Functional Bootstrapping for **Packed Ciphertexts** Via Homomorphic LUT Evaluation

Seonhong Min, 30th May 2024 Seoul National University

Introduction

Fully Homomorphic Encryption

- Fully Homomorphic Encryption
 - Enables an unlimited number of computations over encrypted data.
- Somewhat HE (SHE) can be constructed from (R)LWE
 - Only supports a limited number of multiplications.
 - ▶ Not FHE.
- Bootstrapping [Gen09]
 - Homomorphic evaluation of decryption circuit.
 - The message remains the same, introduces a noise with fixed size.
 - The main bottleneck of homomorphic computation.

- Scheme description
 - Base ring : $R = \mathbb{Z}[X]/\Phi_m(X)$
 - Secret key : $sk \in R$, a ternary polynomial with small Hamming weight.
 - Message : $\mu(X) \in R_t = R/tR$ for plaintext modulus t.
 - Ciphertext : $(b, a) \in R_q^2 = (R/qR)^2$ for ciphertext modulus q.
 - Encrypt : $a \leftarrow \mathcal{U}(R_q)$, $e \leftarrow \chi$, and set $b = -a \cdot sk + \lfloor q/t \rfloor \cdot \mu + e$.
 - Decrypt: $\lfloor t/q \cdot (b + a \cdot sk) \rceil = \lfloor t/q \cdot (\lfloor q/t \rceil \cdot \mu + e) \rceil = \mu.$
 - Message in the MSB, noise in the LSB.

• SIMD arithmetic

- For a prime number $p \nmid m, R_p = \mathbb{Z}_p[X]$
 - For d, the multiplicative order of p in group
 - Each $F_i(X)$ is a degree d (monic) irreducible polynomial.
- We can perform SIMD arithmetic over
- Usually, we encode only the constant term and use \mathbb{Z}_p^k arithmetic.

$$T[\Phi_m(X) \cong \prod_{i=1}^k \mathbb{Z}_p[X]/F_i(X)]$$

$$T[X] \to \mathbb{Z}_m^{\times}, k = \phi(m)/d.$$

er
$$GF(p^d)^k$$
.

- SIMD arithmetic (2)
 - Hensel's lifting lemma gives the relation
 - We can use SIMD arithmetic over \mathbb{Z}_{k}^{k}
- Plaintext Change
 - In FV context, $p \cdot \overrightarrow{m} \in \mathbb{Z}_{p^s}^k$ is equivalent to $m \in \mathbb{Z}_{p^{s-1}}^k$.

Just a simple change of plaintext modulus! (Change of interpretation...)

This operation is often referred as 'homomorphic division'.

tion
$$R_{p^s} \cong \prod_{i=1}^k \mathbb{Z}_{p^s}[X]/\tilde{F}_i(X).$$

- Scale-Invariant Scheme
 - Since the message is stored in MSB, FV is invariant to (ciphertext) scaling.
 - Given an encryption $ct = (c_0, c_1) \in R_q^2$ of message $\mu \in R_t$,
 - $(\lfloor q'/q \cdot c_0 \rfloor, \lfloor q'/q \cdot c_1 \rfloor) \in R_{q'}^2$ is still an encryption of μ ,
 - As long as rounding error does not interfere the message part.

Bootstrapping of FV

Input: $ct = (b, a) \in R_a^2$ encrypting $\mu(X) \in R_{p^s}$.

1. ModSwitch (+ Dot Product, SubSum)

• Change the ciphertext modulus to p^r

- i.e., generate $(b', a') = (\lfloor p^r/q \cdot b \rfloor, \lfloor p^r/q \cdot a \rfloor) \in R_{p^r}^2$

- To make the decryption circuit as compact as possible.
- Generate encryption of $[b' + a' \cdot sk]_{p^r} = p^{r-s} \cdot \mu + e \in R_{p^r}$
 - Simply compute $(\lfloor q/p^r \rfloor \cdot b', \lfloor q/p^r \rfloor \cdot a') \in R_a^2$
- Embed e into the 'valid' encoding space.
 - Note that *e* is totally random.
 - Therefore, the SIMD encoding of $\mathbb{Z}_{p^r}^k$ may not be valid.
 - Can be computed with automorphisms.

Bootstrapping of FV

2. Coeffs2Slots

Homomorphically move the coefficients of plaintext to the slots.

- i.e., generate encryption of $p^{r-s} \cdot \overrightarrow{\mu} + \overrightarrow{e} \in \mathbb{Z}_{p^s}^k$, the coefficient vector of $p^{r-s} \cdot \mu(X) + e(X)$.

- This can be performed with homomorphic matrix multiplication. 3. DigitExtract

• Homomorphically remove the noise part e.

- i.e., generate encryption of $\overrightarrow{\mu} \in \mathbb{Z}_{p^s}^k$.

- Consists of a number of polynomial evaluations.

4. Slots2Coeffs

- Homomorphically move the slots to the coefficients.
 - i.e., generate encryption of $\mu(X)$
 - Can be performed via a homomorphic matrix multiplication.

Bootstrapping of FV

	Functionality	Coefficients	Message
_		$\mu(X) \in R_{p^s}$	$\{m_i\}_{1 \le i \le k} \in \mathbb{Z}_{p^s}^k$
ModSwitch	Switch the ciphertext modulus to p^r	$p^{r-s} \cdot \mu(X) + e(X) \in R_{p^r}$?
Coeffs2Slots	Move the coefficients to slots	?	$\{p^{r-s} \cdot \mu_i + e_i\} \in \mathbb{Z}_{p^r}^k$
DigitExtract	Homomorphically remove the noise	?	$\{\mu_i\} \in \mathbb{Z}_{p^s}^k$
Slots2Coeffs	Move the slots to coefficients	$\mu(X) \in R_{p^s}$	$\{m_i\}_{1\leq i\leq k}\in \mathbb{Z}_{p^s}^k$

Digit Extraction

- - There is no polynomial directly compute this.
 - We utilise homomorphic division to circumvent this problem.
 - There exists a series of 'Digit Extraction Polynomial' $\{G_i\}_{1 \le i}$.

$$-G_i(x) = [x]_p \pmod{p^i}$$

- i.e. Extracts the last digit of the given number.
- Remove LSB iteratively, using digit extraction polynomials.

• Given $u_{r-1}u_{r-2}...u_0 \in \mathbb{Z}_{p^r}$, homomorphically compute $u_{r-1}u_{r-2}...u_{r-s} \in \mathbb{Z}_{p^s}$

Digit Extraction

- Input : $u := u_{r-1}u_{r-2}...u_0 \in \mathbb{Z}_{p^r}$
- Output : $u_{r-1}u_{r-2}\dots u_{r-s} \in \mathbb{Z}_{p^r}$
 - $G_r(u) = 0 \dots 0 u_0 \in \mathbb{Z}_{p^r}$.
 - $u G_r(u) = u_{r-1} \dots u_1 0 = p \cdot (u_{r-1} \dots u_1).$
 - $(u G_r(u))/p = u_{r-1}...u_1 \in \mathbb{Z}_{p^{r-1}}$

 \rightarrow Homomorphic division by p!

- Repeat this procedure for r s times.
- In practice, there exists a depth optimisation. (See [CH18], [GIKV22])

Our Contribution

• Homomorphic LUT evaluation from \mathbb{Z}_{p^r} to \mathbb{Z}_{p^s}

- This is generally a hard task, since it may not be a polynomial function.
- We devise a general evaluation method for arbitrary LUTs.

Functional bootstrapping for any RLWE encryptions.

- Similar to TFHE, it can bootstrap any RLWE ciphertext regardless the scheme.
- ▶ In this work, we focus on FV and CKKS.

Functional Bootstrapping Pipeline

Usage of 'slim mode' bootstrapping

- In (normal) bootstrapping, digit extraction operates on coefficients.
- ▶ Therefore, we use 'slim mode' ([HS18]), which operates on message.
 - Slots2Coeffs \rightarrow ModSwitch \rightarrow Coeffs2Slots \rightarrow DigitExtract
 - Adds the rounding noise to the message part instead of the coefficients.

Functional Bootstrapping Pipeline

	Functionality	FV	CKKS
Slots2Coeffs	Move the messages to coefficients	$m(X) \in R_t$	$\lfloor \Delta \cdot m(X) \rceil \in R$
ModSwitch	Switch the ciphertext modulus to p^r	$\left\lfloor \frac{p^r}{t} \right\rceil \cdot m(X) + e(X) \in R_{p^r}$	$\lfloor \Delta' \cdot m(X) \rceil \in R_{p^r}$
Coeffs2Slots	Move the coefficients to slots	$\left\{ \left\lfloor \frac{p^r}{t} \right\rceil \cdot m_i + e_i \right\}_{1 \le i \le k} \in \mathbb{Z}_{p^r}^k$	$\left\{\Delta'\cdot m_i\right\}_{1\leq i\leq k}\in\mathbb{Z}_{p^r}^k$
EvalLUT	Evaluate LUT over the slots	$\left\{f(m_i)\right\}_{1\leq i\leq k}\in\mathbb{Z}_{p^s}^k$	$\left\{f(m_i)\right\}_{1\leq i\leq k}\in\mathbb{Z}_{p^s}^k$

Homomorphic LUT Evaluation (\mathbb{Z}_{p^r} to \mathbb{Z}_p)

- Given an LUT $F: \mathbb{Z}_{p^r} \to \mathbb{Z}_p$

 - Generally, there is no such polynomial p.
- Our observation
 - F can be written as a multivariate function of each digit of the input.

- i.e.,
$$F(u_{r-1}...u_0) = \tilde{F}(u_0, ..., u_{r-1})$$

• Then, F always has a polynomial representation over \mathbb{Z}_p .

• (Hopefully) there exists a polynomial p such that $p(x) = p^{r-1} \cdot F(x) \pmod{p^r}$.

Homomorphic LUT Evaluation (\mathbb{Z}_{p^r} to \mathbb{Z}_p)

Our method

- During DigitExtract, each digit is extracted.
 - More precisely, compute $[p^{r-i-1} \cdot u_r \dots u_{i+1} u_i]_{p^{r-i}} = [u_i]_p$.
- Then, evaluate \tilde{F} using each digit.
- Drawback
 - (At most) \tilde{F} is of degree r(p-1), with p^r terms.
 - Computing such polynomial can be time-consuming.

• Given LUT $F : \mathbb{Z}_{p^r} \to \mathbb{Z}_p$, find $\tilde{F} : \mathbb{Z}_p^r \to \mathbb{Z}_p$ such that $\tilde{F}(x_0, x_1, \dots, x_{r-1}) = F(x_{r-1} \dots x_0)$.

- (Shifted) Heaviside Function
 - The most basic form of step function

 $\mathbf{1}_{x < B}(x) = \begin{cases} 0 & \text{if } x < B = b_{r-1} \dots b_0 \\ 1 & \text{otherwise} \end{cases}$

- Why Heaviside Function?
 - LUT for FV-to-FV functional bootstrapping has a form of step function.
 - Heaviside function is the easiest form of the step function family.

- Recurrence Relation
 - Define two Heaviside Functions over $\mathbb{Z}_{p^{r-1}}$
 - $\mathbf{1}_{x < B_1}(x) = \begin{cases} 0 & \text{if } x < B_1 := b_{r-1} \dots (b_1 + 1) \\ 1 & \text{otherwise} \end{cases}$
 - $\mathbf{1}_{x < B_2}(x) = \begin{cases} 0 & \text{if } x < B_2 := b_{r-1} \dots b_1 \\ 1 & \text{otherwise} \end{cases}$
 - Construct the following recurrence relation.

- $\mathbf{1}_{x < B}(u_{r-1} \dots u_1 u_0) = \mathbf{1}_{x < b_0}(u_0) \cdot \mathbf{1}_{x < B_1}(u_{r-1} \dots u_1 u_0)$

$$(u_1) + \mathbf{1}_{x \ge b_0}(u_1) \cdot \mathbf{1}_{x < B_2}(u_{r-1} \dots u_1)$$

Recurrence Relation

•
$$\mathbf{1}_{x < B}(u_{r-1} \dots u_1 u_0) = \mathbf{1}_{x < b_0}(u_0) \cdot \mathbf{1}_{x < B_1}(u_{r-1} \dots u_1) + \mathbf{1}_{x \ge b_0}(u_0) \cdot \mathbf{1}_{x < B_2}(u_{r-1} \dots u_1)$$

- $\mathbf{1}_{x < b_0}$ and $\mathbf{1}_{x \ge b_0}$ has a univariate polynomial representation of u_0 .
- $\mathbf{1}_{x < B_1}$, $\mathbf{1}_{x < B_2}$ can be represented with two LUTs over $\mathbb{Z}_{p^{r-2}}$, using the relation.
 - \blacksquare In fact, $\mathbf{1}_{x < B_1}$ and $\mathbf{1}_{x < B_2}$ can be represented with two identical LUTs.
 - $\mathbf{1}_{x < B_1}(u_{r-1} \dots u_1) = \mathbf{1}_{x < (b_1+1)} \cdot \mathbf{1}_{x < B_3}(u_{r-1} \dots u_2)$
 - $\mathbf{1}_{x < B_2}(u_{r-1} \dots u_1) = \mathbf{1}_{x < b_1} \cdot \mathbf{1}_{x < B_3}(u_{r-1} \dots u_2) +$
- It only requires $2 + 4 + \ldots + 2 = 4r 4$ univariate polynomial evaluations of degree p 1.

$$\mathbf{1}_{x^{2}} + \mathbf{1}_{x \ge (b_{1}+1)} \cdot \mathbf{1}_{x < B_{4}}(u_{r-1} \dots u_{2})$$
$$+ \mathbf{1}_{x \ge b_{1}} \cdot \mathbf{1}_{x < B_{4}}(u_{r-1} \dots u_{2})$$

Algorithm

- Input : Bound $B = b_{r-1} \dots b_0 \in \mathbb{Z}_{p^r}$, (encrypted) messages $u_0, \dots, u_{r-1} \in \mathbb{Z}_p$
- Output : $\mathbf{1}_{x \ge b_{r-1} \dots b_0} (u_{r-1} \dots u_0)$

$$1. \begin{array}{l} x_0 \leftarrow \mathbf{1}_{x \ge b_{r-1}+1}(u_{r-1}) \\ x_1 \leftarrow \mathbf{1}_{x \ge b_{r-1}}(u_{r-1}) \end{array}$$

2.
$$x_0 \leftarrow \mathbf{1}_{x < b_i + 1}(u_i) \cdot x_0 + \mathbf{1}_{x \ge b_i + 1}(u_i) \cdot x_1$$
$$x_1 \leftarrow \mathbf{1}_{x < b_i}(u_i) \cdot x_0 + \mathbf{1}_{x \ge b_i}(u_i) \cdot x_1$$

3. Return $\mathbf{1}_{x < b_0}(u_0) \cdot x_0 + \mathbf{1}_{x \ge b_0}(u_0) \cdot x_1$

for i = r - 2; i > 0; i - = 1

Step Function Evaluation

Step function is a linear combination of Heaviside functions.

Given an LUT $F(x) = \begin{cases} \alpha_1 & \text{if } x < B_1 \\ \alpha_2 & \text{if } B_1 \le x < B_2 \\ \vdots & & \\ \alpha_k & \text{if } B_{k-1} \le x \end{cases}$

We can write $F(x) = \alpha_1 + (\alpha_2 - \alpha_1) \cdot F_1$

where
$$F_i(x) = \begin{cases} 0 & \text{if } x < B_i \\ 1 & \text{otherwise} \end{cases}$$
.

$$(x) + \ldots + (\alpha_k - \alpha_{k-1}) \cdot F_{k-1}(x)$$

• Remark : One can generalise the recurrence relation as long as $k \leq p$.

- Our method
 - i.e., $F_i(x) = \left[F(x)/p^i \right]_p \quad (0 \le i < s)$ Then, we have $F(x) = \sum_{i=1}^{s-1} [F_i(x)]_{p^r} \cdot p$
 - Therefore, it remains to compute $\left[F_i(x)\right]_{p^{r-i}}$.

In other words, we need homomorphic lifting.

i=0

Homomorphic LUT Evaluation (\mathbb{Z}_{p^r} to \mathbb{Z}_{p^s})

• Given $F : \mathbb{Z}_{p^r} \to \mathbb{Z}_{p^s}$, define s LUTs $F_i : \mathbb{Z}_{p^r} \to \mathbb{Z}_p$ which outputs *i*-th digit of F.

$$p^{i} = \sum_{i=0}^{s-1} \left[F_{i}(x) \right]_{p^{r}-i}$$

Homomorphic Lifting

- Input : $ct = (b, a) \in R_a^2$, an encryption of $\vec{m} \in \mathbb{Z}_p^k$.
 - Compute $ct' = (\lfloor 1/p^{i-1} \cdot b \rfloor, \lfloor 1/p^{i-1} \cdot a \rceil) \in R_a^2$. (+SubSum)
 - ct' is an encryption of $\overrightarrow{m} + p \cdot \overrightarrow{I}$ for some random $\overrightarrow{I} \in \mathbb{Z}_{p^{i-1}}^k$.
 - Evaluating G_i returns an encryption of $\overrightarrow{m} \in \mathbb{Z}_{p^i}$.
 - Why does it not need Coeffs2Slots/Slots2Coeffs as in bootstrapping?
 - This case, the message is stored in the LSB.
 - Conversely, the message is stored in the MSB when bootstrap.
 - When i is large enough (i.e., $||\vec{I}||_{\infty} \ll p^i$), depth consumption can be mitigated with Coeffs2Slots and Slots2Coeffs. (Use low-degree null polynomial from [MHWW24])

Comparison to TFHE-like schemes

	Ours	TFHE	Amortized TFHE (FHEW-like)	Amortized TFHE (FV/CKKS)	Amortized TFHE (Others)
Scheme	This work	[DM14], [CGGI16], [LMK+23]	[MS18], [GPvL23], [MKMS23]	[LW23], [LW24], [BCKS24]	[LW23], [OPP23]
Remaining Multiplicative Level	Ο	X	Χ	X	Ο
Large Plaintext Modulus	Ο	X	X	Ο	Δ
SIMD arithmetic	Ο	X	Ο	Ο	Ο

Asymptotic Bootstrapping Complexity

	Ephemeral Message Space	Time Complexity
Traditional Bootstrapping	$\Delta \cdot m + e$	$O(\log p^r + \log s _1)$
General Bootstrapping	$\Delta \cdot e_1 + e_2$	<i>O</i> (log(<i>s</i> ₁))
Functional Bootstrapping	$\Delta \cdot m + e$	$O(\log p^r + \log s _1)$

Classification of Existing Works

	BGV/FV	CKKS	FHEW-like
Traditional Bootstrapping	[HS14], [CH18], [GIKV22]	[CHK+18], [CCS19], [HK20], [LLL+21]	_
General Bootstrapping	[KSS24], [MHWW24]	[KPK+22]	[ADE+21]
Functional Bootstrapping	Our work	[BCKS24]	[DM14], [CGGI16], [LMK+23]
Others	[LW23], [LW24]		[MS18], [LW23], [MKMS23], [OPP23]

Thank you for listening! Enc Enc MALL

