Skip to content
master
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

README.rst

CellStar

https://travis-ci.org/Fafa87/cellstar.svg?branch=master

https://img.shields.io/pypi/pyversions/cellstar

Introduction

Automatic tracking of cells in time-lapse microscopy is required to investigate a multitude of biological questions. To limit manipulations during cell line preparation and phototoxicity during imaging, brightfield imaging is often considered. Since the segmentation and tracking of cells in brightfield images is considered to be a difficult and complex task, a number of software solutions have been already developed.

CellStar is one of such algorithms. It is optimized to segment and track images of budding yeast cells growing in monolayer (e.g. images from microfluidic chambers), however the algorithm can be also used to track other round objects (in brightfield as well as fluorescent images).

The important part of that solution is parameter fitting mechanism which allows to train and use CellStar for many different types of imagery.

Please visit our website http://www.cellstar-algorithm.org/ for more details.

Distributions

There are three ways of using CellStar:

The plugin package includes not only the plugin itself but also examples of its usage to guide users on how to achieve best segmentation on a given type of imagery.

How to use package

import cellstar
input_image = scipy.misc.imread("input_images/sample_brightfield.tif")
segmentator = cellstar.Segmentation(segmentation_precision=9, avg_cell_diameter=35)
segmentator.set_frame(input_image)
segmentation, snakes = segmentator.run_segmentation()

See and run examples/use_cellstar.py as well as tests for more details.

Wide range of example usages

During the testing phase of our plugin it turned out that combining parameter fitting and CellProfiler pipeline flow can result in a very flexible solution. In order to show that and also provide a quick starting point for users the Official user guide was prepared.

It contains the ready to use segmentation solution for a wide range of various imagery which includes:

  • complete pipeline description
  • method selection discussions
  • CellProfiler Analyst usage for advanced filtering

The pipelines listed in the document along with the actual imagery are available as a part of plugin version. Every case can be easily to recreate the results.

https://user-images.githubusercontent.com/9865688/62827684-7ca28f80-bbd4-11e9-9ff7-f9ee7591d732.png

About

Algorithm for round cells identification in the brightfield microscopy images.

Topics

Resources

Releases

No releases published

Packages

No packages published

Languages

You can’t perform that action at this time.