1)

1 otherwise

1x<B2
(x) = {0  if x < B2 := br−1…b1

1 otherwise

1x<B(ur−1…u1u0) = 1x<b0
(u0) ⋅ 1x<B1

(ur−1…u1) + 1x≥b0
(u1) ⋅ 1x<B2

(ur−1…u1)



Heaviside Function Evaluation
• Recurrence Reltion 

‣  

-  nd  hs  univrite polynomil representtion of . 

-  cn be represented with two LUTs over , using the reltion. 

➡ In fct,  nd  cn be represented with two identicl LUTs. 

-  

-  

- It only requires  univrite polynomil evlutions of degree .

1x<B(ur−1…u1u0) = 1x<b0
(u0) ⋅ 1x<B1

(ur−1…u1) + 1x≥b0
(u0) ⋅ 1x<B2

(ur−1…u1)

1x<b0
1x≥b0

u0

1x<B1
, 1x<B2

ℤpr−2

1x<B1
1x<B2

1x<B1
(ur−1…u1) = 1x<(b1+1) ⋅ 1x<B3

(ur−1…u2) + 1x≥(b1+1) ⋅ 1x<B4
(ur−1…u2)

1x<B2
(ur−1…u1) = 1x<b1

⋅ 1x<B3
(ur−1…u2) + 1x≥b1

⋅ 1x<B4
(ur−1…u2)

2 + 4 + … + 2 = 4r − 4 p − 1



Heaviside Function Evaluation
• Algorithm 

‣ Input : Bound , (encrypted) messges  

‣ Output :  

1.  

2.     for  

3. Return 

B = br−1…b0 ∈ ℤpr u0, …, ur−1 ∈ ℤp

1x≥br−1…b0
(ur−1…u0)

x0 ← 1x≥br−1+1(ur−1)
x1 ← 1x≥br−1

(ur−1)

x0 ← 1x<bi+1(ui) ⋅ x0 + 1x≥bi+1(ui) ⋅ x1

x1 ← 1x<bi
(ui) ⋅ x0 + 1x≥bi

(ui) ⋅ x1
i = r − 2; i > 0; i − = 1

1x<b0
(u0) ⋅ x0 + 1x≥b0

(u0) ⋅ x1



Step Function Evaluation
• Step function is  liner combintion of Heviside functions. 

‣
Given n LUT , 

 
We cn write  
 

where . 

• Remrk : One cn generlise the recurrence reltion s long s .

F(x) =

α1  if x < B1
α2  if B1 ≤ x < B2
⋮

αk  if Bk−1 ≤ x

F(x) = α1 + (α2 − α1) ⋅ F1(x) + … + (αk − αk−1) ⋅ Fk−1(x)

Fi(x) = {0  if x < Bi

1 otherwise

k ≤ p



Homomorphic LUT Evaluation (  to )ℤpr ℤps

• Our method 

‣Given , define  LUTs   which outputs -th digit of . 

- i.e.,  

‣ Then, we hve . 

‣ Therefore, it remins to compute . 

➡In other words, we need homomorphic lifting.

F : ℤpr → ℤps s Fi : ℤpr → ℤp i F

Fi(x) = [F(x)/pi]p
(0 ≤ i < s)

F(x) =
s−1

∑
i=0

[Fi(x)]pr
⋅ pi =

s−1

∑
i=0

[Fi(x)]pr−i

[Fi(x)]pr−i



Homomorphic Lifting
• Input : , n encryption of . 

‣ Compute . (+SubSum) 

-  is n encryption of   for some rndom . 

- Evluting  returns n encryption of . 

‣Why does it not need Coeffs2Slots/Slots2Coeffs s in bootstrpping? 

- This cse, the messge is stored in the LSB. 

- Conversely, the messge is stored in the MSB when bootstrp. 

- When  is lrge enough (i.e., ), depth consumption cn be mitigted with 
Coeffs2Slots nd Slots2Coeffs. (Use low-degree null polynomil from [MHWW24])

𝖼𝗍 = (b, a) ∈ R2
q ⃗m ∈ ℤk

p

𝖼𝗍′ = (⌊1/pi−1 ⋅ b⌉, ⌊1/pi−1 ⋅ a⌉) ∈ R2
q

𝖼𝗍′ ⃗m + p ⋅ ⃗I ⃗I ∈ ℤk
pi−1

Gi ⃗m ∈ ℤpi

i || ⃗I||∞ ≪ pi



Comparison to TFHE-like schemes
Ours TFHE Amortized TFHE 

(FHEW-like)
Amortized TFHE 

(FV/CKKS)
Amortized TFHE 

(Others)

Scheme This work [DM14], [CGGI16], 
[LMK+23]

[MS18], [GPvL23], 
[MKMS23]

[LW23], [LW24], 
[BCKS24] [LW23], [OPP23]

Remining 
Multiplictive 

Level
O X X X O

Lrge Plintext 
Modulus

O X X O △

SIMD 
rithmetic

O X O O O



Asymptotic Bootstrapping Complexity

Ephemeral Message Space Time Complexity

Trditionl 
Bootstrpping

General 
Bootstrapping

Functionl 
Bootstrpping

O(log pr + log||s||1)

O(log(||s||1))

O(log pr + log||s||1)

Δ ⋅ m + e

Δ ⋅ e1 + e2

Δ ⋅ m + e



Classification of Existing Works
BGV/FV CKKS FHEW-like

Trditionl 
Bootstrpping

[HS14], [CH18], [GIKV22] [CHK+18], [CCS19], 
[HK20], [LLL+21]… -

Generl Bootstrpping [KSS24], [MHWW24] [KPK+22] [ADE+21]

Functionl 
Bootstrpping

Our work [BCKS24] [DM14], [CGGI16], 
[LMK+23]

Others [LW23], [LW24] - [MS18], [LW23], 
[MKMS23], [OPP23]…




