-
Notifications
You must be signed in to change notification settings - Fork 239
/
Copy pathElGamal.fst
64 lines (51 loc) · 1.67 KB
/
ElGamal.fst
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
(*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module ElGamal
open FStar.DM4F.Heap.Random
open FStar.DM4F.Random
open ElGamal.Group
let bij' (m:group) =
let f = fun h -> upd h (to_id 0) ((sel h (to_id 0) - log m) % q) in
let finv = fun h -> upd h (to_id 0) ((sel h (to_id 0) + log m) % q) in
Bijection f finv
let elgamal (m:group)
: Rand group
= let z = sample () in
g^z
let elgamal' (m:group) : Rand group =
let z = sample () in
(g^z) * m
let elgamal_prop (m:group) (z:elem)
: Lemma
(ensures (g^((z - log m) %q)) * m == g^z)
[SMTPat ((g^(z - log m) % q) * m) ]
= pow_log m;
mul_pow ((z - log m) % q) (log m);
mod_minus_plus z (log m)
(*
g^((z - log m) % q) * m
== [pow_log m]
g^((z - log m) % q) * g^(log m)
== [mul_pow ((z - log m) % q) (log m)]
g^(((z - log m) % q + log m) % Q)
== [mod_minus_plus z (log m)]
g^z
*)
let elgamal_equiv (m c:group)
: Lemma
(let f1 h = reify (elgamal m) h in
let f2 h = reify (elgamal' m) h in
mass f1 (point c) == mass f2 (point c))
= let f1 h = reify (elgamal m) h in
let f2 h = reify (elgamal' m) h in
pr_eq f1 f2 (point c) (point c) (bij' m)