
Seonhong Min, 30th May 2024
Seoul National University

Via Homomorphic LUT Evaluation

Functional Bootstrapping for
Packed Ciphertexts

Introduction

Fully Homomorphic Encryption
• Fully Homomorphic Encryption
‣ Enbles n unlimited number of computtions over encrypted dt.

• Somewht HE (SHE) cn be constructed from (R)LWE
‣Only supports limited number of multiplictions.

‣Not FHE.

• Bootstrpping [Gen09]
‣Homomorphic evlution of decryption circuit.

‣The messge remins the sme, introduces noise with fixed size.

‣The min bottleneck of homomorphic computtion.

FV (Fan-Vercauteren) Scheme
• Scheme description

‣ Bse ring :

‣ Secret key : , ternry polynomil with smll Hmming weight.

‣Messge : for plintext modulus .

‣ Ciphertext : for ciphertext modulus .

- Encrypt : , , nd set .

- Decrypt : .

- Messge in the MSB, noise in the LSB.

R = ℤ[X]/Φm(X)

𝗌𝗄 ∈ R

μ(X) ∈ Rt = R/tR t

(b, a) ∈ R2
q = (R/qR)2 q

a ← 𝒰(Rq) e ← χ b = − a ⋅ 𝗌𝗄 + ⌊q/t⌉ ⋅ μ + e

⌊t/q ⋅ (b + a ⋅ 𝗌𝗄)⌉ = ⌊t/q ⋅ (⌊q/t⌉ ⋅ μ + e)⌉ = μ

FV (Fan-Vercauteren) Scheme

• SIMD rithmetic

‣ For prime number ,

- For , the multiplictive order of in group , .

- Ech is degree (monic) irreducible polynomil.

‣We cn perform SIMD rithmetic over .

‣ Usully, we encode only the constnt term nd use rithmetic.

p ∤ m Rp = ℤp[X]/Φm(X) ≅
k

∏
i=1

ℤp[X]/Fi(X)

d p ℤ×
m k = ϕ(m)/d

Fi(X) d

GF(pd)k

ℤk
p

FV (Fan-Vercauteren) Scheme

• SIMD rithmetic (2)

‣Hensel’s lifting lemm gives the reltion .

‣We cn use SIMD rithmetic over .

• Plintext Chnge

‣ In FV context, is equivlent to .

➡Just simple chnge of plintext modulus! (Chnge of interprettion…)

‣ This opertion is often referred s ‘homomorphic division’.

Rps ≅
k

∏
i=1

ℤps[X]/F̃i(X)

ℤk
ps

p ⋅ ⃗m ∈ ℤk
ps m ∈ ℤk

ps−1

FV (Fan-Vercauteren) Scheme
• Scle-Invrint Scheme
‣ Since the messge is stored in MSB, FV is invrint to (ciphertext) scling.

‣Given n encryption of messge ,

- is still n encryption of ,

- As long s rounding error does not interfere the messge prt.

𝖼𝗍 = (c0, c1) ∈ R2
q μ ∈ Rt

(⌊q′ /q ⋅ c0⌉, ⌊q′ /q ⋅ c1⌉) ∈ R2
q′

μ

q′ < q

q′ > q

Bootstrapping of FV
Input : encrypting .

1. ModSwitch (+ Dot Product, SubSum)
‣ Chnge the ciphertext modulus to

- i.e., generte

- To mke the decryption circuit s compct s possible.

‣Generte encryption of

- Simply compute

‣ Embed into the ‘vlid’ encoding spce.

- Note tht is totlly rndom.

- Therefore, the SIMD encoding of my not be vlid.

- Cn be computed with utomorphisms.

𝖼𝗍 = (b, a) ∈ R2
q μ(X) ∈ Rps

pr

(b′ , a′) = (⌊pr /q ⋅ b⌉, ⌊pr /q ⋅ a⌉) ∈ R2
pr

[b′ + a′ ⋅ 𝗌𝗄]pr = pr−s ⋅ μ + e ∈ Rpr

(⌊q/pr⌉ ⋅ b′ , ⌊q/pr⌉ ⋅ a′) ∈ R2
q

e

e

ℤk
pr

Bootstrapping of FV
2. Coeffs2Slots
‣Homomorphiclly move the coefficients of plintext to the slots.

- i.e., generte encryption of , the coefficient vector of .

- This cn be performed with homomorphic mtrix multipliction.

3. DigitExtrct

‣Homomorphiclly remove the noise prt .

- i.e., generte encryption of .

- Consists of number of polynomil evlutions.

4. Slots2Coeffs

‣Homomorphiclly move the slots to the coefficients.

- i.e., generte encryption of

- Cn be performed vi homomorphic mtrix multipliction.

pr−s ⋅ ⃗μ + ⃗e ∈ ℤk
ps pr−s ⋅ μ(X) + e(X)

e

⃗μ ∈ ℤk
ps

μ(X)

Bootstrapping of FV
Functionality Coefficients Message

- -

ModSwitch Switch the ciphertext modulus to ?

Coeffs2Slots Move the coefficients to slots ?

DigitExtrct Homomorphically remove the noise ?

Slots2Coeffs Move the slots to coefficients

pr pr−s ⋅ μ(X) + e(X) ∈ Rpr

{pr−s ⋅ μi + ei} ∈ ℤk
pr

{μi} ∈ ℤk
ps

μ(X) ∈ Rps {mi}1≤i≤k ∈ ℤk
ps

μ(X) ∈ Rps {mi}1≤i≤k ∈ ℤk
ps

Digit Extraction
• Given , homomorphiclly compute

‣ There is no polynomil directly compute this.

‣We utilise homomorphic division to circumvent this problem.

‣ There exists series of ‘Digit Extrction Polynomil’ .

-

- i.e. Extrcts the lst digit of the given number.

‣ Remove LSB itertively, using digit extrction polynomils.

ur−1ur−2…u0 ∈ ℤpr ur−1ur−2…ur−s ∈ ℤps

{Gi}1≤i

Gi(x) = [x]p (mod pi)

Digit Extraction
• Input :

• Output :

‣ .

‣ .

‣

➡ Homomorphic division by !

‣ Repet this procedure for times.

‣ In prctice, there exists depth optimistion. (See [CH18], [GIKV22])

u := ur−1ur−2…u0 ∈ ℤpr

ur−1ur−2…ur−s ∈ ℤpr

Gr(u) = 0…0u0 ∈ ℤpr

u − Gr(u) = ur−1…u10 = p ⋅ (ur−1…u1)

(u − Gr(u))/p = ur−1…u1 ∈ ℤpr−1

p

r − s

Our Work

Our Contribution

• Homomorphic LUT evlution from to

‣ This is generlly hrd tsk, since it my not be polynomil function.

‣We devise generl evlution method for rbitrry LUTs.

• Functionl bootstrpping for ny RLWE encryptions.

‣Similr to TFHE, it cn bootstrp ny RLWE ciphertext regrdless the scheme.

‣ In this work, we focus on FV nd CKKS.

ℤpr ℤps

Functional Bootstrapping Pipeline

• Usge of ‘slim mode’ bootstrpping

‣ In (norml) bootstrpping, digit extrction opertes on coefficients.

‣ Therefore, we use ‘slim mode’ ([HS18]), which opertes on messge.

- Slots2Coeffs ModSwitch Coeffs2Slots DigitExtrct

- Adds the rounding noise to the messge prt insted of the coefficients.

→ → →

Functional Bootstrapping Pipeline
Functionality FV CKKS

Slots2Coeffs Move the messages to coefficients

ModSwitch Switch the ciphertext modulus to

Coeffs2Slots Move the coefficients to slots

EvlLUT Evaluate LUT over the slots

pr

m(X) ∈ Rt ⌊Δ ⋅ m(X)⌉ ∈ R

⌊ pr

t ⌉ ⋅ m(X) + e(X) ∈ Rpr ⌊Δ′ ⋅ m(X)⌉ ∈ Rpr

{⌊ pr

t ⌉ ⋅ mi + ei}
1≤i≤k

∈ ℤk
pr {Δ′ ⋅ mi}1≤i≤k

∈ ℤk
pr

{f(mi)}1≤i≤k
∈ ℤk

ps {f(mi)}1≤i≤k
∈ ℤk

ps

Homomorphic LUT Evaluation (to)ℤpr ℤp

• Given n LUT

‣ (Hopefully) there exists polynomil such tht .

‣Generlly, there is no such polynomil .

• Our observtion

‣ cn be written s multivrite function of ech digit of the input.

- i.e.,

‣ Then, lwys hs polynomil representtion over .

F : ℤpr → ℤp

p p(x) = pr−1 ⋅ F(x) (mod pr)

p

F

F(ur−1…u0) = F̃(u0, …, ur−1)

F̃ ℤp

Homomorphic LUT Evaluation (to)ℤpr ℤp

• Our method

‣Given LUT , find such tht .

‣ During DigitExtrct, ech digit is extrcted.

- More precisely, compute .

‣ Then, evlute using ech digit.

• Drwbck

‣ (At most) is of degree , with terms.

‣ Computing such polynomil cn be time-consuming.

F : ℤpr → ℤp F̃ : ℤr
p → ℤp F̃(x0, x1, …, xr−1) = F(xr−1…x0)

[pr−i−1 ⋅ ur…ui+1ui]pr−i = [ui]p

F̃

F̃ r(p − 1) pr

Heaviside Function Evaluation
• (Shifted) Heviside Function

‣ The most bsic form of step function

‣

• Why Heviside Function?

‣ LUT for FV-to-FV functionl bootstrpping
hs form of step function.

‣Heviside function is the esiest form of the
step function fmily.

1x<B(x) = {0 if x < B = br−1…b0

1 otherwise

Heaviside Function Evaluation
• Recurrence Reltion

‣ Define two Heviside Functions over

-

-

‣ Construct the following recurrence reltion.

-

ℤpr−1

1x<B1
(x) = {0 if x < B1 := br−1…(b1 + 1)

1 otherwise

1x<B2
(x) = {0 if x < B2 := br−1…b1

1 otherwise

1x<B(ur−1…u1u0) = 1x<b0
(u0) ⋅ 1x<B1

(ur−1…u1) + 1x≥b0
(u1) ⋅ 1x<B2

(ur−1…u1)

Heaviside Function Evaluation
• Recurrence Reltion

‣

- nd hs univrite polynomil representtion of .

- cn be represented with two LUTs over , using the reltion.

➡ In fct, nd cn be represented with two identicl LUTs.

-

-

- It only requires univrite polynomil evlutions of degree .

1x<B(ur−1…u1u0) = 1x<b0
(u0) ⋅ 1x<B1

(ur−1…u1) + 1x≥b0
(u0) ⋅ 1x<B2

(ur−1…u1)

1x<b0
1x≥b0

u0

1x<B1
, 1x<B2

ℤpr−2

1x<B1
1x<B2

1x<B1
(ur−1…u1) = 1x<(b1+1) ⋅ 1x<B3

(ur−1…u2) + 1x≥(b1+1) ⋅ 1x<B4
(ur−1…u2)

1x<B2
(ur−1…u1) = 1x<b1

⋅ 1x<B3
(ur−1…u2) + 1x≥b1

⋅ 1x<B4
(ur−1…u2)

2 + 4 + … + 2 = 4r − 4 p − 1

Heaviside Function Evaluation
• Algorithm

‣ Input : Bound , (encrypted) messges

‣ Output :

1.

2. for

3. Return

B = br−1…b0 ∈ ℤpr u0, …, ur−1 ∈ ℤp

1x≥br−1…b0
(ur−1…u0)

x0 ← 1x≥br−1+1(ur−1)
x1 ← 1x≥br−1

(ur−1)

x0 ← 1x<bi+1(ui) ⋅ x0 + 1x≥bi+1(ui) ⋅ x1

x1 ← 1x<bi
(ui) ⋅ x0 + 1x≥bi

(ui) ⋅ x1
i = r − 2; i > 0; i − = 1

1x<b0
(u0) ⋅ x0 + 1x≥b0

(u0) ⋅ x1

Step Function Evaluation
• Step function is liner combintion of Heviside functions.

‣
Given n LUT ,

We cn write

where .

• Remrk : One cn generlise the recurrence reltion s long s .

F(x) =

α1 if x < B1
α2 if B1 ≤ x < B2
⋮

αk if Bk−1 ≤ x

F(x) = α1 + (α2 − α1) ⋅ F1(x) + … + (αk − αk−1) ⋅ Fk−1(x)

Fi(x) = {0 if x < Bi

1 otherwise

k ≤ p

Homomorphic LUT Evaluation (to)ℤpr ℤps

• Our method

‣Given , define LUTs which outputs -th digit of .

- i.e.,

‣ Then, we hve .

‣ Therefore, it remins to compute .

➡In other words, we need homomorphic lifting.

F : ℤpr → ℤps s Fi : ℤpr → ℤp i F

Fi(x) = [F(x)/pi]p
(0 ≤ i < s)

F(x) =
s−1

∑
i=0

[Fi(x)]pr
⋅ pi =

s−1

∑
i=0

[Fi(x)]pr−i

[Fi(x)]pr−i

Homomorphic Lifting
• Input : , n encryption of .

‣ Compute . (+SubSum)

- is n encryption of for some rndom .

- Evluting returns n encryption of .

‣Why does it not need Coeffs2Slots/Slots2Coeffs s in bootstrpping?

- This cse, the messge is stored in the LSB.

- Conversely, the messge is stored in the MSB when bootstrp.

- When is lrge enough (i.e.,), depth consumption cn be mitigted with
Coeffs2Slots nd Slots2Coeffs. (Use low-degree null polynomil from [MHWW24])

𝖼𝗍 = (b, a) ∈ R2
q ⃗m ∈ ℤk

p

𝖼𝗍′ = (⌊1/pi−1 ⋅ b⌉, ⌊1/pi−1 ⋅ a⌉) ∈ R2
q

𝖼𝗍′ ⃗m + p ⋅ ⃗I ⃗I ∈ ℤk
pi−1

Gi ⃗m ∈ ℤpi

i || ⃗I||∞ ≪ pi

Comparison to TFHE-like schemes
Ours TFHE Amortized TFHE

(FHEW-like)
Amortized TFHE

(FV/CKKS)
Amortized TFHE

(Others)

Scheme This work [DM14], [CGGI16],
[LMK+23]

[MS18], [GPvL23],
[MKMS23]

[LW23], [LW24],
[BCKS24] [LW23], [OPP23]

Remining
Multiplictive

Level
O X X X O

Lrge Plintext
Modulus

O X X O △

SIMD
rithmetic

O X O O O

Asymptotic Bootstrapping Complexity

Ephemeral Message Space Time Complexity

Trditionl
Bootstrpping

General
Bootstrapping

Functionl
Bootstrpping

O(log pr + log||s||1)

O(log(||s||1))

O(log pr + log||s||1)

Δ ⋅ m + e

Δ ⋅ e1 + e2

Δ ⋅ m + e

Classification of Existing Works
BGV/FV CKKS FHEW-like

Trditionl
Bootstrpping

[HS14], [CH18], [GIKV22] [CHK+18], [CCS19],
[HK20], [LLL+21]… -

Generl Bootstrpping [KSS24], [MHWW24] [KPK+22] [ADE+21]

Functionl
Bootstrpping

Our work [BCKS24] [DM14], [CGGI16],
[LMK+23]

Others [LW23], [LW24] - [MS18], [LW23],
[MKMS23], [OPP23]…

