=1
PMIx10:8
1i98 5

Process Management Interface
for Exascale (PMIx) Standard

Version 2.0 (draft)

November 2017

This document describes the Process Management Interface for Exascale (PMIx) Standard, version
2.0 (draft).

Comments: Please send comments on the PMIx standard to the PMIx Community by subscribing
to the PMIx developers mailing list at https://groups.google.com/forum/#!forum/pmix. Please
include the version of the PMIx standard you are commenting about, and the page, section, and line
numbers that you are referencing. Please note that messages sent from an unsubscribed e-mail
address will be ignored.

Copyright © 2017 PMIx Standard Review Board.

Permission to copy without fee all or part of this material is granted, provided the PMIx Standard
Review Board copyright notice and the title of this document appear, and notice is given that
copying is by permission of PMIx Standard Review Board.

https://groups.google.com/forum/#!forum/pmix

This page intentionally left blank

Contents

1. Introduction

1.1.
1.2.

1.3.

1.4.

2.1.
2.2.
2.3.
24.

3.1.

3.2.

PMIx Terms and Conventions

Charter e
PMIx Standard Overview e
1.2.1. Who should use the standard?
1.2.2. What is defined in the standard?
1.2.3. Whatis not defined in the standard?
PMIx Architecture Overview
1.3.1. The PMIx Reference Implementation
1.3.2. The PMIx Reference Server

Organization of thisdocument

LW W W W NN NN D =

Notional Conventions e
Semantics e e

Naming Conventions

AN N O Lt A

Procedure Conventions e

Data Structures and Types

Constants e e e e e e

3.1.1. Reservedattributes

3.1.2. Process state Definitions oo, 23
3.1.3. ErrorConstants e e 24
DataTypes o o e e 27
32.1. Packing Types o e 27
322, pmix_scope_t e 28
323. pmix _data range_t. 29
324. pmix persistence_t 30
32.5. pmix_info_directives_t, 30

32.6. pmix_alloc_directive_t., 31

ii

3.3. DataPacking/Unpacking 31

33.1. ByteObject e 31

34, Data Structures i e e e e e e e e e e e e 32
3.4.1. ProcessStructure 32
3.4.2. Process Info Structure 33
3.4.3. Data Array Structure e e 33
3.44. Value Structure e 34
3.4.5. Info and Info Array Structures 35
3.4.6. Lookup Return Structure 36
347, AppStructure L e e e 37
348, Query Structure L. e e e e e 37
3.49. Modex Structure e 38

3.5. Callback Functions it 38
3.5.1. Release Callback Function 38
3.5.2. Modex Callback Function 39
3.5.3. Spawn Callback Function 39
3.54. OpCallback Function 40
3.5.5. Lookup Callback Function 40
3.5.6. Value Callback Function 41
3.57. InfoFunction 41

3.6. Other Support Functions 42
3.6.1. Unsorted Function 42
3.6.2. Key/Value Pair Management 42

4. Initialization and Finalization 45
41, QUETY . . v e e 45
4.1.1. PMIx Initialized 45
4.1.2. PMIx Get_vwversion 46

42, CHent e e e e e 46
42.1. PMIx Init e 46
422, PMIx Finalize i it 47

4.3, Tool e e e 48
43.1. PMIx_tool_init 48
43.2. PMIx _tool finalize 49

PMIx Standard — Version 2.0 (draft) — November 2017

44, Server
44.1. PMIx server init

44.2. PMIx server_ finalize

. Key/Value Management

5.1. Setting and Accessing Key/Value Pairs
51.1. PMIx Put
5.12. PMIx Get
5.13. PMIx Get_nb
5.14. PMIx_Store_internal

5.2. Exchanging Key/Value Pairs
52.1. PMIx Commit
52.2. PMIx Fenceuu.ou..
5.23. PMIx Fence . nb................

5.3. Publishand LookupData
5.3.1. PMIx Publish.
5.3.2. PMIx Publish nb
5.33. PMIX LOOKUPo...
534, PMIx_Lookup. nb
5.3.5. PMIx Unpublish
5.3.6. PMIx Unpublish nb.............

. Process Management

6.1. Abort
6.1.1. PMIx Abort
6.2. ProcessCreation
6.2.1. PMIX Spawn
6.22. PMIx Spawn_nb
6.3. Connecting and Disconnecting Processes
6.3.1. PMIx Connect
6.3.2. PMIx Connect nb
6.3.3. PMIx Disconnect
6.3.4. PMIx Disconnect nb

Contents iii

PMIx ReSOlVe_PEEers v i v viiu..
PMIx Resolve nodes o v v v v i ii .

PMIx Query info nbo oo

7. Job Allocation Management

7.1. Allocation Requests L

7.1.1.
7.1.2.

PMIx_Allocation request_ nb
PMIx_Job_control nb,

7.2. Process and Job Monitoring oL

7.2.1.
7.2.2.

PMIx Process monitor nb
PMIx Heartbeat

8. Event Notification

8.1. Logging e

8.1.1.

PMIx Log nb

8.2. Notification and Management

8.2.1.
8.2.2.
8.2.3.
8.2.4.
8.2.5.
8.2.6.

PMIx_Register_event_handler.
PMIx_Deregister_ _event_handler
PMIx Notify event
Event Notification Callback Function
Notification Callback Function

Event Handler Registration Function

9. Data Packing and Unpacking

9.1. General Routines

9.1.1.
9.1.2.
9.1.3.
9.1.4.
9.1.5.

PMIx Data pack
PMIx Data unpack
PMIx Data Copy o v v i v v it e
PMIx Data print
PMIx_Data_copy payload.

10.Server Specific Interfaces

10.0.1.
10.0.2.

PMIx_generate_regex

PMIx_generate ppn. e

iv PMIx Standard — Version 2.0 (draft) — November 2017

77
77
77
78
79
79
80

82
82
82
83
83
84
84
85
86
88

89
89
89
90
93
94
94

10.1.

10.0.3. PMIx_server_register nspace. 96

10.0.4. PMIx_server_deregister_nspace 97
10.0.5. PMIx_server_register_client 98
10.0.6. PMIx_ server_deregister_client 99
10.0.7. PMIx_server_setup_fork. 99
10.0.8. PMIx_server_dmodex_request 100
10.0.9. PMIx_server_setup_application 101
10.0.10.PMIx_server_setup_local_support 102
Server Function Pointerso 102
10.1.1. pmix_server_module_t Module 103
10.1.2. pmix_server_ client _connected fn t 104
10.1.3. pmix_server client_finalized fn t 104
10.1.4. pmix_server_abort_fn t 105
10.1.5. pmix_server_fencenb_fn_t 106
10.1.6. pmix_server dmodex_req fn t. 107
10.1.7. pmix_server publish fn t 108
10.1.8. pmix_server_ lookup_fn t 109
10.1.9. pmix_server_unpublish_fn t 110
10.1.10ppmix_server_spawn_fn_t 111
10.1.11.)pmix_server connect_fn_t 112
10.1.12.pmix_server_disconnect_fn t 113
10.1.13.pmix_server_register events_fn_t. 114
10.1.14pmix_server_deregister_events_fn t 115
10.1.15pmix_server notify event fn t 116
10.1.16 pmix_connection_cbfunc_t 117
10.1.17pmix_server_listener fn t 118
10.1.18pmix_server_query_fn_ t 118
10.1.19pmix_tool_connection cbfunc t 119
10.1.20.pmix_server_ tool_connection_fn t. 120
10.1.21 pmix_server_log fn_t 121
10.1.22pmix_server_alloc_fn_ t 122
10.1.23 pmix_server_job_control fn t 123
10.1.24 pmix_server monitor_fn_t 123

Contents v

vi

A. Document Revision History
A.1. Version 2.0: Date TBD

A.2. Version 1.0: ad hoc release

B. Acknowledgements
B.1. Version 2.0
B.2. Version 1.0

Bibliography

Index

PMIx Standard — Version 2.0 (draft) — November 2017

125
125
125

126
126
126

127

128

o OO N =

- 4
W=+ O o

NMDMNON 2 2 2 oo
N = O O o0 ~NO O »~

DN NN
[e2J6) IEE S @S]

WWNDNDN
— O © 0 N

w w
W N

CHAPTER 1
Introduction

The Process Management Interface (PMI) has been used for quite some time as a means of
exchanging wireup information needed for inter-process communication. Two versions (PMI-1 and
PMI-2) have been released as part of the MPICH effort, with PMI-2 demonstrating better scaling
properties than its PMI-1 predecessor. However, two significant challenges face the High
Performance Computing (HPC) community as it continues to move towards machines capable of
exaflop and higher performance levels:

e the physical scale of the machines, and the corresponding number of total processes they support,
is expected to reach levels approaching 1 million processes executing across 100 thousand nodes.
Prior methods for initiating applications relied on exchanging communication endpoint
information between the processes, either directly or in some form of hierarchical collective
operation. Regardless of the specific mechanism employed, the exchange across such large
applications would consume considerable time, with estimates running in excess of 5-10
minutes; and

o whether it be hybrid applications that combine OpenMP threading operations with MPI, or
application-steered workflow computations, the HPC community is experiencing an
unprecedented wave of new approaches for computing at exascale levels. One common thread
across the proposed methods is an increasing need for orchestration between the application and
the system management software stack (SMS) comprising the scheduler (a.k.a. the workload
manager (WLM)), the resource manager (RM), global file system, fabric, and other subsystrems.
The lack of available support for application-to-SMS integration has forced researchers to
develop "virtual" environments that hide the SMS behind a customized abstraction layer, but this
results in considerable duplication of effort and a lack of portability.

Process Management Interface - Exascale (PMIx) represents an attempt to resolve these questions
by providing an extended version of the PMI definitions specifically designed to support clusters up
to exascale and larger sizes. The overall objective of the project is not to branch the existing
definitions — in fact, PMIx fully supports both of the existing PMI-1 and PMI-2 APIs — but rather to:

a) augment those APIs to eliminate some current restrictions that impact scalability,

b) extend the breadth of the PMI definitions to providing an abstraction layer for SMS interactions,

c) establish a standards-like body for maintaining the definitions, and

d) provide a reference implementation of the PMIx standard that demonstrates the desired level of
scalability and features.

Complete information about the PMIx standard and affiliated projects can be found at the PMIx
web site: https://pmix.org

https://pmix.org

- O © oOo~N OO MWW N

—_

—_
w N

14

15

16

17

18

19

20

21
22
23
24

25
26

1.1

1.2

1.2.1

Charter

The charter of the PMIx community is to:

e Define a set of agnostic APIs (not affiliated with any specific programming model or code base)
to support interactions between application processes and the SMS.

e Develop an open source (non-copy-left licensed) standalone “reference” library to facilitate
adoption of the PMIx standard.

e Retain transparent backward compatibility with the existing PMI-1 and PMI-2 definitions, any
future PMI releases, and across all PMIx versions.

e Support the “Instant On” initiative for rapid startup of applications at exascale and beyond.

e Work with the HPC community to define and implement new APIs that support evolving
programming model requirements for application interactions with the SMS.

Participation in the PMIx community is open to anyone, and not restricted to only code contributors
to the reference implementation.

PMIix Standard Overview

Who should use the standard?

1.2.2 What is defined in the standard?

1.2.3 What is not defined in the standard?

2

The PMIx Standard does not include anything, either stated or implied, regarding implementation.
It instead focuses exclusively on defining APIs and associated attribute key strings, and describing
the expected behavior of those entities. How that behavior is realized is entirely at the discretion of
the implementer.

As previously noted, system environments and PMIx library implementers are free to return “not
supported” for any request. Thus, users should design their applications accordingly.

PMIx Standard — Version 2.0 (draft) — November 2017

1

N

0 N o O

11
12

13
14
15
16
17
18

19
20
21
22
23

24

25

26

27
28
29

1.3 PMiIx Architecture Overview

This section presents a brief overview the PMIx Architecture [1].

1.3.1 The PMIx Reference Implementation

Note that the definition of the PMIx Standard is not contingent upon use of the PMIx Reference
Implementation. Any implementation that supports the defined APIs is a PMIx Standard compliant
implementation, and some environments have chosen to pursue their own custom implementation.
The PMIx Reference Implementation is provided solely for the following purposes:

e Validation of the standard.
No proposed change and/or extension to the PMIx standard is accepted without an accompanying
prototype implementation in the PMIx Reference Implementation. This ensures that the proposal
has undergone at least some minimal level of scrutiny and testing before being considered.

e Ease of adoption.
The PMIx Reference Implementation is designed to be particularly easy for resource managers
(and the SMS in general) to adopt, thus facilitating a rapid uptake into that community for
application portability. Both client and server PMIX libraries are included, along with examples
of client usage and server-side integration. A list of supported environments and versions is
provided on the PMIx web site www.pmix.org

The PMIx Reference Implementation targets support for the Linux operating system. A reasonable
effort is made to support all major, modern Linux distributions; however, validation is limited to the
most recent 2-3 releases of RedHat Enterprise Linux (RHEL), Fedora, CentOS, and SUSE Linux
Enterprise Server (SLES). In addition, development support is maintained for Mac OSX.
Production support for vendor-specific operating systems is included as provided by the vendor.

1.3.2 The PMIx Reference Server

1.4 Organization of this document

The remainder of this document is structured as follows:
e Introduction and Overview in Chapter 1 on page 1

e Terms and Conventions in Chapter 2 on page 5

CHAPTER 1. INTRODUCTION 3

www.pmix.org

—_

o N o 0 b~ W N

4

e Data Structures and Types in Chapter 3 on page 7

e PMIXx Initialization and Finalization in Chapter 4 on page 45
o Key/Value Management in Chapter 5 on page 52

e Process Management in Chapter 6 on page 66

e Job Management in Chapter 7 on page 77

e Event Notification in Chapter 8 on page 82

e Data Packing and Unpacking in Chapter 9 on page 89

e PMIx Server Specific Interfaces in Chapter 10 on page 95

PMIx Standard — Version 2.0 (draft) — November 2017

OO0k, WN =

10
11

12
13

14

15
16
17

CHAPTER 2

PMIx Terms and Conventions

Define “attributes” and how they are used, intent is to allow for definition of flexible APIs that can
change behavior based on attributes instead of modifying function signature. Include description of
data types.

This document borrows freely from other standards (most notably from the Message Passing
Interface (MPI) and OpenMP standards) in its use of notation and conventions in an attempt to
reduce confusion.

Notional Conventions

Some sections of this document describe programming language specific examples or APIs. Text
that applies only to programs for which the base language is C is show as follows:

C

C specific text...
int foo = 42;

C

Some text is for information only, and is not part of the normative specification. These take three
forms, described in their examples below:

v v

Note: General text...
A A

Rationale

Throughout this document, the rationale for the design choices made in the interface specification is
set off in this section. Some readers may wish to skip these sections, while readers interested in
interface design may want to read them carefully.

—_

(&,

10
11

12

13

14

15
16
17
18

19
20

21
22

Advice to users

Throughout this document, material aimed at users and that illustrates usage is set off in this
section. Some readers may wish to skip these sections, while readers interested in programming in
MPI may want to read them carefully.

Advice to implementers

Throughout this document, material that is primarily commentary to implementers is set off in this
section. Some readers may wish to skip these sections, while readers interested in PMIx
implementations may want to read them carefully.

2.2 Semantics

The following terms will be taken to mean:
e shall and will indicate that the specified behavior is required of all conforming implementations

e should and may indicate behaviors that a quality implementation would include, but are not
required of all conforming implementations

2.3 Naming Conventions

2.4 Procedure Conventions

6

While current PMIx Reference Implementation is solely based on the C programming language, it
is not the intent of the PMIx Standard to preclude the use of other languages. Accordingly, the
procedure specifications in the PMIx Standard are written in a language-independent syntax with
the arguments marked as IN, OUT, or INOUT. The meanings of these are:

e IN: The call may use the input value but does not update the argument from the perspective of
the caller at any time during the call?s execution,

e OUT: The call may update the argument but does not use its input value

e INOUT: The call may both use and update the argument.

PMIx Standard — Version 2.0 (draft) — November 2017

0 NOoO O~ W

10
11
12
13
14
15
16
17
18
19
20

21

22
23
24
25
26

27
28

CHAPTER 3

Data Structures and Types

Constants

The constant defined in this section may be used before calling any library initialization routine.

PMIX_MAX NSLEN

(integer) Maximum namespace string length
PMIX_MAX KEYLEN

(integer) Maximum key string length

The pmix_rank_t structure is an integer type for rank values.
The following constants can be used to set the pmix_rank_t .

PMIX_RANK UNDEF
Define a value for requests for job-level data where the info itself is not associated with any
specific rank, or when a request involves a rank that is not known. For example, when
someone requests info thru one of the legacy interfaces where the rank is typically encoded
into the key itself since there is no rank parameter in the API itself.

PMIX_RANK WILDCARD
Define a value to indicate that the user wants the data for the given key from every rank that
posted that key.

PMIX RANK LOCAL_NODE
Special rank value used to define groups of ranks for use in collectives. All ranks on a local
node.

Reserved attributes

Define a set of “standard” PMIx attributes that can be queried. Implementations (and users) are free
to extend as desired, so the get functions need to be capable of handling the “not found” condition.
Note that these are attributes of the system and the job as opposed to values the application (or
underlying MPI library) might choose to expose - i.e., they are values provided by the resource
manager as opposed to the application. Thus, these keys are RESERVED.

PMIX_ATTR_UNDEF NULL (NULL)
Constant representing an undefined attribute.

26

27
28
29
30
31
32
33
34
35
36
37
38
39
40

3.1.1.1

3.1.1.2

8

Initialization attributes

PMIX_EVENT BASE "pmix.evbase" (struct event_base x*)
Pointer to libevent event_base to use in place of the internal progress thread.
PMIX_SERVER_TOOL_SUPPORT "pmix.srvr.tool" (bool)
The host RM wants to declare itself as willing to accept tool connection requests.
PMIX_SERVER_REMOTE_CONNECTIONS "pmix.srvr.remote" (bool)
Allow connections from remote tools (do not use loopback device).
PMIX SERVER_SYSTEM SUPPORT "pmix.srvr.sys" (bool)
The host RM wants to declare itself as being the local system server for PMIx connection
requests.
PMIX SERVER_TMPDIR "pmix.srvr.tmpdir" (charx)
temp directory where PMIx server will place client rendezvous points and contact info.
PMIX SYSTEM TMPDIR "pmix.sys.tmpdir" (charx)
temp directory for this system, where PMIx server will place tool rendezvous points and
contact info.
PMIX_REGISTER_NODATA "pmix.reg.nodata" (bool)
Registration is for nspace only, do not copy job data.
PMIX_SERVER_ENABLE_MONITORING "pmix.srv.monitor" (bool)
Enable PMIx internal monitoring by server
PMIX_ SERVER _NSPACE "pmix.srv.nspace" (charx)
Name of the nspace to use for this server.
PMIX SERVER_RANK "pmix.srv.rank" (pmix_rank_t)
Rank of this server

Tool-related attributes

PMIX TOOL_NSPACE "pmix.tool.nspace" (charx)
Name of the nspace to use for this tool.
PMIX_ TOOL_RANK "pmix.tool.rank" (uint32_t)
Rank of this tool.
PMIX_SERVER PIDINFO "pmix.srvr.pidinfo" (pid_t)
PID of the target server for a tool.
PMIX_CONNECT_TO_SYSTEM "pmix.cnct.sys" (bool)
The requestor requires that a connection be made only to a local system-level PMIx server.
PMIX_CONNECT_SYSTEM FIRST "pmix.cnct.sys.first" (bool)
Preferentially look for a system-level PMIx server first.
PMIX_SERVER URI "pmix.srvr.uri" (charx)
URI of server to be contacted.
PMIX SERVER_HOSTNAME "pmix.srvr.host" (charx)
node where target server is located

PMIx Standard — Version 2.0 (draft) — November 2017

N OO0, WD =

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29

30

31
32
33
34
35
36
37

3.1.1.3

3.1.1.4

PMIX_CONNECT_ MAX RETRIES "pmix.tool.mretries" (uint32_t)
maximum number of times to try to connect to server

PMIX_CONNECT_RETRY_DELAY "pmix.tool.retry" (uint32_t)
time in seconds between connection attempts

PMIX TOOL_DO_NOT_CONNECT "pmix.tool.nocon" (bool)

The tool wants to use internal PMIx support, but does not want to connect to a PMIx server.

Identification attributes

PMIX USERID "pmix.euid" (uint32_t)
Effective user id

PMIX GRPID "pmix.egid" (uint32_t)
Effective group id

PMIX DSTPATH "pmix.dstpath" (charx)
Path to dstore files

PMIX_VERSION_INFO "pmix.version" (charx)
PMIx version of contactor

PMIX_PROGRAMMING_MODEL "pmix.pgm.model" (charx)
Programming model being initialized (e.g., “MPI” or “OpenMP”)

PMIX_MODEL_LIBRARY NAME "pmix.mdl.name" (charx)
Programming model implementation ID (e.g., “OpenMPI” or “MPICH”)

PMIX MODEL_LIBRARY VERSION "pmix.mld.vrs" (charx)
Programming model version string (e.g., “2.1.17)

PMIX THREADING_MODEL "pmix.threads" (charx)
Threading model used (e.g., “pthreads”)

PMIX REQUESTOR IS_TOOL "pmix.req.tool" (bool)
Requesting process is a tool

PMIX_ REQUESTOR_IS_CLIENT "pmix.req.client" (bool)
Requesting process is a client process

USOCK rendezvous socket attributes

PMIX_ USOCK DISABLE "pmix.usock.disable" (bool)
Disable legacy usock support
PMIX_SOCKET MODE "pmix.sockmode" (uint32_t)
POSIX mode_t (9 bits valid)
PMIX_SINGLE_LISTENER "pmix.sing.listnr" (bool)
Use only one rendezvous socket, letting priorities and/or MCA param select the active
transport.

CHAPTER 3. DATA STRUCTURES AND TYPES

20

21
22

23

24

25
26
27
28
29
30
31
32

3.1.1.5

3.1.1.6

3.1.1.7

10

TCP connection attributes

PMIX_TCP_REPORT URI "pmix.tcp.repuri" (charx)
output URI. -’ for stdout, ’+’ for stderr, or filename
PMIX_TCP_URI "pmix.tcp.uri" (charx)
URI of server to connect to, or file:<name of file containing it>
PMIX_TCP_IF_INCLUDE "pmix.tcp.ifinclude" (charx)
Comma-delimited list of devices and/or CIDR notation
PMIX_TCP_IF_EXCLUDE "pmix.tcp.ifexclude" (charx)
Comma-delimited list of devices and/or CIDR notation
PMIX TCP_IPV4_PORT "pmix.tcp.ipv4" (int)
IPv4 port to be used
PMIX_TCP_IPV6_PORT "pmix.tcp.ipv6" (int)
IPv6 port to be used
PMIX TCP_DISABLE_IPV4 "pmix.tcp.disipv4" (bool)
true to disable IPv4 family
PMIX_TCP_DISABLE_IPV6 "pmix.tcp.disipvé6" (bool)
true to disable IPv6 family

GDS attributes

PMIX_GDS_MODULE "pmix.gds.mod" (charx)
Comma-delimited string of desired modules

General proc-level attributes

PMIX_CPUSET "pmix.cpuset" (charx)

hwloc bitmap applied to proc upon launch
PMIX_CREDENTIAL "pmix.cred" (charx)

Security credential assigned to proc
PMIX SPAWNED "pmix.spawned" (bool)

true if this proc resulted from a call to PMIx_Spawn
PMIX ARCH "pmix.arch" (uint32_t)

datatype architecture flag

PMIx Standard — Version 2.0 (draft) — November 2017

NN —

o
- O WO NO O~ W

— 4
w N

-
N

- a4 o
© 00N O

AW WWWWWWWWWMNDNDNDNDNDMNDNDNDNDDND
O OWOONOOOOPAPAWN—2OOOONOOOOGLA~,WDN—O

3.1.1.8

3.1.1.9

Scratch directory locations for use by applications
attributes

PMIX TMPDIR "pmix.tmpdir" (charx)
Top-level tmp dir assigned to session
PMIX NSDIR "pmix.nsdir" (charx)
Sub-tmpdir assigned to namespace
PMIX PROCDIR "pmix.pdir" (charx)
Sub-nsdir assigned to proc
PMIX_ TDIR_RMCLEAN "pmix.tdir.rmclean" (bool)
Resource Manager will clean session directories

Information about relative ranks as assigned by the
RM attributes

PMIX PROCID "pmix.procid" (pmix proc_t)
Process identifier

PMIX NSPACE "pmix.nspace" (charx)
nspace of a job

PMIX JOBID "pmix.jobid" (charx)
jobid assigned by scheduler

PMIX_APPNUM "pmix.appnum" (uint32_t)
app number within the job

PMIX_RANK "pmix.rank" (pmix_rank_t)
process rank within the job

PMIX_ GLOBAL_RANK "pmix.grank" (pmix_rank_t)
rank spanning across all jobs in this session

PMIX APP_RANK "pmix.apprank" (pmix_rank_t)
rank within this app

PMIX NPROC_OFFSET "pmix.offset" (pmix_rank_t)
starting global rank of this job

PMIX LOCAL_RANK "pmix.lrank" (uintl6_t)
rank on this node within this job

PMIX NODE_RANK "pmix.nrank" (uintl6_t)
rank on this node spanning all jobs

PMIX_ LOCALLDR "pmix.lldr" (pmix_rank t)
lowest rank on this node within this job

PMIX_ APPLDR "pmix.aldr" (pmix_rank_t)
lowest rank in this app within this job

PMIX_PROC_PID "pmix.ppid" (pid_t)
pid of specified proc

CHAPTER 3. DATA STRUCTURES AND TYPES

11

0N O WN =

24

25

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

3.1.1.10

PMIX_SESSION_ID "pmix.session.id" (uint32_t)
ession identifier
PMIX_NODE_LIST "pmix.nlist" (charx)
Comma-delimited list of nodes running procs for the specified nspace
PMIX ALLOCATED_NODELIST "pmix.alist" (charx)
comma-delimited list of all nodes in this allocation regardless of whether or not they
currently host procs.
PMIX HOSTNAME "pmix.hname" (charx)
Name of the host the specified proc is on
PMIX_ NODEID "pmix.nodeid" (uint32_t)
Node identifier where the specified proc is located
PMIX_LOCAL_PEERS "pmix.lpeers" (charx)
Comma-delimited string of ranks on this node within the specified nspace
PMIX_LOCAL_PROCS "pmix.lprocs" (pmix_proc_t array)
array of pmix_proc_t of procs on the specified node
PMIX LOCAL_CPUSETS "pmix.lcpus" (charx)
colon-delimited cpusets of local peers within the specified nspace
PMIX_PROC_URI "pmix.puri" (charx)
URI containing contact info for proc
PMIX LOCALITY "pmix.loc" (uintlé_t)
relative locality of two procs
PMIX PARENT ID "pmix.parent" (pmix proc_t)
process identifier of my parent process

Size information attributes

PMIX UNIV_SIZE "pmix.univ.size" (uint32_t)
Number of procs in this nspace

PMIX_ JOB_SIZE "pmix.job.size" (uint32_t)
Number of procs in this job

PMIX_JOB_NUM_APPS "pmix.job.napps" (uint32_t)
Number of apps in this job

PMIX_APP_SIZE "pmix.app.size" (uint32_t)
Number of procs in this application

PMIX LOCAL_SIZE "pmix.local.size" (uint32_t)
Number of procs in this job on this node

PMIX NODE_SIZE "pmix.node.size" (uint32_t)
Number of procs across all jobs on this node

PMIX MAX PROCS "pmix.max.size" (uint32_t)
Max number of procs for this job

PMIX NUM_NODES "pmix.num.nodes" (uint32_t)
Number of nodes in this nspace

12 PMIx Standard — Version 2.0 (draft) — November 2017

3.1.1.11

3.1.1.12

Memory information attributes

PMIX AVAIL_PHYS_MEMORY "pmix.pmem" (uint64_t)
Total available physical memory on this node

PMIX_DAEMON_MEMORY "pmix.dmn.mem" (float)
Mbytes of memory currently used by daemon

PMIX_CLIENT AVG_MEMORY "pmix.cl.mem.avg" (float)
Average Mbytes of memory used by client processes

Topology information attributes

PMIX NET TOPO "pmix.ntopo" (charx)
xml-representation of network topology
PMIX LOCAL_TOPO "pmix.ltopo" (charx)
xml-representation of local node topology
PMIX NODE_LIST "pmix.nlist" (charx)
comma-delimited list of nodes running procs for this job
PMIX_ TOPOLOGY "pmix.topo" (hwloc_topology t)
pointer to the PMIX client’s internal topology object
PMIX_ TOPOLOGY_SIGNATURE "pmix.toposig" (charx)
topology signature string
PMIX_LOCALITY_STRING "pmix.locstr" (charx)
string describing a proc’s location
PMIX_HWLOC_SHMEM ADDR "pmix.hwlocaddr" (size_t)
address of HWLOC shared memory segment
PMIX_HWLOC_SHMEM SIZE "pmix.hwlocsize" (size_t)
size of HWLOC shared memory segment
PMIX HWLOC_SHMEM FILE "pmix.hwlocfile" (charx)
path to HWLOC shared memory file
PMIX HWLOC_XML V1 "pmix.hwlocxmll" (charx)
XML representation of local topology using HWLOC v1.x format
PMIX HWLOC_XML V2 "pmix.hwlocxml2" (charx)
XML representation of local topology using HWLOC v2.x format

CHAPTER 3. DATA STRUCTURES AND TYPES

13

—_

3.1.1.13 Request-related attributes

14

PMIX_ COLLECT_ DATA "pmix.collect" (bool)
Collect data and return it at the end of the operation

PMIX_TIMEOUT "pmix.timeout" (int)
Time in sec before specified operation should time out (0 indicating infinite) in error. The
timeout parameter can help avoid “hangs” due to programming errors that prevent the target
proc from ever exposing its data.

PMIX IMMEDIATE "pmix.immediate" (bool)
Specified operation should immediately return an error from the PMIx server if requested
data cannot be found - do not request it from the host RM.

PMIX WAIT "pmix.wait" (int)
Caller requests that the server wait until at least the specified number of values are found (0
indicates all and is the default)

PMIX_COLLECTIVE_ALGO "pmix.calgo" (charx)
comma-delimited list of algorithms to use for collective

PMIX_COLLECTIVE_ALGO_REQD "pmix.calreqd" (bool)
if true, indicates that the requested choice of algo is mandatory

PMIX NOTIFY_COMPLETION "pmix.notecomp" (bool)
notify parent process upon termination of child job

PMIX RANGE "pmix.range" (pmix_data_range_t)
value for calls to publish/lookup/unpublish or for monitoring event notifications

PMIX PERSISTENCE "pmix.persist" (pmix_persistence_t)
value for calls to publish

PMIX DATA_SCOPE "pmix.scope" (pmix_scope_t)
Scope of the data to be found in a PMIx_Get call

PMIX_OPTIONAL "pmix.optional" (bool)
look only in the client’s local data store for the requested value - do not request data from the
server if not found

PMIX_EMBED_BARRIER "pmix.embed.barrier" (bool)
Execute a blocking fence operation before executing the specified operation. By default,
PMIx_Finalize does not include an internal barrier operation. This attribute directs
PMIx_Finalize to execute a barrier as part of the finalize operation.

PMIX JOB_TERM_STATUS "pmix.Jjob.term.status" (pmix_status_t)
status returned upon job termination

PMIX_PROC_STATE_STATUS "pmix.proc.state" (pmix_proc_state_t)
process state

PMIx Standard — Version 2.0 (draft) — November 2017

—_

O NOoO O WD

11
12
13
14
15
16
17

18

19

20
21
22
23

24

25

26
27
28
29
30
31
32
33
34
35
36
37
38

3.1.1.14

3.1.1.15

3.1.1.16

Sever to Convenience library attributes

Attributes used by host server to pass data to the server convenience library - the data will then be

parsed and provided to the local clients.

PMIX_REGISTER_NODATA "pmix.reg.nodata" (bool)
Registration is for nspace only, do not copy job data
PMIX_PROC_DATA "pmix.pdata" (pmix_data_array_t)
starts with rank, then contains more data
PMIX NODE_MAP "pmix.nmap" (charx)
regex of nodes containing procs for this job
PMIX PROC_MAP "pmix.pmap" (charx)
regex describing procs on each node within this job
PMIX ANL_MAP "pmix.anlmap" (charx)
process mapping in ANL notation (used in PMI-1/PMI-2)
PMIX APP_MAP_TYPE "pmix.apmap.type" (charx)
type of mapping used to layout the application (e.g., cyclic)
PMIX_ APP_MAP_REGEX '"pmix.apmap.regex" (charx)
regex describing the result of the mapping

Sever to Client attributes

Attributes used internally to communicate data from the server to the client

PMIX_PROC_BLOB "pmix.pblob" (pmix_byte_object_t)
packed blob of process data

PMIX_MAP_BLOB "pmix.mblob" (pmix_byte_object_t)
packed blob of process location

Event handler registration and notification attributes

PMIX_EVENT_ HDLR NAME "pmix.evname" (charx)
string name identifying this handler
PMIX EVENT_JOB_LEVEL "pmix.evjob" (bool)
register for job-specific events only
PMIX EVENT_ENVIRO_LEVEL "pmix.evenv" (bool)
register for environment events only
PMIX_ EVENT HDLR FIRST "pmix.evfirst" (bool)
invoke this event handler before any other handlers
PMIX_ EVENT HDLR LAST "pmix.evlast" (bool)
invoke this event handler after all other handlers have been called
PMIX_EVENT HDLR FIRST IN_CATEGORY "pmix.evfirstcat" (bool)
invoke this event handler before any other handlers in this category
PMIX_EVENT HDLR LAST IN_CATEGORY "pmix.evlastcat" (bool)

CHAPTER 3. DATA STRUCTURES AND TYPES

15

00N OB WN =

25

26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

invoke this event handler after all other handlers in this category have been called
PMIX EVENT_HDLR BEFORE "pmix.evbefore" (charx)
put this event handler immediately before the one specified in the (char*) value
PMIX_EVENT HDLR AFTER "pmix.evafter" (charx)
put this event handler immediately after the one specified in the (char*) value
PMIX_EVENT_ HDLR_PREPEND '"pmix.evprepend" (bool)
prepend this handler to the precedence list within its category
PMIX_EVENT_ HDLR_APPEND "pmix.evappend" (bool)
append this handler to the precedence list within its category
PMIX_EVENT_ CUSTOM_RANGE '"pmix.evrange" (pmix_data_array_tx)
array of pmix_proc_t defining range of event notification
PMIX EVENT_ AFFECTED_PROC '"pmix.evproc" (pmix_proc_t)
single proc that was affected
PMIX EVENT_AFFECTED_PROCS "pmix.evaffected" (pmix_data_array_tx)
array of pmix_proc_t defining affected procs
PMIX EVENT_NON_DEFAULT "pmix.evnondef" (bool)
event is not to be delivered to default event handlers
PMIX_ EVENT RETURN_OBJECT "pmix.evobject" (voidx)
object to be returned whenever the registered cbfunc is invoked. NOTE: the object will only
be returned to the process that registered it.
PMIX_EVENT_DO_NOT_CACHE "pmix.evnocache" (bool)
instruct the PMIx server not to cache the event
PMIX_EVENT_ SILENT TERMINATION "pmix.evsilentterm" (bool)
do not generate an event when this job normally terminates

3.1.1.17 Fault tolerance attributes

16

PMIX EVENT_ TERMINATE SESSION "pmix.evterm.sess" (bool)
RM intends to terminate session
PMIX EVENT_TERMINATE JOB "pmix.evterm.job" (bool)
RM intends to terminate this job
PMIX EVENT_TERMINATE NODE "pmix.evterm.node" (bool)
RM intends to terminate all procs on this node
PMIX_ EVENT TERMINATE PROC "pmix.evterm.proc" (bool)
RM intends to terminate just this process
PMIX_EVENT ACTION_TIMEOUT "pmix.evtimeout" (int)
time in sec before RM will execute error response
PMIX_EVENT NO_TERMINATION "pmix.evnoterm" (bool)
indicates that the handler has satisfactorily handled the event and believes termination of the
application is not required.
PMIX_EVENT WANT TERMINATION "pmix.evterm" (bool)
indicates that the handler has determined that the application should be terminated

PMIx Standard — Version 2.0 (draft) — November 2017

1

0N O~ W N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

3.1.1.18 Spawn attributes

attributes used to describe "spawn" attributes

PMIX_ PERSONALITY "pmix.pers" (charx)
name of personality to use
PMIX_ HOST "pmix.host" (charx)
comma-delimited list of hosts to use for spawned procs
PMIX_ HOSTFILE "pmix.hostfile" (charx)
hostfile to use for spawned procs
PMIX ADD_HOST "pmix.addhost" (charx)
comma-delimited list of hosts to add to allocation
PMIX ADD_HOSTFILE "pmix.addhostfile" (charx)
hostfile to add to existing allocation
PMIX PREFIX "pmix.prefix" (charx)
prefix to use for starting spawned procs
PMIX WDIR "pmix.wdir" (charx)
working directory for spawned procs
PMIX MAPPER "pmix.mapper" (charx)
mapper to use for placing spawned procs
PMIX_ DISPLAY MAP "pmix.dispmap" (bool)
display process map upon spawn
PMIX_PPR '"pmix.ppr" (charx)
Number of procs to spawn on each identified resource
PMIX MAPBY "pmix.mapby" (charx)

mapping policy

PMIX RANKBY "pmix.rankby" (charx)
ranking policy

PMIX_BINDTO "pmix.bindto" (charx)
binding policy

PMIX PRELOAD_ BIN "pmix.preloadbin" (bool)
preload binaries

PMIX PRELOAD FILES "pmix.preloadfiles" (charx)
comma-delimited list of files to pre-position

PMIX_NON_PMI "pmix.nonpmi" (bool)
spawned procs will not call PMIx_Init

PMIX_STDIN_TGT "pmix.stdin" (uint32_t)
spawned proc rank that is to receive stdin

PMIX_FWD_STDIN "pmix.fwd.stdin" (bool)
forward my stdin to the designated proc

PMIX_FWD_STDOUT "pmix.fwd.stdout" (bool)
forward stdout from spawned procs to me

PMIX FWD_STDERR "pmix.fwd.stderr" (bool)

CHAPTER 3. DATA STRUCTURES AND TYPES

17

O ~NOoO O WN =

37

38
39
40
41
42

3.1.1.19

forward stderr from spawned procs to me

PMIX DEBUGGER_DAEMONS '"pmix.debugger" (bool)
spawned app consists of debugger daemons

PMIX_ COSPAWN_APP "pmix.cospawn" (bool)

designated app is to be spawned as a disconnected job - i.e., not part of the "comm_world" of

the job
PMIX_SET_SESSION_CWD "pmix.ssncwd" (bool)

set the application’s current working directory to the session working directory assigned by

the RM
PMIX TAG_OUTPUT "pmix.tagout" (bool)
tag application output with the ID of the source
PMIX TIMESTAMP_OUTPUT "pmix.tsout" (bool)
timestamp output from applications
PMIX MERGE_STDERR_STDOUT "pmix.mergeerrout" (bool)
merge stdout and stderr streams from application procs
PMIX_OUTPUT TO_FILE "pmix.outfile" (charx)
output application output to given file
PMIX_INDEX ARGV "pmix.indxargv" (bool)
mark the argv with the rank of the proc
PMIX_CPUS_PER_PROC "pmix.cpuperproc" (uint32_t)
Number of cpus to assign to each rank
PMIX_NO_PROCS_ON_HEAD "pmix.nolocal" (bool)
do not place procs on the head node
PMIX NO_OVERSUBSCRIBE '"pmix.noover" (bool)
do not oversubscribe the cpus
PMIX REPORT_BINDINGS "pmix.repbind" (bool)
report bindings of the individual procs
PMIX CPU_LIST "pmix.cpulist" (charx)
list of cpus to use for this job
PMIX_ JOB_RECOVERABLE "pmix.recover" (bool)
application supports recoverable operations
PMIX_JOB_CONTINUOUS "pmix.continuous" (bool)
application is continuous, all failed procs should be immediately restarted.
PMIX_MAX RESTARTS "pmix.maxrestarts" (uint32_t)
max number of times to restart a job

Query attributes

PMIX_ QUERY NAMESPACES "pmix.qry.ns" (charx)
request a comma-delimited list of active nspaces

PMIX QUERY_ JOB_STATUS '"pmix.qry.Jjst" (pmix_status_t)
status of a specified currently executing job

PMIX QUERY QUEUE_LIST "pmix.qry.qlst" (charx)

18 PMIx Standard — Version 2.0 (draft) — November 2017

o NOoO O~ WOWN =

SRS O T S T LS T NS T O | T G G G G G G QI G G §
NO OO A WN 20 000NOOP~WOWN OO0

n
oo

29

30
31
32
33
34
35
36
37
38
39
40
41
42

3.1.1.20

request a comma-delimited list of scheduler queues

PMIX QUERY_ QUEUE_STATUS "pmix.gry.gst" (TBD)
status of a specified scheduler queue

PMIX QUERY_ PROC_TABLE "pmix.qry.ptable" (charx)

input nspace of job whose info is being requested returns (pmix_data_array_t) an array of

pmix_proc_info_t.
PMIX_ QUERY_ LOCAL_PROC_TABLE '"pmix.qry.lptable" (charx)

input nspace of job whose info is being requested returns (pmix_data_array_t) an array of

pmix_proc_info_t for procs in job on same node

PMIX QUERY_AUTHORIZATIONS "pmix.qry.auths" (bool)
return operations tool is authorized to perform

PMIX QUERY SPAWN_SUPPORT "pmix.qry.spawn" (bool)
return a comma-delimited list of supported spawn attributes

PMIX QUERY DEBUG_SUPPORT "pmix.qry.debug" (bool)
return a comma-delimited list of supported debug attributes

PMIX_ QUERY MEMORY_ USAGE "pmix.qry.mem" (bool)
return info on memory usage for the procs indicated in the qualifiers

PMIX_QUERY LOCAL_ONLY "pmix.gry.local" (bool)
constrain the query to local information only

PMIX_QUERY REPORT_AVG "pmix.qgry.avg" (bool)
report average values

PMIX_QUERY REPORT_MINMAX "pmix.qry.minmax" (bool)
report minimum and maximum value

PMIX QUERY_ALLOC_STATUS "pmix.query.alloc" (charx)
string identifier of the allocation whose status is being requested

PMIX TIME_REMAINING "pmix.time.remaining" (charx)
query number of seconds (uint32_t) remaining in allocation for the specified nspace

Log attributes

PMIX LOG_STDERR "pmix.log.stderr" (charx)
log string to stderr
PMIX_ LOG_STDOUT "pmix.log.stdout" (charx)
log string to stdout
PMIX_ LOG_SYSLOG "pmix.log.syslog" (charx)
log data to syslog - defaults to ERROR priority unless
PMIX_LOG_MSG "pmix.log.msg" (pmix_byte_object_t)
message blob to be sent somewhere
PMIX_LOG_EMAIL "pmix.log.email" (pmix_data_array_t)
log via email based on pmix_info_t containing directives
PMIX LOG_EMAIL ADDR "pmix.log.emaddr" (charx)
comma-delimited list of email addresses that are to recv msg
PMIX LOG_EMAIIL_ SUBJECT "pmix.log.emsub" (charx)

CHAPTER 3. DATA STRUCTURES AND TYPES

19

17

18
19
20
21

22

23

24
25
26
27

28

29

30
31
32
33
34
35
36
37

3.1.1.21

3.1.1.22

3.1.1.23

3.1.1.24

subject line for email
PMIX LOG_EMAIL_MSG "pmix.log.emmsg" (charx)
msg to be included in email

Debugger attributes

PMIX_DEBUG_STOP_ON_EXEC "pmix.dbg.exec" (bool)
job is being spawned under debugger - instruct it to pause on start

PMIX DEBUG_STOP_IN_INIT "pmix.dbg.init" (bool)
instruct job to stop during PMIX init

PMIX DEBUG_WAIT_ FOR_NOTIFY "pmix.dbg.notify" (bool)
block at desired point until receiving debugger release notification

PMIX DEBUG_JOB "pmix.dbg.job" (charx)
nspace of the job to be debugged - the RM/PMIXx server are

PMIX_ DEBUG_WAITING_FOR_NOTIFY "pmix.dbg.waiting" (bool)
job to be debugged is waiting for a release

Resource manager attributes

PMIX RM NAME "pmix.rm.name" (charx)
string name of the resource manager
PMIX RM VERSION "pmix.rm.version" (charx)
RM version string

Environment variable attributes

PMIX_SET_ENVAR "pmix.set.envar" (charx)
string "key=value" value shall be put into the environment
PMIX_UNSET_ENVAR "pmix.unset.envar" (charx)
unset envar specified in string

Job Allocation attributes

PMIX ALLOC_ID "pmix.alloc.id" (charx)
provide a string identifier for this allocation request which can later be used to query status of
the request
PMIX_ALLOC_NUM_NODES "pmix.alloc.nnodes" (uint64_t)
number of nodes
PMIX_ALLOC_NODE_LIST "pmix.alloc.nlist" (charx)
regex of specific nodes
PMIX_ALLOC_NUM_CPUS "pmix.alloc.ncpus" (uinté64_t)

20 PMIx Standard — Version 2.0 (draft) — November 2017

O N O~ WD =

- a4 4 a4 4 a4
O© O NGO~ WN-—= OO

N
o

21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

3.1.1.25

number of cpus
PMIX ALLOC_NUM CPU_LIST "pmix.alloc.ncpulist" (charx)
regex of the number of cpus for each node
PMIX_ ALLOC_CPU_LIST "pmix.alloc.cpulist" (charx)
regex of specific cpus indicating the cpus involved.
PMIX_ ALLOC_MEM SIZE "pmix.alloc.msize" (float)
number of Mbytes
PMIX_ ALLOC_NETWORK "pmix.alloc.net" (array)

array of pmix_info_t describing network resources. If not given as part of an info struct that

identifies the impacted nodes, then the description will be applied across all nodes in the

requestor’s allocation

PMIX ALLOC_NETWORK_ID "pmix.alloc.netid" (charx)
name of network

PMIX ALLOC_BANDWIDTH "pmix.alloc.bw" (float)
Mbits/sec

PMIX_ ALLOC_NETWORK_QOS "pmix.alloc.netgos" (charx)
quality of service level

PMIX_ ALLOC_TIME "pmix.alloc.time" (uint32_t)
time in seconds

Job control attributes

PMIX_JOB_CTRL_ID "pmix.jctrl.id" (charx)
provide a string identifier for this request
PMIX_JOB_CTRL_PAUSE "pmix.jctrl.pause" (bool)
pause the specified processes
PMIX JOB_CTRL_RESUME "pmix.jctrl.resume" (bool)
“un-pause” the specified processes
PMIX JOB_CTRL_CANCEL "pmix.jctrl.cancel" (charx)
cancel the specified request (NULL implies cancel all requests from this requestor)
PMIX JOB_CTRL_KILL "pmix.jctrl.kill" (bool)
forcibly terminate the specified processes and cleanup
PMIX_ JOB_CTRL_RESTART "pmix.jctrl.restart" (charx)
restart the specified processes using the given checkpoint ID
PMIX_ JOB_CTRL_CHECKPOINT "pmix.Jjctrl.ckpt" (charx)
checkpoint the specified processes and assign the given ID to it
PMIX_JOB_CTRL_CHECKPOINT EVENT "pmix.jctrl.ckptev" (bool)
use event notification to trigger process checkpoint
PMIX_JOB_CTRL_CHECKPOINT SIGNAL "pmix.jctrl.ckptsig" (int)
use the given signal to trigger process checkpoint
PMIX JOB_CTRL_CHECKPOINT_TIMEOUT "pmix.jctrl.ckptsig" (int)
time in seconds to wait for checkpoint to complete

CHAPTER 3. DATA STRUCTURES AND TYPES

21

O ~NO O WN =

15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

PMIX_ JOB_CTRL_CHECKPOINT_METHOD
"pmix. jctrl.ckmethod" (pmix_data_array_t)
array of pmix_info_t declaring each method and value supported by this application
PMIX JOB_CTRL_SIGNAL "pmix.Jjctrl.sig" (int)
send given signal to specified processes
PMIX JOB_CTRL_PROVISION "pmix.Jjctrl.pvn" (charx)
regex identifying nodes that are to be provisioned
PMIX JOB_CTRL_PROVISION_IMAGE "pmix.jctrl.pvnimg" (charx)
name of the image that is to be provisioned
PMIX JOB_CTRL_PREEMPTIBLE "pmix.Jjctrl.preempt" (bool)
job can be pre-empted
PMIX_JOB_CTRL_TERMINATE "pmix.jctrl.term" (bool)
politely terminate the specified procs

3.1.1.26 Monitoring attributes

PMIX_MONITOR_ID "pmix.monitor.id" (charx)
provide a string identifier for this request
PMIX_MONITOR_CANCEL "pmix.monitor.cancel" (charx)
identifier to be canceled (NULL means cancel all monitoring for this process)
PMIX MONITOR _APP_CONTROL "pmix.monitor.appctrl" (bool)
the application desires to control the response to a monitoring event
PMIX MONITOR_ HEARTBEAT "pmix.monitor.mbeat" (void)
register to have the server monitor the requestor for heartbeats
PMIX SEND_HEARTBEAT "pmix.monitor.beat" (void)
send heartbeat to local server
PMIX_ MONITOR_ HEARTBEAT TIME "pmix.monitor.btime" (uint32_t)
time in seconds before declaring heartbeat missed
PMIX_ MONITOR_HEARTBEAT DROPS '"pmix.monitor.bdrop" (uint32_t)
number of heartbeats that can be missed before generating the event
PMIX_ MONITOR_FILE "pmix.monitor.fmon" (charx)
register to monitor file for signs of life
PMIX_ MONITOR_FILE_SIZE "pmix.monitor.fsize" (bool)
monitor size of given file is growing to determine app is running
PMIX_MONITOR_FILE_ACCESS "pmix.monitor.faccess" (charx)
monitor time since last access of given file to determine app is running
PMIX MONITOR FILE_ MODIFY "pmix.monitor.fmod" (charx)
monitor time since last modified of given file to determine app is running
PMIX MONITOR FILE_ CHECK TIME "pmix.monitor.ftime" (uint32_t)
time in seconds between checking file
PMIX MONITOR FILE_ DROPS "pmix.monitor.fdrop" (uint32_t)
number of file checks that can be missed before generating the event

PMIx Standard — Version 2.0 (draft) — November 2017

3.1.2

Process state Definitions

The pmix_proc_state_t structure is an unsigned integer type (uint8_t) for process state
values.

PMIX_ PROC_STATE_UNDEF
undefined process state
PMIX_ PROC_STATE_PREPPED
process is ready to be launched
PMIX_PROC_STATE_LAUNCH_UNDERWAY
launch process underway
PMIX_PROC_STATE_RESTART
the proc is ready for restart
PMIX_ PROC_STATE_TERMINATE
process is marked for termination
PMIX_ PROC_STATE_RUNNING
daemon has locally fork’d process
PMIX_PROC_STATE_CONNECTED
proc connected to PMIXx server
PMIX_ PROC_STATE_UNTERMINATED
Define a “boundary” so users can easily and quickly determine if a proc is still running or
not - any value less than this one means that the proc has not terminated.
PMIX_ PROC_STATE_TERMINATED
process has terminated and is no longer running
PMIX_ PROC_STATE_ERROR
Define a boundary so users can easily and quickly determine if a proc abnormally terminated
- leave a little room for future expansion.
PMIX_ PROC_STATE_KILLED_BY_ CMD
process was killed by cmd
PMIX_ PROC_STATE_ABORTED
process aborted
PMIX PROC_STATE_FAILED TO_START
process failed to start
PMIX_PROC_STATE_ABORTED_BY_ SIG
process aborted by signal
PMIX_ PROC_STATE_TERM WO_SYNC
process exit’d without calling PMIx_Finalize
PMIX_ PROC_STATE_COMM FAILED
process communication has failed
PMIX PROC_STATE_CALLED ABORT
process called PMIx_Abort
PMIX_ PROC_STATE_MIGRATING
process failed and is waiting for resources before restarting

CHAPTER 3. DATA STRUCTURES AND TYPES 23

o O WwN =

~

10

11
12

13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

PMIX_PROC_STATE_CANNOT_RESTART

process failed and cannot be restarted
PMIX_PROC_STATE_TERM NON_ZERO

process exited with a non-zero status, indicating abnormal
PMIX_ PROC_STATE_FAILED_TO_LAUNCH

unable to launch process

3.1.3 Error Constants

The pmix_status_t structure is an integer type for return status. The table below defines the
possible values for pmix_status_t . PMIx errors are always negative, with O reserved for
success.

PMIX ERR_ BASE
Error base

v1.x error values - must be fixed in place for backward compatability. Note that some number of
these have been deprecated and may not be returned by v2.x and above clients or servers. However,
they must always be at least defined to ensure older codes will compile.

C
//..
##define PMIX SUCCESS 0
#define PMIX ERROR -1 //
##define PMIX ERR SILENT -2 //
/* debugger release flag */
#define PMIX ERR DEBUGGER_ RELEASE -3
/* fault tolerance */
##define PMIX ERR PROC_RESTART -4
#idefine PMIX ERR PROC_CHECKPOINT -5
#define PMIX ERR PROC_MIGRATE -6
/* abort =/
#define PMIX ERR PROC_ABORTED -7
##define PMIX ERR PROC_REQUESTED_ABORT -8
##define PMIX ERR PROC_ABORTING -9
/* communication failures =x/
#define PMIX ERR SERVER_FAILED REQUEST -10
#define PMIX EXISTS -11
#define PMIX ERR INVALID_CRED -12 //
##define PMIX ERR HANDSHAKE_ FAILED -13 //
#define PMIX_ERR READY FOR HANDSHAKE -14 //
#idefine PMIX ERR WOULD_BLOCK -15
#define PMIX ERR UNKNOWN_ DATA TYPE -16 //

24 PMIx Standard — Version 2.0 (draft) — November 2017

general e
internal-

internal-
internal-
internal-

internal-

O N O~ WND =

A DDA DA OWWWWWWWWWMNDMNDNPDNDMNMDNDNDNODNODND = = 2 24
WNN 20000 NOCOOPRPWON—LOCO00ONOOOCOAOPRPRON—LTOCOONOOOOP,ON OO0

#define PMIX ERR_PROC_ENTRY_NOT_ FOUND -17 //
#define PMIX_ ERR TYPE MISMATCH -18 //
#define PMIX_ ERR UNPACK INADEQUATE_SPACE -19 //
#define PMIX ERR UNPACK FAILURE -20 //
#define PMIX ERR_PACK FAILURE -21 //
#define PMIX ERR_PACK MISMATCH -22 //
#define PMIX_ERR NO_ PERMISSIONS -23
#define PMIX_ERR_TIMEOUT -24
#define PMIX_ERR_UNREACH -25
#define PMIX ERR_IN ERRNO -26 //
#define PMIX_ ERR_BAD_PARAM -27
#define PMIX ERR_RESOURCE_BUSY -28 //
#define PMIX_ERR_OUT_OF_RESOURCE -29
#define PMIX_ERR DATA VALUE_NOT_ FOUND -30
#define PMIX_ ERR INIT -31
#define PMIX ERR_NOMEM -32 //
#define PMIX ERR_INVALID_ARG -33 //
#define PMIX_ ERR_ INVALID KEY -34 //
#define PMIX_ ERR_INVALID KEY LENGTH -35 //
#define PMIX ERR INVALID VAL -36 //
#define PMIX ERR_INVALID VAL_LENGTH -37 //
#define PMIX ERR_INVALID_ LENGTH -38 //
#define PMIX_ERR_INVALID_ NUM_ARGS -39 //
#define PMIX_ERR_INVALID_ARGS -40 //
#define PMIX ERR_INVALID NUM PARSED -41 //
#define PMIX_ ERR_ INVALID_ KEYVALP -42 //
#define PMIX_ERR_INVALID_SIZE -43
#define PMIX_ERR_INVALID_ NAMESPACE -44
#define PMIX_ERR_SERVER NOT AVAIL -45 //
#define PMIX_ERR_NOT_FOUND -46
#define PMIX ERR NOT_ SUPPORTED -47
#define PMIX ERR NOT_ IMPLEMENTED -48
#define PMIX_ERR_COMM FAILURE -49
#define PMIX_ERR_UNPACK READ_PAST END_ OF_BUFFER -50 //

/* define a starting point for v2.x error values */
##define PMIX ERR V2X_ BASE =100

/* v2.x communication errors =x/

#define PMIX_ERR _LOST CONNECTION_TO_SERVER (PMIX_ERR V2X BASE
#define PMIX_ERR _LOST PEER_CONNECTION (PMIX_ERR V2X BASE
#define PMIX_ ERR_LOST CONNECTION_TO_CLIENT (PMIX_ERR_ V2X BASE

/* used by the query system x*/

CHAPTER 3. DATA STRUCTURES AND TYPES 25

intern
intern
intern
intern
intern
intern

intern

intern

intern
intern
intern
intern
intern
intern
intern
intern
intern
intern
intern

intern

intern

oNOO O WN =

A BEABADWWWWWWWWWWMNMNDMNDNDMNDMNODNODNDMPODND 2L =222
WN -0 O0WoOoONOODAPRWN—-LO0OONODAPRWN-—-LOOOLONOOOOGODN,WN-—=LOO

26

#idefine PMIX QUERY PARTIAL_SUCCESS
/* request responses */
#define PMIX NOTIFY ALLOC_COMPLETE

/* job control =*/

#define PMIX_JCTRL_CHECKPOINT
#define PMIX_JCTRL_CHECKPOINT_COMPLETE

#define PMIX_JCTRL_PREEMPT_ALERT

/* monitoring =/

#define PMIX_MONITOR_HEARTBEAT ALERT
#define PMIX_MONITOR_FILE_ALERT

(PMIX_ERR_V2X BASE
(PMIX ERR V2X BASE

(PMIX_ERR_V2X BASE
(PMIX_ERR_V2X BASE

(PMIX ERR V2X BASE

(PMIX_ERR_V2X BASE
(PMIX_ERR_V2X BASE

/* define a starting point for operational error constants so

* we avoid renumbering when making additions =/
#define PMIX_ERR_OP_BASE

/* operational */

#define PMIX_ERR EVENT REGISTRATION
#define PMIX_ERR JOB_TERMINATED
#define PMIX_ERR UPDATE_ENDPOINTS
#define PMIX_MODEL_DECLARED

#define PMIX_GDS_ACTION_COMPLETE

PMIX ERR _V2X BASE-30

(PMIX_ERR_OP BASE
(PMIX_ERR_OP_ BASE
(PMIX_ERR_OP_BASE
(PMIX_ERR_OP_BASE
(PMIX_ERR_OP_BASE

/* define a starting point for system error constants so

* we avoid renumbering when making additions =/
#define PMIX_ ERR_SYS BASE

/* system failures x*/
#define PMIX ERR NODE_DOWN
#idefine PMIX ERR NODE_OFFLINE

PMIX ERR OP_BASE-100

(PMIX_ERR_SYS BASE -
(PMIX_ERR_SYS BASE -

/* define a starting point for event handler error constants so

* we avoid renumbering when making additions =%/
#define PMIX_ERR EVHDLR_ BASE

/* used by event handlers x/

#define PMIX_ EVENT_ NO_ACTION_TAKEN
#idefine PMIX EVENT PARTIAL_ACTION_TAKEN
#define PMIX EVENT ACTION_ DEFERRED
#define PMIX EVENT ACTION_COMPLETE

PMIX ERR_SYS_BASE-100

(PMIX_ERR_EVHDLR_BASE
(PMIX_ERR_EVHDLR_BASE
(PMIX_ERR_EVHDLR_BASE
(PMIX_ERR_EVHDLR_BASE

/* define a starting point for PMIx internal error codes

PMIx Standard — Version 2.0 (draft) — November 2017

4)

5)

6)
7)

8)

9)
10)

14)
15)
16)
17)
18)

1)
2)

1)
2)
3)
4)

* that are never exposed outside the library x*/
#define PMIX_INTERNAL_ERR_BASE -1000

/* define a starting point for user-level defined error

* constants - negative values larger than this are guaranteed
* not to conflict with PMIx values. Definitions should always
* be based on the PMIX EXTERNAL_ERR BASE constant and -not- a

© O NO O~ WN =

10

11

12

13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

* specific value as the value of the constant may change */
#define PMIX EXTERNAL_ERR_ BASE -2000

3.2 Data Types

3.2.1 Packing Types

C

The pmix_data_type_t structure is an integer type for defining the data type for
packing/unpacking purposes. The table below defines the possible values for
pmix_data_type t.

C
// ...
##define PMIX UNDEF 0
#define PMIX BOOL 1 // converted to/from native true/fals
#define PMIX_BYTE 2 // a byte of data
#define PMIX_ STRING 3 // NULL-terminated string
#define PMIX SIZE 4 // size t
#define PMIX PID 5 // OS-pid
#define PMIX_INT 6
#define PMIX INTS 7
#define PMIX INT16 8
#define PMIX INT32 9
#define PMIX INT64 10
#define PMIX_ UINT 11
#idefine PMIX UINTS 12
#define PMIX UINT16 13
#define PMIX UINT32 14
#define PMIX UINT64 15
#define PMIX FLOAT 16

CHAPTER 3. DATA STRUCTURES AND TYPES

27

0oNOO O~ WN =

WWWWWWMNMNDMNDNDMNDNMNODNDNDNOND 2 =222
AR WON—-L0O0C0ONOODARWN—-LOOOONOOOOODN~,WN-—=-OO

36

37
38

#idefine
#define
#define
#define

#define
#define
#define
#define
#idefine
#tdefine
#define
#define
#idefine
#define
#define
#define
#define
#define
#define
#idefine
#define
#define
#define
#idefine
#define
#define
#define

PMIX DOUBLE
PMIX TIMEVAL
PMIX TIME
PMIX STATUS

PMIX VALUE
PMIX_ PROC

PMIX_ APP

PMIX_INFO
PMIX_PDATA
PMIX_BUFFER

PMIX BYTE OBJECT
PMIX KVAL

PMIX_ MODEX

PMIX_ PERSIST
PMIX_POINTER

PMIX SCOPE

PMIX DATA RANGE
PMIX_ COMMAND
PMIX_INFO_DIRECTIVES
PMIX_DATA TYPE

PMIX PROC_STATE

PMIX PROC_INFO

PMIX DATA ARRAY
PMIX_PROC_RANK
PMIX_QUERY
PMIX_COMPRESSED_STRING
PMIX ALLOC_DIRECTIVE

/*%%% DEPRECATED ****/

#define

PMIX INFO_ARRAY

[*hkkhkhkhkhkkhkhkkkhkkkkkkk/

17
18
19
20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

44

// needs to be tracked separately from i
// when we are embedded and it needs to
// host error definitions

// string compressed with zlib

/* define a boundary for implementers so they can add their own data types *

#define

PMIX DATA TYPE MAX

3.2.2 pmix scope_t

28

500

C

The pmix_scope_t structure is an integer type for defining the scope for data “put” by PMIx
The table below defines the possible values for pmix_scope_t .

PMIx Standard — Version 2.0 (draft) — November 2017

O N O~ WN =

- 4 A
a s OND—=+O0

16

17
18
19
20
21
22
23
24

25
26

C

/ *
* PMI_LOCAL - the data is intended only for other application
* processes on the same node. Data marked in this way
* will not be included in data packages sent to remote reque
* PMI_REMOTE - the data is intended solely for applications processes on
* remote nodes. Data marked in this way will not be shared
* other processes on the same node
* PMI_GLOBAL - the data is to be shared with all other requesting proces
* regardless of location

*/

#define PMIX SCOPE_UNDEF 0

#idefine PMIX LOCAL 1 // share to procs also on this node
#define PMIX REMOTE 2 // share with procs not on this node
#define PMIX GLOBAL 3 // share with all procs (local + remote)
#define PMIX INTERNAL 4 // store data in the internal tables

C

Scope values are defined as:

PMIX_ LOCAL
limit access to this data to processes on the same node
PMIX_ REMOTE
limit access to this data to processes on nodes other than this one
PMIX_ GLOBAL
access permitted by all processes (local and remote)
PMIX INTERNAL
data is for use solely within this process

Specific implementations may support different scope values, but all implementations must support
at least PMIX_ GLOBAL .

27 3.2.3 pmix_data_range_t

28
29

The pmix_data_range_t structure is an integer type for defining a range for “published” data.
The table below defines the possible values for pmix_data_range_t .

CHAPTER 3. DATA STRUCTURES AND TYPES 29

© oo ~NOoO O~ WN =

10

11
12

13
14
15
16
17
18

19

20
21
22

23
24

@

//

#define PMIX_RANGE_UNDEF
#define PMIX_RANGE RM

#define PMIX_RANGE_LOCAL
#define PMIX RANGE NAMESPACE
#define PMIX RANGE_SESSION
#define PMIX RANGE_GLOBAL
#define PMIX_RANGE_ CUSTOM
#define PMIX RANGE_PROC_LOCAL

SJo b WD PR O

O

3.24 pmix persistence_t

//

//
//
//
//

data is intended for the host resourc
available on local node only

data is available to procs in the sam
data available to all procs in sessio
data available to all procs

range is specified in a pmix info_t
restrict range to the local proc

The pmix_persistence_t structure is an integer type for defining the policy for data
published by clients. The table below defines the possible values for pmix_persistence_t.

C

//

#define PMIX PERSIST_ INDEF
#define PMIX PERSIST FIRST_ READ
#define PMIX_PERSIST PROC
#define PMIX_PERSIST APP
#define PMIX PERSIST SESSION

3.25 pmix info_directives_t

30

o W INhERrOo

// retain until specifically deleted
// delete upon first access

// retain until publishing process t
// retain until application terminat
// retain until session/allocation t

The pmix info_directives_t structure is an integer type for defining the behavior of
command directives via pmix_info_t arrays. The table below defines the possible values for

pmix_info_directives_t.

C

//

#define PMIX_INFO_REQD 0x0001
C

PMIx Standard — Version 2.0 (draft) — November 2017

1 3.2.6 pmix_alloc_directive_t

AW

0 N o O

11
12
13
14
15
16
17

18

19

20

21

22
23
24
25
26
27

28

The pmix_alloc_directive_t structure is an integer type for defining the behavior of
allocation requests. The table below defines the possible values for

pmix alloc directive_t.

C
//
#define PMIX ALLOC_NEW 1 //
//
#define PMIX ALLOC_EXTEND 2 //
#define PMIX ALLOC_RELEASE 3 //
//
//
//
#define PMIX ALLOC_REAQUIRE a4 //

new allocation is being requested.

disjoint (i.e., not connected in a

extend the existing allocation, eit
release part of the existing alloca
pmix_info_t array may be used to sg
identified resources, or "lending"

of time.

reacquire resources that were previ

/* define a value boundary beyond which implementers are free
* to define their own directive values */

#define PMIX_ALLOC_EXTERNAL 128

C

3.3 Data Packing/Unpacking

Byte Object

The pmix_byte_object_t structureis...

C

typedef struct pmix_byte object
char xbytes;
size_t size;
pmix_byte_obiject_t;
#define PMIX BYTE_OBJECT_DESTRUCT (m)
#define PMIX_BYTE_OBJECT FREE (m, n)

C

The pmix_data_ buffer_ t structureis...

CHAPTER 3. DATA STRUCTURES AND TYPES 31

oNOO O WD =

NN = = b
- O OVWoOoONOOA~,WN-—- OO

22

23

24

25

C

[Hkkk PMIX DATA BUFFER *kxk/
typedef struct pmix_data buffer
/** Start of my memory =/
char *base_ptr;
/** Where the next data will be packed to (within the allocated
memory starting at base_ptr) =*/
char *pack_ptr;
/** Where the next data will be unpacked from (within the
allocated memory starting as base_ptr) =*/
char *unpack_ptr;
/** Number of bytes allocated (starting at base_ptr) =x*/
size_t bytes_allocated;
/** Number of bytes used by the buffer (i.e., amount of data --
including overhead —-- packed in the buffer) =/
size_t bytes_used;
pmix_data_buffer_ t;

#define PMIX_DATA_ BUFFER_CREATE (m)
#define PMIX_DATA_ BUFFER_RELEASE (m)
#define PMIX_DATA_BUFFER_CONSTRUCT (m)
#define PMIX_DATA_ BUFFER_DESTRUCT (m)

C

3.4 Data Structures

3.4.1

32

Process Structure

The pmix_proc_t structureis...

PMIx Standard — Version 2.0 (draft) — November 2017

© O NO O~ WN =

10

11

12
13
14
15
16
17
18
19
20
21
22
23
24

25

26

27
28
29
30
31

typedef

C

struct pmix proc

char nspace[PMIX MAX NSLEN+1];
pmix_rank_ t rank;
pmix _proc_t;

#define
#define
#define
#define
#define

PMIX_PROC_CREATE (m, n)
PMIX_PROC_RELEASE (m)
PMIX_PROC_CONSTRUCT (m)
PMIX_ PROC_DESTRUCT (m)
PMIX_PROC_FREE (m, n)

3.4.2 Process Info Structure

The pmix_proc_info_t structureis...

typedef

C

struct pmix proc_info

pmix_proc_t proc;

char x*hostname;

char *executable_name;
pid_t pid;

int

exit_code;

pmix_proc_state_t state;
pmix_proc_info_t;

#define PMIX_PROC_INFO_CREATE (m, n)
#define PMIX_PROC_INFO_RELEASE (m)
#define PMIX PROC_INFO_CONSTRUCT (m)
#define PMIX PROC_INFO_DESTRUCT (m)
#define PMIX PROC_INFO_FREE (m, n)
C
3.4.3 Data Array Structure
The pmix_data array structureis...
C
typedef struct pmix_data_array
pmix_data_ type_t type;
size_t size;
void xarray;
pmix_data_array t;
C

CHAPTER 3. DATA STRUCTURES AND TYPES

33

1 3.4.4 Value Structure

2 The pmix_wvalue_t structureis...
C
3 /* NOTE: operations can supply a collection of values under
4 * a single key by passing a pmix value_t containing an
5 * array of type PMIX_ INFO_ARRAY, with each array element
6 * containing its own pmix_info_t object */
7
8 typedef struct pmix_value
9 pmix_data_type_t type;
10 union
11 bool flag;
12 uint8_t byte;
13 char *string;
14 size_t size;
15 pid_t pid;
16 int integer;
17 int8_t int$§;
18 intl6_t intlé6;
19 int32_t int32;
20 int64_t inté64;
21 unsigned int uint;
22 uint8_t uint$§;
23 uintl6_t uintlé6;
24 uint32_t uint32;
25 uint64_t uinté64;
26 float fval;
27 double dval;
28 struct timeval tv;
29 time_t time;
30 pmix_status_t status;
31 pmix_rank_t rank;
32 pmix_proc_t xproc;
33 pmix_byte_object_t bo;
34 pmix_persistence_t persist;
35 pmix_scope_t scope;
36 pmix_data_range_t range;
37 pmix_proc_state_t state;
38 pmix_proc_info_t xpinfo;
39 pmix_data_array t =xdarray;
40 void xptr;

34

PMIx Standard — Version 2.0 (draft) — November 2017

O N O~ WN =

NDMNDDMNDNDMNDMNODNDNDDMNODN = =
O 0O NO PR, WN 2O OONOOOGPA~WN-—= OO

30

31
32

pmix_alloc_directive_t adir;
/*%*%% DEPRECATED ***%/
pmix_info_array t =*array;
[hhhkhkhkkkhhkhhkkhkkkkkkkk/
data;
pmix_value_t;
#define PMIX VALUE_CREATE (m, n)
#define PMIX VALUE_RELEASE (m)
#define PMIX VALUE_CONSTRUCT (m)
#define PMIX VALUE_DESTRUCT (m)
#define PMIX_ VALUE FREE (m, n)

/* expose some functions that are resolved in the
* PMIx library, but part of a header that

* includes internal functions - we don’t

* want to expose the entire header here. For

* consistency, we provide macro versions as well

*/
void pmix value_load(pmix value_t *v, const void xdata, pmix_data type_ t
#define PMIX VALUE_LOAD(v, d, t) pmix_value load((v), (d), (t))

pmix_status_t pmix_value_ xfer (pmix value_t *kv, pmix value_t #*src);
#define PMIX VALUE_XFER(r, v, s)

pmix_status_t pmix_argv_append nosize(char **xargv, const char *argqg);
#define PMIX ARGV_APPEND (r, a, b) (r) = pmix_argv_append nosize (& (a)

pmix_status_t pmix_setenv (const char *name, const char *value,

bool overwrite, char *x*xenv);
#define PMIX SETENV(r, a, b, c) (r) = pmix_setenv((a), (b), true, (c

C

Info and Info Array Structures

The pmix_info_t structureis...

The pmix_info_array structureis...

CHAPTER 3. DATA STRUCTURES AND TYPES 35

struct pmix _info_t
char key[PMIX MAX KEYLEN+1]; // ensure room for the NULL terminator
pmix_info_directives_t flags; // bit-mask of flags

oNOO O WN =

NDMNDN = =
N2 000N~ WN-—=OO

23

24

25
26
27
28
29
30
31
32
33
34
35
36
37

pmix_value_t value;

typedef struct pmix_info_array
size_t size;
pmix_info_t =*array;
pmix_info_array t;

/* utility macros for working with pmix_info_t structs =*/

#define PMIX INFO_CREATE (m, n)
#define PMIX INFO_CONSTRUCT (m)
#define PMIX INFO_DESTRUCT (m)
#idefine PMIX INFO_FREE (m, n)
#define PMIX_INFO_LOAD(m, k, v, t)
#define PMIX INFO_XFER(d, s)
#define PMIX INFO_REQUIRED (m)
#define PMIX INFO_OPTIONAL (m)
##define PMIX INFO_ UNLOAD (r, v, 1)
#define PMIX INFO_TRUE (m)

C

3.4.6 Lookup Return Structure

36

The pmix_pdata_t structureis ...

typedef struct pmix_pdata
pmix_proc_t proc;

char key[PMIX_MAX KEYLEN+l]; // ensure room for the NULL terminator

pmix_value_t value;
pmix_pdata t;

#define PMIX PDATA CREATE (m, n)
#idefine PMIX PDATA RELEASE (m)

#define PMIX PDATA CONSTRUCT (m)
#define PMIX PDATA DESTRUCT (m)

##define PMIX PDATA FREE (m, n)

#fdefine PMIX_ PDATA LOAD(m, p, k, v, t)
#define PMIX_PDATA XFER(d, s)

PMIx Standard — Version 2.0 (draft) — November 2017

1 3.4.7 App Structure

19

20

21
22
23
24
25
26
27
28
29
30
31
32

The pmix_app_t structureis...

typedef

struct pmix_app

char *cmd;

char xxargv;

char **env;

char *cwd;

int maxprocs;
pmix_info_t xinfo;
size_t ninfo;

pmix_app_t;

/* utility macros for working with pmix_app_t structs */

#define
#define
#define
#define
#define

PMIX_ APP CREATE (m, n)
PMIX_APP RELEASE (m)
PMIX_APP_CONSTRUCT (m)
PMIX_APP_ DESTRUCT (m)
PMIX_APP_FREE (m, n)

3.4.8 Query Structure

The pmix_query_t structureis...

typedef

struct pmix query

char *xkeys;

pmix_info_t xqualifiers;

size_t nqual;
pmix_query t;

/* utility macros for working with pmix_query_ t structs x*/

#define
#define
#define
#define
#define

PMIX QUERY CREATE (m, n)
PMIX QUERY RELEASE (m)
PMIX_ QUERY CONSTRUCT (m)
PMIX_QUERY DESTRUCT (m)
PMIX QUERY FREE (m, n)

CHAPTER 3. DATA STRUCTURES AND TYPES

37

16

17

18

19

20

3.4.9 Modex Structure

3.5.1

The pmix_modex_data_t structureis...

C

typedef struct pmix_modex data
char nspace[PMIX MAX NSLEN+1];
int rank;
uint8_ t *blob;
size_t size;
pmix_modex_data_t;

/* utility macros for working with pmix_modex_ t structs =*/
#define PMIX MODEX CREATE (m, n)

#idefine PMIX MODEX_ RELEASE (m)

#define PMIX_MODEX_CONSTRUCT (m)

#define PMIX_MODEX_DESTRUCT (m)

#define PMIX MODEX_ FREE (m, n)

C
3.5 Callback Functions
Release Callback Function
The pmix_release_cbfunc_t ...
C
typedef void (*pmix_release_cbfunc_t) (void xcbdata)
C

38

PMIx Standard — Version 2.0 (draft) — November 2017

1

17
18

19

20

21
22
23
24
25
26
27
28
29

3.5.2 Modex Callback Function

The pmix_modex_cbfunc_t ...

C

/* define a callback function that is solely used by servers, and

not clients, to return modex data in response to "fence" and '"get"
operations. The returned blob contains the data collected from each
server participating in the operation.

As the data is "owned" by the host server, provide a secondary
callback function to notify the host server that we are done

* with the data so it can be released x*/
typedef void (*pmix modex cbfunc_t) (pmix status_t status,

const char xdata, size_t ndata,
void *cbdata,
pmix_release_cbfunc_t release_fn,
void *release_cbdata)

* * * F ¥ *

C
Description
3.5.3 Spawn Callback Function
The pmix_spawn_cbfunc_t ...
C

/* define a callback function for calls to PMIx_ Spawn_nb - the function

will be called upon completion of the spawn command. The status

will indicate whether or not the spawn succeeded. The nspace

of the spawned processes will be returned, along with any provided
callback data. Note that the returned nspace value will be
released by the library upon return from the callback function, so
* the receiver must copy it if it needs to be retained */

typedef void (*pmix_spawn_cbfunc_t) (pmix_status_t status,

char nspace[], void =*cbdata);

* * * * F

C

CHAPTER 3. DATA STRUCTURES AND TYPES 39

—_

Description

2 The callback will be executed upon launch of the specified applications, or upon failure to launch
3 any of them.
4 The status of the callback will indicate whether or not the spawn succeeded. The nspace of the
5 spawned processes will be returned, along with any provided callback data. Note that the returned
6 nspace value will be released by the library upon return from the callback function, so the receiver
7 must copy it if it needs to be retained.
s 3.5.4 Op Callback Function
9 The pmix_op_cbfunc_t ...
C
10 /* define a callback for common operations that simply return
11 * a status. Examples include the non-blocking versions of
12 * Fence, Connect, and Disconnect */
13 typedef void (*pmix_op_cbfunc_ t) (pmix_status_t status, void *cbdata);
C
14 Description
15
16 3.5.5 Lookup Callback Function
17 The pmix_lookup_cbfunc_t ...
C
18 /* define a callback function for calls to PMIx_Lookup_nb - the
19 * function will be called upon completion of the command with the
20 * status indicating the success of failure of the request. Any
21 * retrieved data will be returned in an array of pmix pdata_t structs.
22 * The nspace/rank of the process that provided each data element is
23 * also returned.
24 *
25 * Note that these structures will be released upon return from
26 * the callback function, so the receiver must copy/protect the
27 * data prior to returning if it needs to be retained */
28
29 typedef void (*pmix_lookup_cbfunc_t) (pmix_status_t status,
30 pmix_pdata_t data[], size_t ndata,
31 void xcbdata);

C

40 PMIx Standard — Version 2.0 (draft) — November 2017

O ©W 0o NO O

11
12

13

14

15
16
17
18
19
20
21
22

23
24

Description

3.5.6 Value Callback Function

The pmix_value_cbfunc_t ...

C

/* define a callback function for calls to PMIx Get_nb. The status

* indicates if the requested data was found or not - a pointer to the

* pmix_value_t structure containing the found data is returned. The
* pointer will be NULL if the requested data was not found. */
typedef void (*pmix_value_cbfunc_t) (pmix_ status_t status,

Description

3.5.7 Info Function

The pmix_info_cbfunc_t ...

pmix_value_t xkv, void *cbdata);

C

C

/* define a callback function for calls to PMIx Query. The status
* indicates if requested data was found or not - an array of
* pmix_info_t will contain the key/value pairs. */

typedef void (*pmix_info_cbfunc_t) (pmix_status_t status,

Description

pmix_info_t xinfo, size_t ninfo,
void xcbdata,

pmix_ release_cbfunc_t release_fn,
void *release_cbdata);

CHAPTER 3. DATA STRUCTURES AND TYPES 41

1 3.6 Other Support Functions

w

0N OBN

11
12
13
14
15
16
17
18
19
20
21
22
23

3.6.1

Unsorted Function

~
*

* % ok ok X X X % X *
|

*/

C

Provide a string representation for several types of value. Note
that the provided string is statically defined and must NOT be
free’d. Supported value types:

pmix_status_t (PMIX_STATUS)
(PMIX_SCOPE)

pmix_scope_t

pmix_persistence_t
pmix_data_range_t
pmix_info_directives_t (PMIX_INFO_DIRECTIVES)
pmix_data_type_t
pmix_alloc_directive_t (PMIX_ALLOC_DIRECTIVE)

PMIX_ EXPORT const
PMIX_ EXPORT const
PMIX EXPORT const
PMIX_ EXPORT const
PMIX EXPORT const
PMIX EXPORT const
PMIX_ EXPORT const
PMIX EXPORT const

charx
charx
charx
charx
charx
charx
charx
charx

(PMIX_PERSIST)
(PMIX_DATA_RANGE)

(PMIX_DATA_TYPE)

PMIx_Error_string(pmix_status_t status);

PMIx Proc_state_string(pmix_ proc_state_t state);
PMIx_ Scope_string(pmix_scope_t scope);

PMIx Persistence_string(pmix persistence_t persist);
PMIx Data_ range_string(pmix data_range_t range);
PMIx_Info_directives_string(pmix_info_directives_t d
PMIx Data_type_string(pmix_data_type_t type);

PMIx Alloc_directive_string(pmix_alloc_directive_t d

C

24 3.6.2 Key/Value Pair Management

42

PMIx Standard — Version 2.0 (draft) — November 2017

O N O~ WN =

- 4 4 4 4 o
O N O~ WN—=O O

19
20
21
22
23
24
25
26
27
28
29
30

C

/* Key-Value pair management macros x*/
// TODO: add all possible types/fields here.

#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define

#define
#define

#define
#define
#define
#define
#define
#define
#define

#define

PMIX_ VAL FIELD_int (x)
PMIX VAL FIELD uint32_t(x) ((x)->data.
PMIX VAL FIELD uintl6_t (x) ((x)->data.
PMIX_VAL FIELD_string (x)
PMIX VAL FIELD float (x)
PMIX_ VAL FIELD_ byte (x)

PMIX VAI_FIELD_ flag (x)

PMIX_VAL TYPE_int
PMIX_ VAL TYPE uint32_t
PMIX VAL TYPE uintl6_t
PMIX VAI_TYPE_string
PMIX_ VAL TYPE_ float
PMIX VAL TYPE_byte
PMIX_VAL TYPE_flag

PMIX_ VAL_SET int

PMIX VAL _SET uint32_t
PMIX VAL _SET uintlé_t
PMIX VAL _SET_ string
PMIX VAL SET_ float
PMIX_VAL_SET byte
PMIX_ VAL_SET flag

PMIX VAL SET(_v,

((x)—->data.

((x) ->data

PMIX INT
PMIX UINT32
PMIX UINT16
PMIX STRING
PMIX FLOAT
PMIX BYTE
PMIX_ BOOL

C
C

PMIX VAL_set_assign(_v, _field, _val)
PMIX VAL set_strdup(_ v, _field, _val)

((x)—>data.
((x)—->data.
.byte)
((x) —>data.

integer)
uint32)
uintl6)
string)
fval)

flag)

PMIX VAL_set_assign
PMIX VAL_set_assign
PMIX VAL_set_assign
PMIX VAL_set_strdup
PMIX VAL set_assign
PMIX VAL_set_assign
PMIX VAL_set_assign

_field, _val)

C

CHAPTER 3. DATA STRUCTURES AND TYPES

- O OWoO~NOOOh~WN =

—_

12

44

#define
#define
#define

#define
#define
#idefine
#define
#define
#define
#define

#idefine

C

PMIX VAL cmp_val(_vall, _val2) ((_vall) !'= (_val2))
PMIX VAL cmp_float (_vall, _val2) (((_vall)>(_val2))?(((_vall)-(_v
PMIX VAL cmp_ptr(_vall, _val2) strncmp (_vall, _val2, strlen(_va
PMIX_ VAL CMP_int PMIX VAL cmp_val
PMIX VAL_CMP_uint32_t PMIX VAL_cmp_val
PMIX_VAL CMP_uintl6_t PMIX VAL_cmp_val
PMIX VAL CMP_float PMIX VAL cmp_float
PMIX VAL CMP_string PMIX VAL cmp_ptr
PMIX VAL_CMP_byte PMIX VAL cmp_val
PMIX VAL _CMP_flag PMIX VAL cmp_val
C
C
PMIX VAL_ASSIGN(_v, _field, _val) #define PMIX_VAL CMP (_field, _val
C

PMIx Standard — Version 2.0 (draft) — November 2017

a s~ WOND =

10
11

12

13

14

15

16

17
18

CHAPTER 4

4.1

4.1.1

Initialization and Finalization

The PMIXx library is required to be initialized and finalized around the usage of most of the APIs.
The APIs that may be used outside of the initialized and finalized region are noted. All other APIs
must be used inside this region.

There are three sets of initialization and finalization functions depending upon the role of the
process in the PMIx universe. Each of these functional sets are described in this chapter.

Query

The APIs defined in this section can be used by any PMIx process, regardless of their role in the
PMIX universe.

PMIx Initialized

Summary

Determines if the PMIXx library has been initialized.

Format
C
int PMIx Initialized(void)
C
A value of 1 (true) will be returned if the PMIx library has been initialized, and 0 (false) otherwise.
Rationale

The return value is an integer for historical reasons as that was the signature of prior PMI libraries.

Description

Check to see if the PMIx library has been initialized using any of the init functions: PMIx_Init,
PMIx server_init,or PMIx_tool_init.

45

1

~

10

11

12
13

14

15
16
17

18
19
20
21
22
23

24

4.1.2 PMIx_Get_ version

Summary

Get the PMIx version information.

Format
C
const char* PMIx_Get_version(void)
C
Description

Get the PMIx version string. Note that the provided string is statically defined and must NOT be
free’d.

4.2 Client

Initialization and finalization routines for PMIx clients.

421 PMIx Init

Summary

Initialize the PMIX client.

Format

pmix_status_t
PMIx_ Init (pmix_proc_t xproc,
pmix_info_t info[], size_t ninfo)

C
INOUT proc
proc structure (handle)
IN info

Array of info structures (array of handles)
IN ninfo
Number of element in the info array (integer)

Returns PMIX SUCCESS or a negative value corresponding to a PMIx error constant.

46 PMIx Standard — Version 2.0 (draft) — November 2017

—_

- . a a -
a b~ W - O © 0 N O O A~ ODN

- a a
©O© o N

N NN
N = O

23

24
25

26

27
28

29
30
31
32

33

Description

Initialize the PMIx client, returning the process identifier assigned to this client’s application in the
provided pmix_proc_t struct. Passing a value of NULL for this parameter is allowed if the user
wishes solely to initialize the PMIx system and does not require return of the identifier at that time.

When called, the PMIx client shall check for the required connection information of the local PMIx
server and establish the connection. If the information is not found, or the server connection fails,
then an appropriate error constant shall be returned.

If successful, the function shall return PMIX_SUCCESS and fill the proc structure with the
server-assigned namespace and rank of the process within the application. In addition, all startup
information provided by the resource manager shall be made available to the client process via
subsequent calls to PMIx_Get .

The PMIXx client library shall be reference counted, and so multiple calls to PMIx_Init are
allowed by the standard. Thus, one way for an application process to obtain its namespace and rank
is to simply call PMIx_Init with a non-NULL proc parameter. Note that each call to

PMIx_ Init must be balanced with a call to PMIx_ Finalize to maintain the reference count.

Each call to PMIx_Init may contain an array of pmix_info_t structures passing directives to
the PMIx client library. This might include information about the location of temporary directories
set up for the application, or constraints on communication protocols for connecting to the local
PMIx server. Multiple calls to PMIx_Init shall not include conflicting directives (e.g., a directive
indicating that one particular communication method be used to connect to the server, followed by a
subsequent call that includes a directive that a different method be used). The PMIx_Init
function will return an error when directives that conflict with prior directives are encountered.

4.2.2 PMIx Finalize

Summary
Finalize the PMIx client library.

Format
C

pmix status_t
PMIx Finalize (const pmix info_t info[], size_t ninfo)

C

IN info
Array of info structures (array of handles)
IN ninfo
Number of element in the info array (integer)

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.

CHAPTER 4. INITIALIZATION AND FINALIZATION 47

—_

No o AW

10

11
12

13

14
15
16

17
18
19
20
21
22

23

Description

Decrement the PMIx client library reference count. When the reference count reaches zero, the
library will finalize the PMIXx client, closing the connection with the local PMIx server and
releasing all internally allocated memory.

By default, PMIx_Finalize will notinclude an internal barrier operation. Users desiring a
barrier as part of the finalize operation can request it by including the PMIX EMBED_BARRIER
attribute in the provided pmix_info_t array.

4.3 Tool

Initialization and finalization routines for PMIx tools.

PMIx tool init

Summary

Initialize the PMIXx library for a tool connection.

Format
C

pmix_status_t
PMIx_tool_init (pmix_proc_t #*proc,
pmix_info_t info[], size_t ninfo)

C
INOUT proc
pmix_proc_t structure (handle)
IN info
Array of info structures (array of handles)
IN ninfo

Number of element in the info array (integer)

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.

PMIx Standard — Version 2.0 (draft) — November 2017

- O © o N (2B &) IEN w N =

—_

—a a
w N

14

15
16

17

18
19

20

21

22
23

24

25

Description

Initialize the PMIXx tool, returning the process identifier assigned to this tool in the provided
pmix proc_t struct.

When called the PMIXx tool library will check for the required connection information of the local
PMIx server and will establish the connection. If the information is not found, or the server
connection fails, then an appropriate error constant will be returned.

If successful, the function will return PMIX_SUCCESS and will fill the provided structure with the
server-assigned namespace and rank of the tool.

Note that the PMIx tool library is referenced counted, and so multiple calls to PMIx_tool_init
are allowed. Thus, one way to obtain the namespace and rank of the process is to simply call
PMIx_tool_init with a non-NULL parameter.

The info array is used to pass user requests pertaining to the init and subsequent operations. Passing
a NULL value for the array pointer is supported if no directives are desired.

4.3.2 PMIx tool finalize

Summary

Finalize the PMIXx library for a tool connection.

Format

C
pmix_status_t
PMIx tool_finalize (void)

C

Returns PMIX_SUCCESS or a negative value corresponding to a PMIX error constant.

Description

Finalize the PMIXx tool library, closing the connection to the local server. An error code will be
returned if, for some reason, the connection cannot be closed.

4.4 Server

Initialization and finalization routines for PMIX servers.

CHAPTER 4. INITIALIZATION AND FINALIZATION 49

1

o O

10
11
12
13

14

15

16
17
18
19
20
21

22

23
24

25

26
27

28

4.41

PMIx server init

Summary

Initialize the PMIx server.

Format
C

pmix_status_t
PMIx_server_init (pmix_server_module_t *module,
pmix_info_t info[], size_t ninfo)

C
INOUT module

pmix_server_module_t structure (handle)

IN info
Array of info structures (array of handles)
IN ninfo

Number of elements in the info array (integer)

Returns PMIX_ SUCCESS or a negative value corresponding to a PMIX error constant.

Description

Initialize the server support library, and provide a pointer to a pmix_server_module_t
structure containing the caller’s callback functions. The array of pmix_info_t structs is used to
pass additional info that may be required by the server when initializing. For example, a user/group
ID to set on the rendezvous file for the Unix Domain Socket. It also may include the

PMIX SERVER_TOOL_SUPPORT key, thereby indicating that the daemon is willing to accept
connection requests from tools.

442 PMIx server finalize

50

Summary

Finalize the PMIx server library.

Format

C
pmix_status_t
PMIx_ server_ finalize (void)

C

Returns PMIX SUCCESS or a negative value corresponding to a PMIx error constant.

PMIx Standard — Version 2.0 (draft) — November 2017

Description

Finalize the server support library. If internal communication mechanism is in-use, the server will
shut it down at this time. All memory usage is released.

CHAPTER 4. INITIALIZATION AND FINALIZATION 51

2

4

10
11
12
13
14

15
16
17
18
19
20

21

CHAPTER S5
Key/Value Management

5.1 Setting and Accessing Key/Value Pairs

5.1.1 PMIx Put

Summary

Push a key/value pair into the client’s namespace.

Format

/*
*
*
*

C

Push a value into the client’s namespace. The client library will cache
the information locally until _PMIx_ Commit_ is called. The provided scope
value is passed to the local PMIx server, which will distribute the data
as directed. x/

pmix_ status_t
PMIx_Put (pmix_scope_t scope,

const char key[], pmix_value_t xval)

C
scope
Distribution scope of the provided value (handle)
key
key (string)
value

Reference to a pmix_value_t structure (handle)

Returns PMIX_SUCCESS or a negative value corresponding to a PMIX error constant.

52

—_

o O NOoO ok~ WM

—_

11
12

13
14

15

16
17

Description

Push a value into the client’s namespace. The client library will cache the information locally until
PMIx_ Commit is called.

The provided scope is passed to the local PMIx server, which will distribute the data to other
processes according to the provided scope. The pmix_scope_t values are defined in
Section 3.2.2 on page ??. Specific implementations may support different scope values, but all
implementations must support at least PMIX_GLOBAL.

The pmix_value_t structure supports both string and binary values. Implementations will
support heterogeneous environments by properly converting binary values between host
architectures, and will copy the provided value into internal memory.

Advice to implementers

The PMIx_Data_pack/PMIx_Data_unpack routines are provided to assist in meeting the
heterogeneity requirement.

Advice to users

The value is copied by the PMIx client library. Thus, the application is free to release and/or
modify the value once the call to PMIx_Put has completed.

5.1.2 PMIx_Get

Summary

Retrieve a key/value pair from the client’s namespace.

CHAPTER 5. KEY/VALUE MANAGEMENT 53

a b~ owN

w0 N o

11
12
13
14
15

16

17

18
19

20
21
22

23
24

25

26
27

Format
C

pmix_status_t

PMIx_ Get (const pmix_proc_t x*proc, const char key|[],
const pmix_info_t info[], size_t ninfo,
pmix_value_t =*x*xval)

C

IN proc

process reference (handle)
IN key

key to retrieve (string)
IN info

Array of info structures (array of handles)
IN ninfo

Number of element in the info array (integer)
OUT val

value (handle)

Returns PMIX_ SUCCESS or a negative value corresponding to a PMIX error constant.

Description

Retrieve information for the specified key as published by the process identified in the given
pmix_proc_t , returning a pointer to the value in the given address.

This is a blocking operation - the caller will block until the specified data has been PMIx_Put by
the specified rank in the proc structure. The caller is responsible for freeing all memory associated
with the returned value when no longer required.

The info array is used to pass user requests regarding the get operation. This can include the
PMIX_TIMEOUT attribute.

5.1.3 PMIx Get_nb

54

Summary

Nonblocking PMIx_Get operation.

PMIx Standard — Version 2.0 (draft) — November 2017

a b~ ownD

0 N O

11
12
13
14
15
16
17

18

19

20
21
22

23

24
25

Format
C

pmix status_t

PMIx_Get_nb (const pmix_proc_t *proc, const char key|[],
const pmix_info_t info[], size_t ninfo,
pmix_value_cbfunc_t cbfunc, void *cbdata)

C

IN proc

process reference (handle)
IN key

key to retrieve (string)
IN info

Array of info structures (array of handles)
IN ninfo

Number of elements in the info array (integer)
IN cbfunc

Callback function (function reference)
IN cbdata

Data to be passed to the callback function (memory reference)

Returns PMIX_ SUCCESS or a negative value corresponding to a PMIx error constant.

Description

The callback function will be executed once the specified data has been PMIx_Put by the
identified process and retrieved by the local server. The info array is used as described by the
PMIx_Get routine.

5.1.4 PMIx_ Store_ internal

Summary

CHAPTER 5. KEY/VALUE MANAGEMENT

55

a b~ owN

—_
- O © 0N O®

-
\V]

14
15

16

17

18

19
20

21

22

23

Format

/ *
pmix_ status_t
PMIx_Store_internal (const pmix_proc_t x*proc,
const char xkey, pmix value_t xval);

C
IN proc
process reference (handle)
IN key
key to retrieve (string)
IN val

Value to store (handle)

Returns PMIX_SUCCESS or a negative value corresponding to a PMIX error constant.

Description

Store some data locally for retrieval by other areas of the proc. This is data that has only internal
scope - it will never be "pushed" externally.

5.2 Exchanging Key/Value Pairs

5.2.1 PMIx Commit

Summary

Push all previously PMIx_Put values to the local PMIx server.

Format
C

pmix_status_t PMIx_ Commit (void)

C

Returns PMIX_ SUCCESS or a negative value corresponding to a PMIX error constant.

56 PMIx Standard — Version 2.0 (draft) — November 2017

o

Description

This is an asynchronous operation. The PMIx library will immediately return to the caller while the

data is transmitted to the local server in the background.

Advice to users

The local PMIx server will cache the information locally. Meaning that the committed data will not
be circulated during PMIx_Commit . Availability of the data upon completion of PMIx_Commit

is therefore implementation-dependent.

7 5.2.2 PMIx Fence

10

11
12
13

14
15
16
17
18
19
20
21

22

Summary

Execute a blocking barrier across the processes identified in the specified array.

Format
C

pmix_status_t
PMIx Fence (const pmix_proc_t procs[], size_t nprocs,
const pmix_info_t info[], size_t ninfo)

C

IN procs

Array of pmix_proc_t structures (array of handles)
IN nprocs

Number of element in the procs array (integer)

IN info
Array of info structures (array of handles)
IN ninfo

Number of element in the info array (integer)

Returns PMIX_SUCCESS or a negative value corresponding to a PMIX error constant.

CHAPTER 5. KEY/VALUE MANAGEMENT

57

Description

Passing a NULL pointer as the procs parameter indicates that the fence is to span all processes in
the client’s namespace. Each provided pmix_proc_t struct can pass PMIX_RANK WILDCARD
to indicate that all processes in the given namespace are participating.

The info array is used to pass user requests regarding the fence operation. This can include:

PMIX COLLECT DATA "pmix.collect" (bool)
Collect data and return it at the end of the operation

PMIX_ COLLECT_DATA
(string) A boolean indicating whether or not the barrier operation is to return the put data
from all participating processes. A value of false indicates that the callback is just used as a
release and no data is to be returned at that time. A value of true indicates that all put data is
to be collected by the barrier. Returned data is cached at the server to reduce memory
footprint, and can be retrieved as needed by calls to PMIx_Get / PMIx_Get_nb.

PMIX_ COLLECTIVE_ALGO
(string) A comma-delimited string indicating the algorithm to be used for executing the
barrier, in priority order.

PMIX_ COLLECTIVE_ALGO_REQD
(string) Instructs the host RM that it should return an error if none of the specified
algorithms are available. Otherwise, the RM is to use one of the algorithms if possible, but is
otherwise free to use any of its available methods to execute the operation.

PMIX_ TIMEOUT
(string) Maximum time for the fence to execute before declaring an error. By default, the
RM shall terminate the operation and notify participants if one or more of the indicated
procs fails during the fence. However, the timeout parameter can help avoid “hangs” due to
programming errors that prevent one or more processes from reaching the “fence”.

Note that for scalability reasons, the default behavior for PMIx_Fence is to not collect the data.

27 5.2.3 PMIx Fence nb

28

29
30

31

58

Summary

Execute a nonblocking PMIx_Fence across the processes identified in the specified array of
processes.

Format

PMIx Standard — Version 2.0 (draft) — November 2017

A OWND =

[oc BN RN RN |

11
12
13
14
15
16

17

18

19
20

21

22

23

24
25

C

pmix_status_t
PMIx Fence_nb (const pmix proc_t procs[], size_t nprocs,

Returns PMIX_SUCCESS or a negative value corresponding to a PMIX error constant.

const pmix_info_t info[], size_t ninfo,
pmix_op_cbfunc_t cbfunc, void xcbdata)

C

procs

Array of pmix_proc_t structures (array of handles)
nprocs

Number of element in the procs array (integer)

info

Array of info structures (array of handles)
ninfo

Number of element in the info array (integer)

cbfunc

Callback function (function reference)

cbdata

Data to be passed to the callback function (memory reference)

Description

Nonblocking PMIx_Fence routine. Note that the function will return an error if a NULL callback
function is given.

5.3 Publish and Lookup Data

5.3.1

PMIx Publish

Summary

Publish data for later access via PMIx_Lookup .

CHAPTER 5. KEY/VALUE MANAGEMENT

59

w

o NoO oA~

10
11
12

13
14
15

16

17
18
19

20

21
22

23

24
25
26

Format
C

pmix_status_t
PMIx Publish(const pmix_info_t info[], size_t ninfo)

C
IN info
Array of info structures (array of handles)
IN ninfo

Number of element in the info array (integer)

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.

Description

Publish the data in the info array for lookup. By default, the data will be published into the
PMIX SESSION range and with PMIX_PERSIST_APP persistence. Changes to those values,
and any additional directives, can be included in the pmix_info_t array.

Note that the keys must be unique within the specified data range or else an error will be returned
(first published wins). Attempts to access the data by processes outside of the provided data range
will be rejected.

The persistence parameter instructs the server as to how long the data is to be retained.

The blocking form will block until the server confirms that the data has been posted and is
available. The non-blocking form will return immediately, executing the callback when the server
confirms availability of the data.

5.3.2 PMIx Publish nb

Summary

Nonblocking PMIx_Publish routine.

Format
C

pmix_ status_t
PMIx Publish_nb(const pmix info_t info[], size_t ninfo,
pmix_op_cbfunc_t cbfunc, void xcbdata)

PMIx Standard — Version 2.0 (draft) — November 2017

© oOoONOOPh~OOWN-=

11
12

13

14

15
16

17

18
19
20

21
22
23
24
25
26
27
28

29

C

IN info
Array of info structures (array of handles)
IN ninfo
Number of element in the info array (integer)
IN cbfunc
Callback function pmix_op_cbfunc_t (function reference)
IN cbdata
Data to be passed to the callback function (memory reference)

Returns PMIX_SUCCESS or a negative value corresponding to a PMIX error constant.

Description

Nonblocking PMIx_Publish routine. Note that the function will return an error if a NULL

callback function is given.

5.3.3 PMIx_ Lookup

Summary

Lookup information published by this or another process with PMIx_Publish or
PMIx Publish nb.

Format
C

pmix_status_t
PMIx_Lookup (pmix _pdata_t data[], size_t ndata,
const pmix_info_t info[], size_t ninfo)

C
IN data
Array of publishable data structures (array of handles)
IN ndata
Number of elements in the data array (integer)
IN info

Array of info structures (array of handles)
IN ninfo
Number of elements in the info array (integer)

Returns PMIX_ SUCCESS or a negative value corresponding to a PMIXx error constant.

CHAPTER 5. KEY/VALUE MANAGEMENT

61

—_

oNOoO Ol ~AWN

11
12
13

14
15

16
17
18
19

20

21

22
23

Description

Lookup information published by this or another process. By default, the search will be conducted
across the PMIX SESSION range. Changes to the range, and any additional directives, can be
provided in the pmix_info_t array.

Note that the search is also constrained to only data published by the current user (i.e., the search
will not return data published by an application being executed by another user). There currently is
no option to override this behavior - such an option may become available later via an appropriate
pmix_info_t directive.

The data parameter consists of an array of pmix_pdata_t struct with the keys specifying the
requested information. Data will be returned for each key in the associated info struct. Any key that
cannot be found will return with a data type of PMIX_UNDEF . The function will return

PMIX_ SUCCESS if any values can be found, so the caller must check each data element to ensure
it was returned.

The proc field in each pmix_pdata_t struct will contain the namespace/rank of the process that
published the data.

Advice to users

Although this is a blocking function, it will not wait by default for the requested data to be
published. Instead, it will block for the time required by the server to lookup its current data and
return any found items. Thus, the caller is responsible for ensuring that data is published prior to
executing a lookup, or for retrying until the requested data is found.

Optionally, the info array can be used to modify this behavior by including:

5.3.4 PMIx Lookup_nb

62

Summary

Nonblocking version of PMIx_ Lookup .

PMIx Standard — Version 2.0 (draft) — November 2017

a b~ ownD

0 N O

11
12
13
14
15

16

17

18
19
20
21

22

23
24

25

26
27
28

Format

pmix status_t

PMIx_ Lookup_nb (char xxkeys,
const pmix_info_t info[], size_t ninfo,
pmix_lookup_cbfunc_t cbfunc, void xcbdata)

C

IN keys

Array to be provided to the callback (array of strings)
IN info

Array of info structures (array of handles)
IN ninfo

Number of element in the info array (integer)
IN cbfunc

Callback function (handle)
IN cbdata

Callback data to be provided to the callback function (pointer)

Returns PMIX_ SUCCESS or a negative value corresponding to a PMIXx error constant.

Description

Non-blocking form of the PMIx_Lookup function. Data for the provided NULL-terminated keys
array will be returned in the provided callback function. As with PMIx_Lookup , the default
behavior is to not wait for data to be published. The info keys can be used to modify the behavior as
previously described by PMIx Lookup .

5.3.5 PMIx Unpublish

Summary

Unpublish data posted by this process using the given keys.

Format

pmix_status_t
PMIx Unpublish (char xxkeys,
const pmix_info_t info[], size_t ninfo)

CHAPTER 5. KEY/VALUE MANAGEMENT 63

a MW=

- O ©O©Woo~N O

—_

12

13
14

15

16
17
18
19

20
21
22
23
24
25
26
27
28
29

30

C

IN info
Array of info structures (array of handles)
IN ninfo

Number of element in the info array (integer)

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.

Description

Unpublish data posted by this process using the given keys. The function will block until the data
has been removed by the server. A value of NULL for the keys parameter instructs the server to

remove all data published by this process.

By default, the range is assumed to be PMIX_SESSION . Changes to the range, and any additional

directives, can be provided in the info array.

5.3.6 PMIx Unpublish_nb

Summary

Nonblocking version of PMIx_Unpublish.

Format

pmix_status_t

PMIx Unpublish_nb (char xxkeys,
const pmix_info_t info[], size_t ninfo,
pmix_op_cbfunc_t cbfunc, void xcbdata)

C

IN keys

(array of strings)
IN info

Array of info structures (array of handles)
IN ninfo

Number of element in the info array (integer)
IN cbfunc

Callback function pmix_op_cbfunc_t (function reference)
IN cbdata
Data to be passed to the callback function (memory reference)

Returns PMIX SUCCESS or a negative value corresponding to a PMIx error constant.

PMIx Standard — Version 2.0 (draft) — November 2017

Description

Non-blocking form of the PMIx_Unpublish function. The callback function will be executed
once the server confirms removal of the specified data.

CHAPTER 5. KEY/VALUE MANAGEMENT 65

11
12
13
14
15
16
17
18

19

CHAPTER 6
Process Management

6.1 Abort

6.1.1 PMIx Abort

Summary

Abort the specified process.

Format
C

pmix_status_t
PMIx Abort (int status, const char msg[],
pmix_proc_t procs[], size_t nprocs)

C
IN status
Error code to return to invoking environment (integer)
IN msg

String message to be returned to user (string)
IN procs

Array of pmix_proc_t structures (array of handles)
IN nprocs

Number of elements in the procs array (integer)

Returns PMIX_SUCCESS or a negative value corresponding to a PMIX error constant.

66

(o2 I &) BEE NGO I \V)

10
11
12

13
14
15

16

17

18

19
20

Description

Request that the host resource manager print the provided message and abort the provided array of
procs. A Unix or POSIX environment should handle the provided status as a return error code from
the main program that launched the application. A NULL for the procs array indicates that all
processes in the caller’s namespace are to be aborted, including itself. Passing a NULL msg
parameter is allowed.

Advice to users

The response to this request is somewhat dependent on the specific resource manager and its
configuration (e.g., some resource managers will not abort the application if the provided status is
zero unless specifically configured to do so, and some cannot abort subsets of processes in an
application), and thus lies outside the control of PMIx itself. However, the PMIx client library shall
inform the RM of the request that the specified procs be aborted, regardless of the value of the
provided status.

Note that race conditions caused by multiple processes calling PMIx_Abort are left to the server
implementation to resolve with regard to which status is returned and what messages (if any) are
printed.

6.2 Process Creation

6.2.1

PMIx Spawn

Summary

Spawn a new job.

CHAPTER 6. PROCESS MANAGEMENT 67

a b~ owN

w0 N o

11
12
13
14
15

16

17

18
19
20
21
22
23

24
25
26
27
28

29

30
31
32
33
34

68

Format
C

pmix_status_t

PMIx_ Spawn (const pmix_info_t job_info[], size_t ninfo,
const pmix_app_t apps[], size_t napps,
char nspace[])

C

IN job_info
Array of info structures (array of handles)
IN ninfo
Number of elements in the job_info array (integer)

IN apps

Array of pmix_app_t structures (array of handles)
IN napps

Number of elements in the apps array (integer)
OUT nspace

Namespace of the new job (string)

Returns PMIX_ SUCCESS or a negative value corresponding to a PMIX error constant.

Description

Spawn a new job. The assigned namespace of the spawned applications is returned in the nspace
parameter. A NULL value in that location indicates that the caller doesn’t wish to have the
namespace returned. The nspace array must be at least of size one more than PMIX_MAX NSLEN.
Behavior of individual resource managers may differ, but it is expected that failure of any
application process to start will result in termination/cleanup of all processes in the newly spawned
job and return of an error code to the caller.

By default, the spawned processes will be PMIx “connected” to the parent process upon successful
launch (see PMIx_Connect description for details). Note that this only means that the parent
process (a) will be given a copy of the new job’s information so it can query job-level info without
incurring any communication penalties, and (b) will receive notification of errors from process in
the child job.

Job-level directives can be specified in the job_info array. This can include:

PMIX_ NON_PMI
(string) Processes in the spawned job will not be calling PMIx Init .

PMIX_ TIMEOUT
(string) Declare the spawn as having failed if the launched processes do not call
PMIx_ Init within the specified time.

PMIx Standard — Version 2.0 (draft) — November 2017

—_

PMIX NOTIFY COMPLETION

(string) Notify the parent process when the child job terminates, either normally or with

€Iror.

4 6.2.2 PMIx Spawn_nb

10
11

12
13
14
15
16
17
18
19
20
21

22

23
24

25

26

Summary

Nonblocking version of the PMIx_Spawn routine.

Format
C

pmix_status_t

PMIx Spawn_nb (const pmix info_t job_info[], size_t ninfo,
const pmix _app_t apps[], size_t napps,
pmix_spawn_cbfunc_t cbfunc, void *cbdata)

C

IN job_info
Array of info structures (array of handles)

IN ninfo

Number of elements in the job_info array (integer)
IN apps

Array of pmix_app_t structures (array of handles)
IN cbfunc

Callback function pmix_spawn_cbfunc_t (function reference)
IN cbdata
Data to be passed to the callback function (memory reference)

Returns PMIX_ SUCCESS or a negative value corresponding to a PMIXx error constant.

Description

Nonblocking version of the PMIx_Spawn routine.

6.3 Connecting and Disconnecting Processes

CHAPTER 6. PROCESS MANAGEMENT

69

1

10
11
12
13
14
15

16

17

18
19
20

21
22
23
24

25
26
27

28
29
30

6.3.1

70

PMIx Connect

Summary

Connect namespaces.

Format
C

pmix_ status_t
PMIx_Connect (const pmix_proc_t procs[], size_t nprocs,
const pmix_info_t info[], size_t ninfo)

C

IN procs
Array of proc structures (array of handles)
IN nprocs
Number of elements in the procs array (integer)

IN info
Array of info structures (array of handles)
IN ninfo

Number of elements in the info array (integer)

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.

Description

Record the specified processes as “connected”. This means that the resource manager should treat
the failure of any process in the specified group as a reportable event, and take appropriate action.
Note that different resource managers may respond to failures in different manners.

The callback function is to be called once all participating processes have called connect. The
server is required to return any job-level info for the connecting processes that might not already
have (i.e., if the connect request involves procs from different namespaces, then each proc shall
receive the job-level info from those namespaces other than their own.

A process can only engage in one connect operation involving the identical set of processes at a
time. However, a process can be simultaneously engaged in multiple connect operations, each
involving a different set of processes.

As in the case of the fence operation, the info array can be used to pass user-level directives
regarding the algorithm to be used for the collective operation involved in the “connect”, timeout
constraints, and other options available from the host RM.

PMIx Standard — Version 2.0 (draft) — November 2017

1

0 N O O

10
11
12
13
14
15
16
17
18
19
20

21

22
23

24

25
26

6.3.2 PMIx Connect_nb

Summary

Nonblocking PMIx_Connect_nb routine.

Format

C

pmix_status_t
PMIx Connect_nb (const pmix proc_t procs[], size_t nprocs,

const pmix_info_t info[], size_t ninfo,
pmix_op_cbfunc_t cbfunc, void xcbdata)

C

procs

Array of proc structures (array of handles)

nprocs

Number of elements in the procs array (integer)

info

Array of info structures (array of handles)
ninfo

Number of element in the info array (integer)

cbfunc

Callback function pmix_op_cbfunc_t (function reference)
cbdata

Data to be passed to the callback function (memory reference)

Returns PMIX_ SUCCESS or a negative value corresponding to a PMIXx error constant.

Description

Nonblocking PMIx_Connect_nb routine.

6.3.3 PMIx Disconnect

Summary

Disconnect a previously connected set of processes.

CHAPTER 6. PROCESS MANAGEMENT

71

14

15
16
17
18
19

20

21
22

23

24
25
26
27

Format
C

pmix_status_t
PMIx Disconnect (const pmix proc_t procs[], size_t nprocs,
const pmix_info_t info[], size_t ninfo);

C

IN procs
Array of proc structures (array of handles)
IN nprocs
Number of elements in the procs array (integer)
IN info
Array of info structures (array of handles)
IN ninfo
Number of element in the info array (integer)

Returns PMIX_ SUCCESS or a negative value corresponding to a PMIX error constant.

Description

Disconnect a previously connected set of processes. An error will be returned if the specified set of
procs was not previously “connected”. As with PMIx_Connect , a process may be involved in
multiple simultaneous disconnect operations. However, a process is not allowed to reconnect to a
set of procs that has not fully completed disconnect (i.e., you have to fully disconnect before you
can reconnect to the same group of processes. The info array is used as in PMIx_Connect .

6.3.4 PMIx Disconnect_ nb

Summary

Nonblocking PMIx_Disconnect routine.

Format
C

pmix_status_t

PMIx_ Disconnect_nb (const pmix_proc_t ranges[], size_t nprocs,
const pmix_info_t info[], size_t ninfo,
pmix_op_cbfunc_t cbfunc, void xcbdata);

PMIx Standard — Version 2.0 (draft) — November 2017

0N O~ OWND =

- a a
N = O o

-
w

14
15

16

17

18

19
20

21

22
23
24

C

IN procs
Array of proc structures (array of handles)
IN nprocs
Number of elements in the procs array (integer)

IN info

Array of info structures (array of handles)
IN ninfo

Number of element in the info array (integer)
IN cbfunc

Callback function pmix_op_cbfunc_t (function reference)
IN cbdata
Data to be passed to the callback function (memory reference)

Returns PMIX_ SUCCESS or a negative value corresponding to a PMIXx error constant.

Description

Nonblocking PMIx_ Disconnect routine.

6.4 Query

PMIx_ Resolve_peers

Summary

Access an array of processes within the specified namespace on a node.

Format
C

pmix_status_t
PMIx Resolve_peers (const char *nodename, const char *nspace,
pmix_proc_t *xxprocs, size_t xnprocs)

CHAPTER 6. PROCESS MANAGEMENT

73

© 0O~NO O~ OWN-—=

11
12
13
14
15

16

17
18

19

20
21

22
23
24
25

26

IN nodename

Name of the node to query (string)
IN nspace

namespace (string)

OUT procs
Array of process structures (array of handles)
OUT nprocs

Number of elements in the procs array (integer)

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.

Description

Given a nodename, return an array of processes within the specified nspace on that node. If the
nspace is NULL, then all processes on the node will be returned. If the specified node does not
currently host any processes, then the returned array will be NULL, and nprocs will be 0. The caller
is responsible for releasing the procs array when done with it. The PMIX_PROC_FREE macro is
provided for this purpose.

6.4.2 PMIx Resolve_ nodes

74

Summary

Return a list of nodes hosting processes.

Format
C

pmix_ status_t
PMIx_ Resolve_nodes (const char *nspace, char xxnodelist)

C

IN nspace
Namespace (string)
OUT nodelist
Comma-delimited list of nodenames (string)

Returns PMIX_ SUCCESS or a negative value corresponding to a PMIX error constant.

PMIx Standard — Version 2.0 (draft) — November 2017

A WOWN

10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25

26
27
28
29

Description

Given a nspace, return the list of nodes hosting processes within that namespace. The returned
string will contain a comma-delimited list of nodenames. The caller is responsible for releasing the
string when done with it.

6.4.3 PMIx Query_info_nb

Summary

Query information about the system in general.

Format
C

typedef void (*pmix_info_cbfunc_t) (pmix_status_t status,
pmix_info_t xinfo, size_t ninfo,
void xcbdata,
pmix_release_cbfunc_t release_fn,
void *release_cbdata);

pmix status_t
PMIx Query_info_nb (pmix query t queries[], size_t nqueries,
pmix_info_cbfunc_t cbfunc, void xcbdata)

C

IN queries
Array of query structures (array of handles)
IN nqueries
Number of elements in the queries array (integer)

IN cbfunc
Callback function pmix_info_cbfunc_t (function reference)
IN cbdata

Data to be passed to the callback function (memory reference)

PMIX_ SUCCESS All data has been returned

PMIX ERR_NOT_ FOUND None of the requested data was available

PMIX ERR_PARTIAL SUCCESS Some of the data has been returned
PMIX ERR_NOT_SUPPORTED The host RM does not support this function

CHAPTER 6. PROCESS MANAGEMENT 75

—_

© oo NOoO OO~ wWN

76

Description

Query information about the system in general. This can include a list of active namespaces,
network topology, etc. Also can be used to query node-specific info such as the list of peers
executing on a given node. We assume that the host RM will exercise appropriate access control on
the information.

NOTE: There is no blocking form of this API as the structures passed to query info differ from
those for receiving the results.

The status argument to the callback function indicates if requested data was found or not. An array
of pmix_info_t will contain the key/value pairs.

PMIx Standard — Version 2.0 (draft) — November 2017

CHAPTER 7
Job Allocation Management

2 7.1 Allocation Requests

4 711 PMIx_Allocation_request_nb

5 Summary

6 Request an allocation operation from the host resource manager.

7 Format

C

8 pmix_status_t

9 PMIx Allocation_request_nb(pmix_alloc_directive_t directive,
10 pmix_info_t xinfo, size_t ninfo,
11 pmix_info_cbfunc_t cbfunc, void xcbdata);

C

12 IN directive
13 Allocation directive (handle)
14 IN info
15 Array of info structures (array of handles)
16 IN ninfo
17 Number of elements in the info array (integer)
18 IN cbfunc
19 Callback function pmix_info_cbfunc_t (function reference)
20 IN cbdata
21 Data to be passed to the callback function (memory reference)
22 Returns PMIX_ SUCCESS or a negative value corresponding to a PMIXx error constant.

77

21

22
23

24

25
26
27
28

29
30
31
32
33
34

Description

Request an allocation operation from the host resource manager. Several broad categories are
envisioned, including the ability to:

e Request allocation of additional resources, including memory, bandwidth, and compute. This
should be accomplished in a non-blocking manner so that the application can continue to
progress while waiting for resources to become available. Note that the new allocation will be
disjoint from (i.e., not affiliated with) the allocation of the requestor - thus the termination of one
allocation will not impact the other.

e Extend the reservation on currently allocated resources, subject to scheduling availability and
priorities. This includes extending the time limit on current resources, and/or requesting
additional resources be allocated to the requesting job. Any additional allocated resources will be
considered as part of the current allocation, and thus will be released at the same time.

e Release currently allocated resources that are no longer required. This is intended to support
partial release of resources since all resources are normally released upon termination of the job.
The identified use-cases include resource variations across discrete steps of a workflow, as well
as applications that spawn sub-jobs and/or dynamically grow/shrink over time.

e “Lend” resources back to the scheduler with an expectation of getting them back at some later
time in the job. This can be a proactive operation (e.g., to save on computing costs when
resources are temporarily not required), or in response to scheduler requests in lieue of
preemption. A corresponding ability to “reacquire” resources previously released is included.

7.1.2 PMIx_Job control nb

Summary

Request a job control action.

Format
C

pmix_status_t

PMIx_Job_control_nb (const pmix_proc_t targets[], size_t ntargets,
const pmix_info_t directives[], size_t ndirs,
pmix_info_cbfunc_t cbfunc, void xcbdata)

C

IN targets

Array of proc structures (array of handles)
IN ntargets

Number of element in the targets array (integer)
IN directives

Array of info structures (array of handles)

PMIx Standard — Version 2.0 (draft) — November 2017

1 IN ndirs

2 Number of element in the directives array (integer)

3 IN cbfunc

4 Callback function pmix_info_cbfunc_t (function reference)

5 IN cbdata

6 Data to be passed to the callback function (memory reference)

7 Returns PMIX_SUCCESS or a negative value corresponding to a PMIX error constant.

8 Description

9 Request a job control action. The targets array identifies the processes to which the requested job
10 control action is to be applied. A NULL value can be used to indicate all processes in the caller’s
11 namespace. The use of PMIX RANK_WILDARD can also be used to indicate that all processes in
12 the given namespace are to be included.
13 The directives are provided as pmix_info_t structures in the directives array. The callback
14 function provides a status to indicate whether or not the request was granted, and to provide some
15 information as to the reason for any denial in the pmix_info_cbfunc_t array of
16 pmix_info_t structures. If non-NULL, then the specified release_fn must be called when the
17 callback function completes - this will be used to release any provided pmix_info_t array.

18 7.2 Process and Job Monitoring

19

20 7.2.1 PMIx_Process_monitor nb

21 Summary
22 Request that something be monitored.
23 Format
C
24 pmix_status_t
25 PMIx Process_monitor_nb(const pmix_info_t *monitor, pmix_status_t error,
26 const pmix_info_t directives[], size_t ndirs,
27 pmix_info_cbfunc t cbfunc, void xcbdata)

CHAPTER 7. JOB ALLOCATION MANAGEMENT 79

0N O~ WOWN =

14

15
16
17
18
19

20
21

22
23
24

25
26

27
28
29

30

31
32

IN monitor
info (handle)
IN error
status (integer)
IN directives
Array of info structures (array of handles)

IN ndirs

Number of elements in the directives array (integer)
IN cbfunc

Callback function pmix_info_cbfunc_t (function reference)
IN cbdata

Data to be passed to the callback function (memory reference)

Returns PMIX SUCCESS or a negative value corresponding to a PMIx error constant.

Description

Request that something be monitored. For example, that the server monitor this process for periodic
heartbeats as an indication that the process has not become “wedged”. When a monitor detects the
specified alarm condition, it will generate an event notification using the provided error code and
passing along any available relevant information. It is up to the caller to register a corresponding
event handler.

The monitor argument is an attribute indicating the type of monitor being requested. For example,
PMIX_MONITOR_FILE to indicate that the requestor is asking that a file be monitored.

The error argument is the status code to be used when generating an event notification alerting that
the monitor has been triggered. The range of the notification defaults to
PMIX RANGE_NAMESPACE . This can be changed by providing a PMIX_ RANGE directive.

The directives argument characterizes the monitoring request (e.g., monitor file size) and frequency
of checking to be done

The chfunc function provides a status to indicate whether or not the request was granted, and to
provide some information as to the reason for any denial in the pmix_info_cbfunc_t array of
pmix_info_t structures.

7.2.2 PMIx_ Heartbeat

80

Summary
Send a heartbeat to the RM

PMIx Standard — Version 2.0 (draft) — November 2017

Format

void PMIx_ Heartbeat (void)

Description

A simplified version of PMIx_Process_monitor_nb that sends a heartbeat to the RM.

CHAPTER 7. JOB ALLOCATION MANAGEMENT 81

\V]

10
11

12
13
14
15
16
17
18
19
20
21
22
23

24

CHAPTER 8
Event Notification

8.1 Logging

8.1.1 PMIx Log nb

Summary

Log data to a data service.

Format
C

pmix_ status_t

PMIx_ Log nb(const pmix_info_t data[], size_t ndata,
const pmix_info_t directives[], size_t ndirs,
pmix_op_cbfunc_t cbfunc, void xcbdata)

C
IN data
Array of info structures (array of handles)
IN ndata

Number of elements in the data array (integer)
IN directives
Array of info structures (array of handles)

IN ndirs

Number of elements in the directives array (integer)
IN cbfunc

Callback function pmix_op_cbfunc_t (function reference)
IN cbdata

Data to be passed to the callback function (memory reference)

Returns PMIX SUCCESS or a negative value corresponding to a PMIx error constant.

82

OO A WN

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Description

Log data to a “central” data service/store, subject to the services offered by the host resource
manager. The data to be logged is provided in the data array. The (optional) directives can be used
to request specific storage options and direct the choice of storage option.

The callback function will be executed when the log operation has been completed. The data array
must be maintained until the callback is provided.

8.2 Notification and Management

8.2.1 PMIx Register_event_handler

~
*

* % ok ok ko ok ok ok ok ok F X X X Ok F F * F * * * *

C

Register an event handler to report events. Three types of events
can be reported:

(a) those that occur within the client library, but are not
reportable via the API itself (e.g., loss of connection to
the server). These events typically occur during behind-the-scenes
non-blocking operations.

(b) job-related events such as the failure of another process in
the job or in any connected job, impending failure of hardware
within the job’s usage footprint, etc.

(c) system notifications that are made available by the local
administrators

By default, only events that directly affect the process and/or
any process to which it is connected (via the PMIx_Connect call)
will be reported. Options to modify that behavior can be provided
in the info array

Both the client application and the resource manager can register

err handlers for specific events. PMIx client/server calls the registe
err handler upon receiving event notify notification (via PMIx Notify_
from the other end (Resource Manager/Client application).

CHAPTER 8. EVENT NOTIFICATION 83

oNOO O WN =

_ a4 a4 a a
A WON—= OO

15

16
17
18
19
20
21
22
23

24

* Multiple err handlers can be registered for different events. PMIX return
* an integer reference to each register handler in the callback fn. The cal
* must retain the reference in order to deregister the evhdlr.
* Modification of the notification behavior can be accomplished by
* deregistering the current evhdlr, and then registering it
* using a new set of info values.
*
* See pmix_common.h for a description of the notification function */
void

PMIx_ Register_ event_handler (pmix_ status_t codes[], size_t ncodes,

pmix_info_t info[], size_t ninfo,
pmix_notification_fn_t evhdlr,
pmix_evhdlr_ reg cbfunc_t cbfunc,
void *cbdata);

C

8.2.2 PMIx Deregister_event_handler

C

Deregister an event handler

evhdlr_ref is the reference returned by PMIx from the call to
PMIx_Register_event_handler. If non-NULL, the provided cbfunc
will be called to confirm removal of the designated handler */

void
PMIx_ Deregister_event_handler(size_t evhdlr_ref,

pmix_op_cbfunc_t cbfunc,
void xcbdata);

C

8.2.3 PMIx Notify_ event

84

PMIx Standard — Version 2.0 (draft) — November 2017

C

1 /* Report an event to a process for notification wvia any

2 * registered evhdlr. The evhdlr registration can be

3 * called by both the server and the client application. On the

4 * server side, the evhdlr is used to report events detected

5 * by PMIx to the host server for handling. On the client side,

6 * the evhdlr is used to notify the process of events

7 * reported by the server - e.g., the failure of another process.

8 *

9 * This function allows the host server to direct the server

10 * convenience library to notify all registered local procs of

11 * an event. The event can be local, or anywhere in the cluster.

12 * The status indicates the event being reported.

13 *

14 * The client application can also call this function to notify the
15 * resource manager of an event it encountered. It can request the host
16 * server to notify the indicated processes about the event.

17 *

18 * The array of procs identifies the processes that will be impacted
19 * by the event. This could consist of a single process, or a number
20 * of processes.

21 *

22 * The info array contains any further info the RM can and/or chooses
23 * to provide.

24 *

25 * The callback function will be called upon completion of the

26 * notify event function’s actions. Note that any messages will

27 * have been queued, but may not have been transmitted by this

28 * time. Note that the caller is required to maintain the input

29 * data until the callback function has been executed!

30 */

31 pmix_status_t

32 PMIx_Notify event (pmix_status_t status,

33 const pmix_proc_t *source,

34 pmix_data_range_t range,

35 pmix_info_t info[], size_t ninfo,

36 pmix_op_cbfunc_t cbfunc, void *cbdata);

C

37 8.2.4 Event Notification Callback Function

38 The pmix_event_notification_cbfunc_fn_t ...

CHAPTER 8. EVENT NOTIFICATION 85

oNOO O WN =

- 1
OO WON = OO

17
18

19

20

21
22
23
24
25
26
27
28
29
30
31
32
33
34

~
*

* ok ok ok ok ok X F X %

*/

C

define a callback by which an event handler can notify the PMIx library
that it has completed its response to the notification. The handler

is _required_ to execute this callback so the library can determine

if additional handlers need to be called. The handler shall return

PMIX SUCCESS if no further action is required. The return status

of each event handler and any returned pmix info_t structures

will be added to the array of pmix info_t passed to any subsequent
event handlers to help guide their operation.

If non-NULL, the provided callback function will be called to allow
the event handler to release the provided info array.

typedef void (*pmix_event_notification_cbfunc_fn_ t) (pmix_status_t status,

pmix_info_t *results, si
pmix_op_cbfunc_t cbfunc,
void xnotification_cbdat

Description

8.2.5 Notification Callback Function

86

The

~
*

* % ok ok Xk % Ok F F * * *

pmix_notification fn_t ...

C

define a callback function for the event handler. Upon receipt of an
event notification, PMIx will execute the specified notification
callback function, providing:

evhdlr_registration_id - the returned registration number of
the event handler being called

status - the event that occurred

source — the nspace and rank of the process that generated
the event. If the source is the resource manager,
then the nspace will be empty and the rank will
be PMIX RANK UNDEF

info - any additional info provided regarding the event.

ninfo - the number of info objects in the info array

results - any provided results from event handlers called

PMIx Standard — Version 2.0 (draft) — November 2017

O N O~ WN =

A D WOWWWWWWWWWMNDNDMNPDNDNDNPDNODNODNODND = =22
- 0O OO NOUOPAP,WN—-22OOONODOAOPRPRWN—22TOOONOODOPA,WN-—=OO

prior to this one.
nresults - number of info objects in the results array
cbfunc - the function to be called upon completion of the handler
cbdata - pointer to be returned in the completion cbfunc

Note that different resource managers may provide differing levels

of support for event notification to application processes. Thus, the
info array may be NULL or may contain detailed information of the even
It is the responsibility of the application to parse any provided info
for defined key-values if it so desires.

Possible uses of the pmix_info_t object include:

- for the RM to alert the process as to planned actions, such as
to abort the session, in response to the reported event

— provide a timeout for alternative action to occur, such as for
the application to request an alternate response to the event

For example, the RM might alert the application to the failure of

a node that resulted in termination of several processes, and indicate
that the overall session will be aborted unless the application
requests an alternative behavior in the next 5 seconds. The applicatio
then has time to respond with a checkpoint request, or a request to
recover from the failure by obtaining replacement nodes and restarting
from some earlier checkpoint.

Support for these options is left to the discretion of the host RM. In
keys are included in the common definions above, but also may be augme
on a per-RM basis.

On the server side, the notification function is used to inform the ho
server of a detected event in the PMIx subsystem and/or client

* % ok ok ok ok X %k ok ok ok ok ok ok k% Ok ok ok ok ok F F X H O F * * * * *

*/

typedef void (*pmix_notification_fn_t) (size_t evhdlr_registration_id,
pmix_status_t status,
const pmix_proc_t *source,
pmix_info_t info[], size_t ninfo,
pmix_info_t xresults, size_t nresu
pmix_event_notification_cbfunc_ fn_
void xcbdata);

CHAPTER 8. EVENT NOTIFICATION 87

13
14

Description

8.2.6 Event Handler Registration Function

88

The pmix_evhdlr_reg cbfunc_t ...

C

/* define a callback function for calls to PMIx_Register_evhdlr. The
* status indicates if the request was successful or not, evhdlr_ref is
* an integer reference assigned to the event handler by PMIx, this referenc
* must be used to deregister the err handler. A ptr to the original
* cbdata is returned. */
typedef void (*pmix_evhdlr_ reg cbfunc_t) (pmix_status_t status,
size_t evhdlr_ref,
void xcbdata)

C

Description

PMIx Standard — Version 2.0 (draft) — November 2017

4

0 N O O

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

CHAPTER 9

Data Packing and Unpacking

9.1

9.1.1

General Routines

PMIx_Data_pack

[*%

* % ok ok Xk ok ok ok ok ok F F F X Ok F * F * * * *

C

Top-level interface function to pack one or more values into a
buffer.

The pack function packs one or more values of a specified type into
the specified buffer. The buffer must have already been

initialized via the PMIX DATA BUFFER_CREATE or PMIX DATA_BUFFER_CONSTR
call - otherwise, the pack_value function will return an error.
Providing an unsupported type flag will likewise be reported as an err

Note that any data to be packed that is not hard type cast (i.e.,

not type cast to a specific size) may lose precision when unpacked

by a non-homogeneous recipient. The PACK function will do its best to
with heterogeneity issues between the packer and unpacker in such
cases. Sending a number larger than can be handled by the recipient
will return an error code (generated upon unpacking) -

the error cannot be detected during packing.

@param xbuffer A pointer to the buffer into which the value is to
be packed.

@param xsrc A void* pointer to the data that is to be packed. Note

that strings are to be passed as (char **) — i.e., the caller must
pass the address of the pointer to the string as the voidx. This

89

1 * allows PMIx to use a single pack function, but still allow

2 * the caller to pass multiple strings in a single call.

3 *

4 * @param num values An int32_t indicating the number of values that are
5 *+ to be packed, beginning at the location pointed to by src. A string
6 * value is counted as a single value regardless of length. The values
7 * must be contiguous in memory. Arrays of pointers (e.g., string

8 * arrays) should be contiguous, although (obviously) the data pointed
9 * to need not be contiguous across array entries.

10 *

11 * @param type The type of the data to be packed - must be one of the
12 * PMIX defined data types.

13 *

14 * @retval PMIX SUCCESS The data was packed as requested.

15 *

16 * @retval PMIX ERROR(s) An appropriate PMIX error code indicating the
17 * problem encountered. This error code should be handled

18 * appropriately.

19 *

20 * @code

21 * pmix_data_buffer_t xbuffer;

22 * int32_t src;

23 *

24 * PMIX DATA_ BUFFER_CREATE (buffer);

25 * status_code = PMIx Data_ pack (buffer, &src, 1, PMIX_ INT32);

26 * @endcode

27 */

28 pmix_status_t

29 PMIx Data_pack (pmix_data buffer_ t xbuffer,

30 void xsrc, int32_t num vals,

31 pmix_data_type_t type);

C

32 9.1.2 PMIx Data_unpack

90 PMIx Standard — Version 2.0 (draft) — November 2017

O N O~ WN =

A DDA OWWWWWWWWWWNMNDMNDNDNODNOPNDNODNOND 2 ==
N =20 00O NODOPRPRWON—LOCO0ONOOCOAOPRPRWOUN—LTOCOONOOOGOP,ONM +0O0

/[x*

* % ok ok R ok ok ok ok ok ok ok Ok k% Ok ok ok ok ok ok F Xk ok Ok Ok ok ok F F F H F F * * * * * *

Unpack values from a buffer.

The unpack function unpacks the next value (or values) of a
specified type from the specified buffer.

The buffer must have already been initialized via an PMIX DATA BUFFER_
PMIX DATA BUFFER_CONSTRUCT call (and assumedly filled with some data)
otherwise, the unpack value function will return an

error. Providing an unsupported type flag will likewise be reported
as an error, as will specifying a data type that DOES NOT match the
type of the next item in the buffer. An attempt to read beyond the
end of the stored data held in the buffer will also return an

error.

NOTE: it is possible for the buffer to be corrupted and that

PMIx will *think* there is a proper variable type at the

beginning of an unpack region - but that the value is bogus (e.g., Jjus
a byte field in a string array that so happens to have a value that
matches the specified data type flag). Therefore, the data type error
is NOT completely safe. This is true for ALL unpack functions.

Unpacking values is a "nondestructive" process - i.e., the values are
not removed from the buffer. It is therefore possible for the caller
to re-unpack a value from the same buffer by resetting the unpack ptr.

Warning: The caller is responsible for providing adequate memory
storage for the requested data. As noted below, the user

must provide a parameter indicating the maximum number of values that
can be unpacked into the allocated memory. If more values exist in the
buffer than can fit into the memory storage, then the function will un
what it can fit into that location and return an error code indicating
that the buffer was only partially unpacked.

Note that any data that was not hard type cast (i.e., not type cast
to a specific size) when packed may lose precision when unpacked by
a non-homogeneous recipient. PMIx will do its best to deal with
heterogeneity issues between the packer and unpacker in such

cases. Sending a number larger than can be handled by the recipient
will return an error code generated upon unpacking - these errors
cannot be detected during packing.

CHAPTER 9. DATA PACKING AND UNPACKING 91

0o NOO O WN =

A BEABADWOWWWWWWWWWMNMNDMNDNDMNDMNODNDNDNODND 2L =222
WN -0 O0WONOODAPRWN—-O0OONODAPRWN-—-LOOOONOOOOGDN,WN-—-OO

92

ok ok ok ok ok k% %k ok Ok ok 3k ok ok ok k% ok ok Ok Ok %k ok ok k% %k Ok Ok ok ok ok F F k% Ok F X * * *

@param xbuffer A pointer to the buffer from which the value will be
extracted.

@param *dest A voidx pointer to the memory location into which the
data is to be stored. Note that these values will be stored
contiguously in memory. For strings, this pointer must be to (char
*x) to provide a means of supporting multiple string

operations. The unpack function will allocate memory for each
string in the array - the caller must only provide adequate memory
for the array of pointers.

@param type The type of the data to be unpacked - must be one of
the BFROP defined data types.

@retval *max num_values The number of values actually unpacked. In
most cases, this should match the maximum number provided in the
parameters — but in no case will it exceed the value of this
parameter. Note that if you unpack fewer values than are actually

available, the buffer will be in an unpackable state - the function will

return an error code to warn of this condition.

@note The unpack function will return the actual number of values
unpacked in this location.

@retval PMIX SUCCESS The next item in the buffer was successfully
unpacked.

@retval PMIX ERROR(s) The unpack function returns an error code
under one of several conditions: (a) the number of values in the
item exceeds the max num provided by the caller; (b) the type of
the next item in the buffer does not match the type specified by
the caller; or (c) the unpack failed due to either an error in the
buffer or an attempt to read past the end of the buffer.

@code

pmix_data_buffer_t xbuffer;
int32_t dest;

char **string_array;
int32_t num values;

num_values = 1;

status_code = PMIx_ Data_unpack (buffer, (voidx)é&dest, &num values, PMIX_IN

PMIx Standard — Version 2.0 (draft) — November 2017

- O OVWoONOO O PA~,WN =

—_ -

12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

* % * F * *

*/

num values = 5;

string_array = malloc (num_valuesx*sizeof (char x));

status_code = PMIx Data_unpack (buffer, (void#*) (string array), &num_val
@endcode

pmix_status_t
PMIx_Data_unpack (pmix_data_buffer_t *buffer, void =*dest,

int32_t *max_ num values,
pmix_data_type_t type);
C

9.1.3 PMIx Data_ copy

/[x*

* % ok ok ok kX k ok Ok ok ok ok F X F H * * * F

*/

C

Copy a data value from one location to another.

Since registered data types can be complex structures, the system
needs some way to know how to copy the data from one location to
another (e.g., for storage in the registry). This function, which
can call other copy functions to build up complex data types, defines
the method for making a copy of the specified data type.

@param xxdest The address of a pointer into which the
address of the resulting data is to be stored.

@param xsrc A pointer to the memory location from which the
data is to be copied.

@param type The type of the data to be copied - must be one of
the PMIx defined data types.

@retval PMIX SUCCESS The value was successfully copied.

@retval PMIX ERROR(s) An appropriate error code.

pmix_status_t
PMIx Data_copy(void xxdest, void *src,

pmix_data_type_t type);
C

CHAPTER 9. DATA PACKING AND UNPACKING 93

1 9.1.4 PMIx Data_print

0N O~ WN

11
12
13
14
15

16

17
18
19
20
21
22
23
24
25
26
27
28

[x*
Print a data wvalue.

*

*

* Since registered data types can be complex structures, the system

* needs some way to know how to print them (i.e., convert them to a string
* representation). Provided for debug purposes.
*
*
*
*

@retval PMIX SUCCESS The value was successfully printed.

@retval PMIX ERROR(s) An appropriate error code.
*/
pmix_status_t
PMIx_ Data_print (char x*xoutput, char *prefix,
void xsrc, pmix_data_type_t type);

C

9.1.5 PMIx Data_ copy_payload

94

C

Copy a payload from one buffer to another

*

*

* This function will append a copy of the payload in one buffer into

* another buffer.

*+ NOTE: This is NOT a destructive procedure - the

* source buffer’s payload will remain intact, as will any pre-—-existing
* payload in the destination’s buffer.

pmix_status_t
PMIx Data_ copy_ payload(pmix data_buffer_t =xdest,
pmix_data_buffer_t =*src);

C

PMIx Standard — Version 2.0 (draft) — November 2017

12

13
14

15
16

17

18
19

CHAPTER 10

10.0.1

10.0.2

Server Specific Interfaces

PMIx_generate_regex

Summary

Generate a regular expression representation of the input string.

Format
C
pmix_status_t PMIx_generate_regex (const char *input, char **regex)
C
IN input
String to process (string)
OUT regex

Regular expression representation of input (string)

Returns PMIX_SUCCESS or a negative value corresponding to a PMIX error constant.

Description

Given a semicolon-separated list of input values, generate a regular expression that can be passed
down to the PMIXx client for parsing. The caller is responsible for free’ing the resulting string.

If values have leading zero’s, then that is preserved. You have to add back any prefix/suffix for node
names.

PMIx generate_ppn

Summary

Generate a regular expression representation of the input string.

95

N OO0~ w

o)

10

11
12

13

14
15
16

17
18
19
20
21
22
23
24
25
26
27
28

29

10.0.3

96

Format

C
pmix_status_t PMIx_generate_ppn (const char *input, char x**ppn)
C
IN input
String to process (string)
OUT regex

Regular expression representation of input (string)

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.

Description

The input is expected to consist of a comma-separated list of ranges.

PMIx_ server_register_nspace

Summary

Setup the data about a particular namespace so it can be passed to any child process upon startup.

Format
C

pmix_status_t PMIx_server_register_ nspace (const char nspace[], int nlocalpro
pmix_info_t info[], size_t ninfo,
pmix_op_cbfunc_t cbfunc, void xcbd

C

IN nspace

namespace (string)
IN nlocalprocs

number of local processes (integer)
IN info

Array of info structures (array of handles)
IN ninfo

Number of elements in the info array (integer)
IN cbfunc

Callback function pmix_op_cbfunc_t (function reference)
IN cbdata

Data to be passed to the callback function (memory reference)

Returns PMIX SUCCESS or a negative value corresponding to a PMIx error constant.

PMIx Standard — Version 2.0 (draft) — November 2017

- O © © o0k, WON =

—_

Description

The PMIx connection procedure provides an opportunity for the host PMIx server to pass
job-related info down to a child process. This might include the number of processes in the job,
relative local ranks of the processes within the job, and other information of use to the process. The
server is free to determine which, if any, of the supported elements it will provide (See Data
Structures and Types for values).

The PMIXx server must register all namespaces that will participate in collective operations with
local processes. This means that the server must register a namespace even if it will not host any
local procs from within that nspace if any local process might at some point perform a collective
operation involving one or more processes from that namespace. This is necessary so that the
collective operation can know when it is locally complete.

The caller must also provide the number of local processes that will be launched within this

N
A WN

15

16
17

18

19
20

21
22
23
24
25
26

27

28
29
30
31

10.0.4

namespace. This is required for the PMIXx server library to correctly handle collectives as a
collective operation call can occur before all the processes have been started.

PMIx_ server_deregister_nspace

Summary

Deregister a namespace.

Format

C

void PMIx server_deregister nspace (const char nspacel],

IN nspace
Namespace (string)
IN cbfunc

pmix_op_cbfunc_t cbfunc, void xcbdata)

C

Callback function pmix_op_cbfunc_t (function reference)

IN cbdata

Data to be passed to the callback function (memory reference)

Description

Deregister the specified nspace and purge all objects relating to it, including any client information
from that namespace. This is intended to support persistent PMIx servers by providing an
opportunity for the host RM to tell the PMIx server library to release all memory for a completed

job.

CHAPTER 10. SERVER SPECIFIC INTERFACES

97

1 10.0.5 PMIx server_register client

o N O

10
11
12
13
14
15
16
17
18
19
20

21

22

23
24
25

26
27
28
29
30

98

Summary

Register a client process with the PMIx server library.

Format
C

pmix_status_t PMIx_ server_register_ client (const pmix proc_t *proc,
uid_t uid, gid_t gid,
void *server_object,
pmix_op_cbfunc_t cbfunc, void *cbd

C

IN proc

pmix_proc_t structure (handle)
IN uid

user id (integer)
IN gid

group id (integer)
IN server_ object

(memory reference)
IN cbfunc

Callback function pmix_op_cbfunc_t (function reference)
IN cbdata

Data to be passed to the callback function (memory reference)

Returns PMIX_ SUCCESS or a negative value corresponding to a PMIX error constant.

Description

Register a client process with the PMIx server library. The expected user ID and group ID of the
child process helps the server library to properly authenticate clients as they connect by requiring
the two values to match.

The host server can also, if it desires, provide an object it wishes to be returned when a server
function is called that relates to a specific process. For example, the host server may have an object
that tracks the specific client. Passing the object to the library allows the library to return that object
when the client calls “finalize”, thus allowing the host server to access the object without
performing a lookup.

PMIx Standard — Version 2.0 (draft) — November 2017

1 10.0.6 PMIx server deregister_client

»

©

11
12

13

14
15

16

17
18

19

20

21
22
23
24

25

10.0.7

Summary

Deregister a client and purge all data relating to it.

Format
C

void PMIx_server_deregister_ client (const pmix proc_t =*proc,

pmix_op_cbfunc_t cbfunc, void xcbdata)

C
IN proc
pmix_proc_t structure (handle)
IN cbfunc

Callback function pmix_op_cbfunc_t (function reference)
IN cbdata
Data to be passed to the callback function (memory reference)

Description

The PMIx_server_deregister_nspace API will automatically delete all client

information for that namespace. This API is therefore intended solely for use in exception cases.

PMIx_ server_ setup_ fork

Summary

Setup the environment of a child process to be forked by the host.

Format
C
pmix_status_t PMIx_server_setup_fork (const pmix proc_t =*proc,
C
IN proc
pmix_proc_t structure (handle)
IN env

Environment array (array of strings)

Returns PMIX_ SUCCESS or a negative value corresponding to a PMIXx error constant.

CHAPTER 10. SERVER SPECIFIC INTERFACES

char *x*xenv

929

—_

A WOMN

10
11
12
13
14
15

16
17
18
19
20
21

22

23

24
25
26
27
28
29

30
31

10.0.8

100

Description

Setup the environment of a child process to be forked by the host so it can correctly interact with
the PMIx server. The PMIx client needs some setup information so it can properly connect back to
the server. This function will set appropriate environmental variables for this purpose.

PMIx_ server_dmodex_request

Summary

Define a function by which the host server can request modex data from the local PMIx server.

Format
C

typedef void (*pmix_dmodex response_fn_ t) (pmix status_t status,
char *data, size_t sz,
void xcbdata);

pmix_status_t PMIx_ server_dmodex_ request (const pmix proc_t =*proc,
pmix_dmodex_response_fn_ t cbfunc,
void *cbdata)

C
IN proc
pmix_proc_t structure (handle)
IN cbfunc
Callback function pmix_dmodex_response_f£fn_t (function reference)
IN cbdata

Data to be passed to the callback function (memory reference)

Returns PMIX_ SUCCESS or a negative value corresponding to a PMIX error constant.

Description

Define a function by which the host server can request modex data from the local PMIx server. This
is used to support the direct modex operation (i.e., where data is cached locally on each PMIx
server for its own local clients, and is obtained on-demand for remote requests. Upon receiving a
request from a remote server, the host server will call this function to pass the request into the PMIx
server. The PMIx server will return a blob (once it becomes available) via the chfunc - the host
server shall send the blob back to the original requestor.

The callback function used by the PMIx server to return direct modex requests to the host server.
The PMIx server will free the data blob upon return from the response function.

PMIx Standard — Version 2.0 (draft) — November 2017

1 10.0.9 PMIx_server setup_application

15
16
17
18
19
20
21
22
23
24

25

26

27
28
29
30
31

32
33

Summary

Provide a function by which the resource manager can request any application-specific
environmental variables prior to launch of an application.

Format
C

typedef void (*pmix_setup_application_cbfunc_t) (pmix_status_t status,
pmix_info_t info[], size_
void xprovided_cbdata,
pmix_op_cbfunc_t cbfunc,

pmix_status_t PMIx_server_setup_application(const char nspace[],
pmix_info_t infol[], size_t ni
pmix_setup_application_cbfunc
void xcbdata)

IN nspace
namespace (string)
IN info
Array of info structures (array of handles)
IN ninfo
Number of elements in the info array (integer)
IN cbfunc
Callback function pmix_setup_application_cbfunc_t (function reference)
IN cbdata
Data to be passed to the callback function (memory reference)

Returns PMIX_ SUCCESS or a negative value corresponding to a PMIx error constant.

Description

Provide a function by which the resource manager can request any application-specific
environmental variables prior to launch of an application. For example, network libraries may opt
to provide security credentials for the application. This is defined as a non-blocking operation in
case network libraries need to perform some action before responding. The returned env will be
distributed along with the application

In the callback function, the returned info array is owned by the PMIx server library and will be
free’d when the provided cbfunc is called.

CHAPTER 10. SERVER SPECIFIC INTERFACES 101

1

w

10
11
12
13
14
15
16
17
18

19

20

21
22
23

24

25
26
27

10.0.10 PMIx server_setup_local_support

Summary

Provide a function by which the local PMIx server can perform any application-specific operations
prior to spawning local clients of a given application.

Format
C

pmix_status_t PMIx_ server_setup_local_support (const char nspacel],
pmix_info_t info[], size_t nin
pmix_op_cbfunc_t cbfunc, void

C

IN nspace
Namespace (string)
IN info
Array of info structures (array of handles)
IN ninfo
Number of elements in the info array (integer)

IN cbfunc
Callback function pmix_op_cbfunc_t (function reference)
IN cbdata

Data to be passed to the callback function (memory reference)

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.

Description

Provide a function by which the local PMIx server can perform any application-specific operations
prior to spawning local clients of a given application. For example, a network library might need to
setup the local driver for “instant on” addressing.

10.1 Server Function Pointers

The PMIx Server will set the function pointers in the pmix_server_ _module_t structure that
they then pass to PMIx_server_init . That module structure and associated function
references is defined in this section.

102 PMIx Standard — Version 2.0 (draft) — November 2017

1 10.1.1 pmix_ server module_t Module

30

31
32
33

34
35
36

Summary

List of function pointers that a PMIx server passes to PMIx_server_init during startup.

Format
C

typedef struct pmix_server_module_2_0_0_t

/* vlx interfaces */
pmix_server_client_connected fn t
pmix_server client_finalized fn t
pmix_server_ abort_fn t
pmix_server_ fencenb_fn_t
pmix_server_dmodex_req fn_t
pmix_server_publish_fn t
pmix_server lookup_fn t
pmix_server_ unpublish fn_t
pmix_server_spawn_fn_t
pmix_server_ connect_fn_t
pmix_server_disconnect_fn_t
pmix_server_register_events_fn_t
pmix_server_ deregister_events_fn t
pmix_server_ listener fn t
/* v2x interfaces */
pmix_server_notify event_fn t
pmix_server_query fn_t
pmix_server tool_ connection_ fn t
pmix_server_log_fn_t
pmix_server_alloc_fn_ t
pmix_server_job_control_fn_t
pmix_server_monitor_fn t
pmix_server_module_t;

Description

client_connected;
client_finalized;
abort;

fence_nb;
direct_modex;
publish;

lookup;
unpublish;

spawn;

connect;
disconnect;
register_events;
deregister_events;
listener;

notify event;
query;
tool_connected;
log;

allocate;
job_control;
monitor;

NOTE: for performance purposes, the host server is required to return as quickly as possible from
all functions. Execution of the function is thus to be done asynchronously so as to allow the PMIx

server support library to handle multiple client requests as quickly and scalably as possible.

All data passed to the host server functions is “owned” by the PMIX server support library and

MUST NOT be free’d. Data returned by the host server via callback function is owned by the host
server, which is free to release it upon return from the callback.

CHAPTER 10. SERVER SPECIFIC INTERFACES

103

1 10.1.2 pmix server_ client_connected fn t

10
11
12
13
14
15

16

17

18
19
20

21

22
23

10.1.3

104

Summary

Notify the host server that a client connected to this server.

Format
C

typedef pmix_status_t (xpmix_server_client_connected_fn_t) (
const pmix_proc_t xproc, voidx server_object,
pmix_op_cbfunc_t cbfunc, void xcbdata)

C

IN proc

pmix_proc_t structure (handle)
IN server object

object reference (memory reference)
IN cbfunc

Callback function pmix_op_cbfunc_t (function reference)
IN cbdata

Data to be passed to the callback function (memory reference)

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.

Description

Notify the host server that a client connected to us. Note that the client will be in a blocked state
until the host server executes the callback function, thus allowing the PMIx server support library to
release the client.

pmix_server client_finalized fn_t

Summary

Notify the host server that a client called PMIx_Finalize .

PMIx Standard — Version 2.0 (draft) — November 2017

A~ W

0 NO O

11
12

13

14

15
16
17

18

19
20

21

22
23
24
25
26

10.1.4

Format
C

typedef pmix_status_t (*pmix_server_client_finalized_£fn_t) (
const pmix_proc_t *proc, voidx server_object
pmix_op_cbfunc_t cbfunc, void xcbdata)

C

IN proc

pmix_proc_t structure (handle)
IN server object

object reference (memory reference)
IN cbfunc

Callback function pmix_op_cbfunc_t (function reference)
IN cbdata

Data to be passed to the callback function (memory reference)

Returns PMIX_SUCCESS or a negative value corresponding to a PMIX error constant.

Description

Notify the host server that a client called PMIx_Finalize . Note that the client will be in a
blocked state until the host server executes the callback function, thus allowing the PMIx server
support library to release the client.

pmix_server_abort_fn_t

Summary

Notify PMIx Server that a local client called PMIx_Abort .

Format
C

typedef pmix_status_t (*pmix_server_ abort_fn_ t) (
const pmix _proc_t *proc, void xserver_object
int status, const char msg[],
pmix_proc_t procs[], size_t nprocs,
pmix_op_cbfunc_t cbfunc, void xcbdata)

CHAPTER 10. SERVER SPECIFIC INTERFACES 105

0N O~ WD =

18

19
20
21
22

23

24
25

26

27
28
29
30
31

10.1.5

106

IN proc

pmix_proc_t structure (handle)
IN server object

object reference (memory reference)

IN status

exit status (integer)
IN msg

exit status message (string)
IN procs

Array of pmix_proc_t structures (array of handles)
IN nprocs
Number of elements in the procs array (integer)

IN cbfunc
Callback function pmix_op_cbfunc_t (function reference)
IN cbdata

Data to be passed to the callback function (memory reference)

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.

Description

A local client called PMIx_Abort . Note that the client will be in a blocked state until the host
server executes the callback function, thus allowing the PMIx server support library to release the
client. The array of procs indicates which processes are to be terminated. A NULL indicates that all
processes in the client’s namespace are to be terminated.

pmix_ server_ fencenb_fn t

Summary

At least one client called either PMIx_ Fence or PMIx Fence_nb.

Format
C

typedef pmix_status_t (xpmix_server_fencenb_fn_t) (
const pmix proc_t procs[], size_t nprocs,
const pmix_info_t info[], size_t ninfo,
char *data, size_t ndata,
pmix_modex_cbfunc_t cbfunc, void *cbdata)

PMIx Standard — Version 2.0 (draft) — November 2017

O N O~ WN =

-4 4 a4 4 o a oa
OO~ WM OO0

-
N

18

19
20
21
22
23
24

25
26
27

28
29
30
31

32

33

34
35

10.1.6

C

IN procs
Array of pmix_proc_t structures (array of handles)
IN nprocs
Number of elements in the procs array (integer)
IN info
Array of info structures (array of handles)
IN ninfo
Number of elements in the info array (integer)

IN data
(string)
IN ndata
(integer)
IN cbfunc
Callback function pmix_modex_cbfunc_t (function reference)
IN cbdata

Data to be passed to the callback function (memory reference)

Returns PMIX_SUCCESS or a negative value corresponding to a PMIX error constant.

Description

At least one client called either PMIx_Fence or PMIx_Fence_ nb . In either case, the host
server will be called via a non-blocking function to execute the specified operation once all
participating local processes have contributed. All processes in the specified procs array are
required to participate in the PMIx Fence / PMIx_Fence_nb operation. The callback is to be
executed once each daemon hosting at least one participant has called the host server’s
pmix_server_fencenb_fn_t function.

The provided data is to be collectively shared with all PMIx servers involved in the fence operation,
and returned in the modex cbfunc. A NULL data value indicates that the local processes had no data
to contribute.

The array of info structs is used to pass user-requested options to the server. This can include
directives as to the algorithm to be used to execute the fence operation. The directives are optional
unless the mandatory flag has been set - in such cases, the host RM is required to return an error if
the directive cannot be met.

pmix_server_dmodex_req fn_t

Summary

Used by the PMIx server to request its local host contact the PMIx server on the remote node that
hosts the specified proc to obtain and return a direct modex blob for that proc.

CHAPTER 10. SERVER SPECIFIC INTERFACES 107

a b~ owN

w0 N o

11
12
13
14
15

16

17

18
19

20
21
22
23

24

25
26

10.1.7

108

Format
C

typedef pmix_status_t (xpmix_server_dmodex req fn t) (
const pmix_ proc_t =*xproc,
const pmix_info_t info[], size_t ninfo,
pmix_modex_cbfunc_t cbfunc, void xcbdata)

C

IN proc

pmix_proc_t structure (handle)
IN info

Array of info structures (array of handles)
IN ninfo

Number of elements in the info array (integer)
IN cbfunc

Callback function pmix_modex_cbfunc_t (function reference)
IN cbdata

Data to be passed to the callback function (memory reference)

Returns PMIX_ SUCCESS or a negative value corresponding to a PMIX error constant.

Description

Used by the PMIx server to request its local host contact the PMIx server on the remote node that
hosts the specified proc to obtain and return a direct modex blob for that proc.

The array of info structs is used to pass user-requested options to the server. This can include a
timeout to preclude an indefinite wait for data that may never become available. The directives are
optional unless the mandatory flag has been set - in such cases, the host RM is required to return an
error if the directive cannot be met.

pmix server_ publish fn t

Summary
Publish data per the PMIx API specification.

PMIx Standard — Version 2.0 (draft) — November 2017

a b~ own

0 N O

11
12
13
14
15

16

17

18
19
20
21

22
23
24
25
26

27

28
29

30

31
32

10.1.8

Format
C

typedef pmix_status_t (xpmix_server_publish_ fn_t) (
const pmix_proc_t =*proc,
const pmix_info_t info[], size_t ninfo,
pmix_op_cbfunc_t cbfunc, void xcbdata)

C

IN proc

pmix_proc_t structure (handle)
IN info

Array of info structures (array of handles)
IN ninfo

Number of elements in the info array (integer)
IN cbfunc

Callback function pmix_op_cbfunc_t (function reference)
IN cbdata

Data to be passed to the callback function (memory reference)

Returns PMIX_ SUCCESS or a negative value corresponding to a PMIXx error constant.

Description

Publish data per the PMIx API specification. The callback is to be executed upon completion of the
operation. The default data range is expected to be PMIX_SESSION, and the default persistence
PMIX PERSIST_ SESSION . These values can be modified by including the respective
pmix_info_t structin the info array.

Note that the host server is not required to guarantee support for any specific range - i.e., the server
does not need to return an error if the data store doesn’t support range-based isolation. However,
the server must return an error (a) if the key is duplicative within the storage range, and (b) if the
server does not allow overwriting of published info by the original publisher - it is left to the
discretion of the host server to allow info-key-based flags to modify this behavior.

The persistence indicates how long the server should retain the data.

The identifier of the publishing process is also provided and is expected to be returned on any
subsequent lookup request.

pmix_server_lookup_ fn t

Summary
Lookup published data.

CHAPTER 10. SERVER SPECIFIC INTERFACES 109

a b~ owN

w0 N o

11
12
13
14
15
16
17

18

19
20

21
22
23
24
25

26

27
28

10.1.9

110

Format
C

typedef pmix_status_t (*pmix_server_lookup_f£fn_t) (
const pmix proc_t xproc, char x*xkeys,
const pmix_info_t info[], size_t ninfo,
pmix_lookup_cbfunc_t cbfunc, void xcbdata)

C

IN proc

pmix_proc_t structure (handle)
IN keys

(array of strings)
IN info

Array of info structures (array of handles)
IN ninfo

Number of elements in the info array (integer)
IN cbfunc

Callback function pmix_lookup_cbfunc_t (function reference)
IN cbdata

Data to be passed to the callback function (memory reference)

Returns PMIX_ SUCCESS or a negative value corresponding to a PMIX error constant.

Description
Lookup published data. The host server will be passed a NULL-terminated array of string keys.

The array of info structs is used to pass user-requested options to the server. This can include a wait
flag to indicate that the server should wait for all data to become available before executing the
callback function, or should immediately callback with whatever data is available. In addition, a
timeout can be specified on the wait to preclude an indefinite wait for data that may never be
published.

pmix_server_ unpublish fn t

Summary

Delete data from the data store.

PMIx Standard — Version 2.0 (draft) — November 2017

a b~ ownD

0 N O

11
12
13
14
15
16
17

18

19

20
21
22

23

24
25

Format
C

typedef pmix_status_t (xpmix_server_unpublish_fn_t) (
const pmix_proc_t *proc, char xxkeys,
const pmix_info_t info[], size_t ninfo,
pmix_op_cbfunc_t cbfunc, void xcbdata)

C

IN proc

pmix_proc_t structure (handle)
IN keys

(array of strings)
IN info

Array of info structures (array of handles)
IN ninfo

Number of elements in the info array (integer)
IN cbfunc

Callback function pmix_op_cbfunc_t (function reference)
IN cbdata

Data to be passed to the callback function (memory reference)

Returns PMIX_ SUCCESS or a negative value corresponding to a PMIx error constant.

Description

Delete data from the data store. The host server will be passed a NULL-terminated array of string
keys, plus potential directives such as the data range within which the keys should be deleted. The
callback is to be executed upon completion of the delete procedure.

10.1.10 pmix server_spawn_fn t

Summary

Spawn a set of applications/processes as per the PMIx APL.

CHAPTER 10. SERVER SPECIFIC INTERFACES 111

oo~ wWND

10
11
12
13
14
15
16
17
18
19
20

21

22

23
24
25
26
27

28
29

30

31
32

Format
C

typedef pmix_status_t (xpmix_server_spawn_f£fn_t) (
const pmix_ proc_t =*xproc,
const pmix_info_t job_info[], size_t ninfo,
const pmix_app_t apps[], size_t napps,
pmix_spawn_cbfunc_t cbfunc, void *cbdata)

C

IN proc
pmix_proc_t structure (handle)
IN job_info
Array of info structures (array of handles)
IN ninfo
Number of elements in the jobinfo array (integer)

IN apps
Array of pmix_app_t structures (array of handles)
IN napps
Number of elements in the apps array (integer)
IN cbfunc
Callback function pmix_spawn_cbfunc_t (function reference)
IN cbdata

Data to be passed to the callback function (memory reference)

Returns PMIX_SUCCESS or a negative value corresponding to a PMIX error constant.

Description

Spawn a set of applications/processes as per the PMIx API. Note that applications are not required
to be MPI or any other programming model. Thus, the host server cannot make any assumptions as
to their required support. The callback function is to be executed once all processes have been
started. An error in starting any application or process in this request shall cause all applications
and processes in the request to be terminated, and an error returned to the originating caller.

Note that a timeout can be specified in the job_info array to indicate that failure to start the
requested job within the given time should result in termination to avoid hangs.

10.1.11 pmix server_connect_fn_t

112

Summary

Record the specified processes as “connected”.

PMIx Standard — Version 2.0 (draft) — November 2017

a b~ own

0 N O

11
12
13
14
15
16
17

18

19

20
21
22
23
24
25

26
27
28
29

30

31
32

Format
C

typedef pmix_status_t (*pmix_server_connect_fn_t) (

const pmix_proc_t procs|[], size_t nprocs,

const pmix_info_t info[], size_t ninfo,
pmix_op_cbfunc_t cbfunc, void xcbdata)

C

IN procs

Array of pmix_proc_t structures (array of handles)
IN nprocs

Number of elements in the procs array (integer)

IN info
Array of info structures (array of handles)
IN ninfo
Number of elements in the info array (integer)
IN cbfunc
Callback function pmix_op_cbfunc_t (function reference)
IN cbdata

Data to be passed to the callback function (memory reference)

Returns PMIX_ SUCCESS or a negative value corresponding to a PMIx error constant.

Description

Record the specified processes as “connected”. This means that the resource manager should treat
the failure of any process in the specified group as a reportable event, and take appropriate action.
The callback function is to be called once all participating processes have called connect. Note that
a process can only engage in one connect operation involving the identical set of processes at a
time. However, a process can be simultaneously engaged in multiple connect operations, each
involving a different set of processes.

Note also that this is a collective operation within the client library, and thus the client will be
blocked until all processes participate. Thus, the info array can be used to pass user directives,
including a timeout. The directives are optional unless the mandatory flag has been set - in such
cases, the host RM is required to return an error if the directive cannot be met.

10.1.12 pmix server_disconnect_fn_t

Summary

Disconnect a previously connected set of processes.

CHAPTER 10. SERVER SPECIFIC INTERFACES 113

1 Format

C
2 typedef pmix_status_t (xpmix_server_disconnect_fn_t) (
3 const pmix proc_t procs[], size_t nprocs,
4 const pmix_info_t info[], size_t ninfo,
5 pmix_op_cbfunc_t cbfunc, void xcbdata)
C
6 IN procs
7 Array of pmix_proc_t structures (array of handles)
8 IN nprocs
9 Number of elements in the procs array (integer)
10 IN info
11 Array of info structures (array of handles)
12 IN ninfo
13 Number of elements in the info array (integer)
14 IN cbfunc
15 Callback function pmix_op_cbfunc_t (function reference)
16 IN cbdata
17 Data to be passed to the callback function (memory reference)
18 Returns PMIX_ SUCCESS or a negative value corresponding to a PMIX error constant.
19 Description
20 Disconnect a previously connected set of processes. An error should be returned if the specified set
21 of processes was not previously “connected”. As above, a process may be involved in multiple
22 simultaneous disconnect operations. However, a process is not allowed to reconnect to a set of
23 ranges that has not fully completed disconnect (i.e., you have to fully disconnect before you can
24 reconnect to the same group of processes).
25 Note also that this is a collective operation within the client library, and thus the client will be
26 blocked until all processes participate. Thus, the info array can be used to pass user directives,
27 including a timeout. The directives are optional unless the mandatory flag has been set - in such
28 cases, the host RM is required to return an error if the directive cannot be met.

29 10.1.13 pmix_server register_events_fn t

30 Summary

31 Register to receive notifications for the specified events.

114 PMIx Standard — Version 2.0 (draft) — November 2017

a b~ ownD

0 N O

11
12
13
14
15
16
17

18

19

20
21
22
23
24
25
26

27
28

29

30
31

Format
C

typedef pmix_status_t (*pmix_server_ register_ events_f£fn_t) (
pmix_status_t xcodes, size_t ncodes,
const pmix_info_t info[], size_t ninfo,
pmix_op_cbfunc_t cbfunc, void xcbdata)

C

IN codes

Array of pmix_status_t structures (array of handles)
IN ncodes

Number of elements in the codes array (integer)

IN info
Array of info structures (array of handles)
IN ninfo
Number of elements in the info array (integer)
IN cbfunc
Callback function pmix_op_cbfunc_t (function reference)
IN cbdata

Data to be passed to the callback function (memory reference)

Returns PMIX_ SUCCESS or a negative value corresponding to a PMIx error constant.

Description

Register to receive notifications for the specified events. The resource manager is required to pass
along to the local PMIx server all events that directly relate to a registered namespace. However, the
RM may have access to events beyond those (e.g., environmental events). The PMIx server will
register to receive environmental events that match specific PMIx event codes. If the host RM
supports such notifications, it will need to translate its own internal event codes to fit into a
corresponding PMIx event code - any specific info beyond that can be passed in via the
pmix_info_t upon notification.

The info array included in this API is reserved for possible future directives to further steer
notification.

10.1.14 pmix server_deregister_events_fn t

Summary

Deregister to receive notifications for the specified events.

CHAPTER 10. SERVER SPECIFIC INTERFACES 115

14

15
16

17

18
19

20

21
22
23
24
25

Format
C

typedef pmix_status_t (xpmix_server_deregister_events_fn_t) (
pmix_status_t *codes, size_t ncodes,
pmix_op_cbfunc_t cbfunc, void xcbdata)

C

IN codes

Array of pmix_status_t structures (array of handles)
IN ncodes

Number of elements in the codes array (integer)

IN cbfunc
Callback function pmix_op_cbfunc_t (function reference)
IN cbdata

Data to be passed to the callback function (memory reference)

Returns PMIX_ SUCCESS or a negative value corresponding to a PMIX error constant.

Description

Deregister to receive notifications for the specified environmental events for which the PMIx server
has previously registered. The host RM remains required to notify of any job-related events.

10.1.15 pmix server_ notify event_fn t

116

Summary

Notify the specified processes of an event.

Format
C

typedef pmix_status_t (xpmix_server_notify event_fn_t) (pmix_status_t code,
const pmix _proc_t =*so
pmix_data_ range_t ran
pmix_info_t infol[], s
pmix_op_cbfunc_t cbfu

PMIx Standard — Version 2.0 (draft) — November 2017

0N O~ OWND =

_
A WODN-—= OO

—_
o

16

17
18

19

20
21

22

23
24

25
26
27
28

29

IN code

pmix_status_t structure (handle)
IN source

pmix_proc_t (handle)
IN range

pmix_data_range_t (handle)

IN info
Array of info structures (array of handles)
IN ninfo
Number of elements in the info array (integer)
IN cbfunc
Callback function pmix_op_cbfunc_t (function reference)
IN cbdata

Data to be passed to the callback function (memory reference)

Returns PMIX_ SUCCESS or a negative value corresponding to a PMIx error constant.

Description

Notify the specified processes of an event generated either by the PMIx server itself, or by one of its
local clients. The process generating the event is provided in the source parameter.

10.1.16 pmix connection_cbfunc_t

Summary

Callback function for incoming connection requests from local clients.

Format
C

typedef void (*pmix connection_cbfunc_t) (
int incoming sd, void x*cbdata)

C
IN incoming sd
(integer)
IN cbdata

(memory reference)

Returns PMIX_SUCCESS or a negative value corresponding to a PMIX error constant.

CHAPTER 10. SERVER SPECIFIC INTERFACES 117

w

18

19
20
21
22
23
24

25

26
27

Description

Callback function for incoming connection requests from local clients.

10.1.17 pmix server_listener fn_t

Summary

Register a socket the host server can monitor for connection requests.

Format
C

typedef pmix_ status_t (*pmix server_listener_fn t) (
int listening_sd,
pmix_connection_cbfunc_t cbfunc,
void *cbdata)

C
IN incoming sd
(integer)
IN cbfunc
Callback function pmix_connection_cbfunc_t (function reference)
IN cbdata

(memory reference)

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.

Description

Register a socket the host server can monitor for connection requests, harvest them, and then call
our internal callback function for further processing. A listener thread is essential to efficiently
harvesting connection requests from large numbers of local clients such as occur when running on
large SMPs. The host server listener is required to call accept on the incoming connection request,
and then passing the resulting soct to the provided cbfunc. A NULL for this function will cause the
internal PMIx server to spawn its own listener thread.

10.1.18 pmix_ server_query fn t

Summary

Query information from the resource manager.

118 PMIx Standard — Version 2.0 (draft) — November 2017

DO~ W

10
11
12
13
14
15
16

17

18

19
20
21

22

23
24

25

26
27
28

Format
C

typedef pmix_status_t (*pmix_server_query fn_t) (
pmix_proc_t xproct,

pmix_query_ t xqueries, size_t nqueries,

pmix_info_cbfunc_t cbfunc,
void xcbdata)

C
IN proct
pmix_proc_t structure (handle)
IN queries

Array of pmix_query_t structures (array of handles)
IN nqueries
Number of elements in the queries array (integer)

IN cbfunc
Callback function pmix_info_cbfunc_t (function reference)
IN cbdata

Data to be passed to the callback function (memory reference)

Returns PMIX_SUCCESS or a negative value corresponding to a PMIX error constant.

Description

Query information from the resource manager. The query will include the nspace/rank of the
process that is requesting the info, an array of pmix_query_t describing the request, and a
callback function/data for the return.

10.1.19 pmix tool_connection_cbfunc_t

Summary

Callback function for incoming tool connections.

Format
C

typedef void (*pmix tool_connection_cbfunc_t) (
pmix status_t status,
pmix_proc_t xproc, void x*cbdata)

CHAPTER 10. SERVER SPECIFIC INTERFACES

119

ook WN =

o

11

12
13

14

15
16
17
18

19
20
21
22
23
24
25
26

IN status

pmix_status_t structure (handle)
IN proc

pmix_proc_t structure (handle)
IN cbdata

Data to be passed (memory reference)

Description

Callback function for incoming tool connections. The host RM shall provide an nspace/rank for the
connecting tool. We assume that a rank=0 will be the normal assignment, but allow for the future
possibility of a parallel set of tools connecting, and thus each proc requiring a rank.

10.1.20 pmix server_tool_connection_fn_t

120

Summary

Register that a tool has connected to the server.

Format
C

typedef void (*pmix_server_ tool_connection_fn t) (
pmix_info_t xinfo, size_t ninfo,
pmix_tool_connection_cbfunc_t cbfunc,
void xcbdata)

C

IN info
Array of info structures (array of handles)
IN ninfo
Number of elements in the info array (integer)
IN cbfunc
Callback function pmix_tool_connection_cbfunc_t (function reference)
IN cbdata
Data to be passed to the callback function (memory reference)

PMIx Standard — Version 2.0 (draft) — November 2017

15

16
17

18

19
20
21
22
23

24
25
26
27
28
29
30
31
32
33

10.1.21

Description

Register that a tool has connected to the server, and request that the tool be assigned an nspace/rank
for further interactions. The optional pmix_info_t array can be used to pass qualifiers for the
connection request:

PMIX_USERID
effective userid of the tool
PMIX GRPID
effective groupid of the tool
PMIX_ FWD_STDOUT
forward any stdout to this tool
PMIX_ FWD_STDERR
forward any stderr to this tool
PMIX_ FWD_STDIN
forward stdin from this tool to any processes spawned on its behalf

pmix_ server_log_fn_t

Summary

Log data on behalf of a client.

Format
C

typedef void (*pmix_server_ log fn_t) (
const pmix_proc_t =xclient,
const pmix_info_t data[], size_t ndata,
const pmix_info_t directives[], size_t ndirs,
pmix_op_cbfunc_t cbfunc, void xcbdata)

C
IN client
pmix_proc_t structure (handle)
IN data
Array of info structures (array of handles)
IN ndata

Number of elements in the dara array (integer)
IN directives
Array of info structures (array of handles)
IN ndirs
Number of elements in the directives array (integer)

CHAPTER 10. SERVER SPECIFIC INTERFACES 121

NN =

(63}

N

10

11
12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27

28

29
30

IN cbfunc

Callback function pmix_op_cbfunc_t (function reference)
IN cbdata

Data to be passed to the callback function (memory reference)

Description

Log data on behalf of a client.

10.1.22 pmix server_alloc_fn t

Summary

Request allocation modifications on behalf of a client.

Format
C

typedef pmix_status_t (*xpmix server_alloc_f£fn_t) (
const pmix_proc_t =xclient,
pmix_alloc_directive_t directive,
const pmix_info_t data[], size_t ndata,
pmix_info_cbfunc_t cbfunc, void *cbdata)

C

IN client

pmix_proc_t structure (handle)
IN directive

(handle)
IN data

Array of info structures (array of handles)
IN ndata

Number of elements in the data array (integer)
IN cbfunc

Callback function pmix_info_cbfunc_t (function reference)
IN cbdata

Data to be passed to the callback function (memory reference)

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.

Description

Request allocation modifications on behalf of a client.

122 PMIx Standard — Version 2.0 (draft) — November 2017

1

© 0N O

11
12
13
14
15
16
17
18
19
20
21
22
23

24

25
26

27

28
29

10.1.23 pmix server_job_control_fn_t

Summary

Execute a job control action on behalf of a client.

Format
C

typedef pmix_status_t (xpmix_server_job_control_f£fn_t) (
const pmix proc_t =*requestor,

const pmix_proc_t targets[], size_t ntargets

const pmix _info_t directives][],

size_t ndirs

pmix_info_cbfunc_t cbfunc, void *cbdata)

C

IN requestor
pmix_proc_t structure (handle)
IN targets
Array of proc structures (array of handles)
IN ntargets
Number of elements in the fargets array (integer)
IN directives
Array of info structures (array of handles)

IN ndirs

Number of elements in the info array (integer)
IN cbfunc

Callback function pmix_op_cbfunc_t (function reference)
IN cbdata

Data to be passed to the callback function (memory reference)

Returns PMIX_ SUCCESS or a negative value corresponding to a PMIXx error constant.

Description

Execute a job control action on behalf of a client.

10.1.24 pmix server_monitor_fn_t

Summary

Request that a client be monitored for activity.

CHAPTER 10. SERVER SPECIFIC INTERFACES

123

NOoO gk WD

10
11
12
13
14
15
16
17
18
19
20
21

22

23
24

124

Format
C

/* Request that a client be monitored for activity */

typedef pmix_status_t (xpmix server_monitor_fn_t) (
const pmix_ proc_t =*requestor,
const pmix_info_t *monitor, pmix_status_t error
const pmix_info_t directives[], size_t ndirs,
pmix_info_cbfunc t cbfunc, void xcbdata);

C

IN requestor
pmix_proc_t structure (handle)
IN monitor
pmix_proc_t structure (handle)
IN error
(integer)
IN directives
Array of info structures (array of handles)

IN ndirs

Number of elements in the info array (integer)
IN cbfunc

Callback function pmix_op_cbfunc_t (function reference)
IN cbdata

Data to be passed to the callback function (memory reference)

Returns PMIX_ SUCCESS or a negative value corresponding to a PMIX error constant.

Description

Request that a client be monitored for activity.

PMIx Standard — Version 2.0 (draft) — November 2017

APPENDIX A
Document Revision History

1+ A.1 Version 2.0: Date TBD

A.2 Version 1.0: ad hoc release

w

An ad hoc standard was defined in the PMIx Reference Implementation header files before the
creation of the formal 2.0 standard. Below are a summary listing of the interfaces defined in the 1.0
headers.

N O o b

125

A OWN =

o © oo N o

11

12
13

14
15

16

APPENDIX B
Acknowledgements

This document represents the work of many people who have contributed to the PMIx community.
Without the hard work and dedication of these people this document would not have been possible.
The sections below list some of the active participants and organizations in the various PMIx
standard iterations.

B.1 Version 2.0

The following list includes some of the active participants in the PMIx standardization process.

The following institutions supported this effort through time and travel support for the people listed
above.

B.2 Version 1.0

The following list includes some of the active participants in the PMIx standardization process.

The following institutions supported this effort through time and travel support for the people listed
above.

126

Bibliography

[1] Ralph H. Castain, David Solt, Joshua Hursey, and Aurelien Bouteiller. PMIx: Process
management for exascale environments. In Proceedings of the 24th European MPI Users’
Group Meeting, EuroMPI * 17, pages 14:1-14:10, New York, NY, USA, 2017. ACM.

127

Index

PMIx_Abort, 23, 67, 105, 106
Defintion, 66
PMIX_ADD_HOST
Defintion, 17
PMIX_ADD_HOSTFILE
Defintion, 17
PMIX_ALLOC_BANDWIDTH
Defintion, 21
PMIX_ALLOC_CPU_LIST
Defintion, 21
pmix_alloc_directive_t, 31
Defintion, 31
PMIX_ALLOC_ID
Defintion, 20
PMIX_ALLOC_MEM_SIZE
Defintion, 21
PMIX_ALLOC_NETWORK
Defintion, 21
PMIX_ALLOC_NETWORK_ID
Defintion, 21
PMIX_ALLOC_NETWORK_QOS
Defintion, 21
PMIX_ALLOC_NODE_LIST
Defintion, 20
PMIX_ALLOC_NUM_CPU_LIST
Defintion, 21
PMIX_ALLOC_NUM_CPUS
Defintion, 20
PMIX_ALLOC_NUM_NODES
Defintion, 20
PMIX_ALLOC_TIME
Defintion, 21
PMIX_ALLOCATED_NODELIST
Defintion, 12
PMIx_Allocation_request_nb
Defintion, 77

128

PMIX_ANL_MAP

Defintion, 15
PMIX_APP_MAP_REGEX

Defintion, 15
PMIX_APP_MAP_TYPE

Defintion, 15
PMIX_APP_RANK

Defintion, 11
PMIX_APP_SIZE

Defintion, 12
pmix_app_t, 37, 68, 69, 112

Defintion, 37
PMIX_APPLDR

Defintion, 11
PMIX_APPNUM

Defintion, 11
PMIX_ARCH

Defintion, 10
PMIX_ATTR_UNDEF

Defintion, 7
PMIX_AVAIL_PHYS_MEMORY

Defintion, 13
PMIX_BINDTO

Defintion, 17
pmix_byte_object_t, 31

Defintion, 31
PMIX_CLIENT_AVG_MEMORY

Defintion, 13
PMIX_COLLECT_DATA, 58

Defintion, 14
PMIX_COLLECTIVE_ALGO, 58

Defintion, 14

PMIX_COLLECTIVE_ALGO_REQD, 58

Defintion, 14
PMIx_Commit, 53, 57
Defintion, 56

PMIx_Connect, 68, 72
Defintion, 70
PMIX_CONNECT_MAX_RETRIES
Defintion, 9
PMIx_Connect_nb, 71
Defintion, 71
PMIX_CONNECT_RETRY_DELAY
Defintion, 9
PMIX_CONNECT_SYSTEM_FIRST
Defintion, 8
PMIX_CONNECT_TO_SYSTEM
Defintion, 8
pmix_connection_cbfunc_t, 118
Defintion, 117
PMIX_COSPAWN_APP
Defintion, 18
PMIX_CPU_LIST
Defintion, 18
PMIX_CPUS_PER_PROC
Defintion, 18
PMIX_CPUSET
Defintion, 10
PMIX_CREDENTIAL
Defintion, 10
PMIX_DAEMON_MEMORY
Defintion, 13
pmix_data_array, 33
Defintion, 33
pmix_data_buffer_t, 31
Defintion, 31
PMIx_Data_copy
Defintion, 93
PMIx_Data_copy_payload
Defintion, 94
PMIx_Data_pack, 53
Defintion, 89
PMIx_Data_print
Defintion, 94
pmix_data_range_t, 29, 117
Defintion, 29
PMIX_DATA_SCOPE
Defintion, 14
pmix_data_type_t, 27

Defintion, 27
PMIx_Data_unpack, 53

Defintion, 90
PMIX_DEBUG_JOB

Defintion, 20
PMIX_DEBUG_STOP_IN_INIT

Defintion, 20
PMIX_DEBUG_STOP_ON_EXEC

Defintion, 20

PMIX_DEBUG_WAIT_FOR_NOTIFY

Defintion, 20

PMIX_DEBUG_WAITING_FOR_NOTIFY

Defintion, 20
PMIX_DEBUGGER_DAEMONS

Defintion, 18
PMIx_Deregister_event_handler

Defintion, 84
PMIx_Disconnect, 72, 73

Defintion, 71
PMIx_Disconnect_nb

Defintion, 72
PMIX_DISPLAY_MAP

Defintion, 17
pmix_dmodex_response_fn_t, 100

Defintion, 100
PMIX_DSTPATH

Defintion, 9
PMIX_EMBED_BARRIER, 48

Defintion, 14
PMIX_ERR_BASE, 24
PMIX_EVENT_ACTION_TIMEOUT

Defintion, 16
PMIX_EVENT_AFFECTED_PROC

Defintion, 16
PMIX_EVENT_AFFECTED_PROCS

Defintion, 16
PMIX_EVENT_BASE

Defintion, 8
PMIX_EVENT_CUSTOM_RANGE

Defintion, 16
PMIX_EVENT_DO_NOT_CACHE

Defintion, 16
PMIX_EVENT_ENVIRO_LEVEL

INDEX

129

130

Defintion, 15
PMIX_EVENT_HDLR_AFTER
Defintion, 16
PMIX_EVENT_HDLR_APPEND
Defintion, 16
PMIX_EVENT_HDLR_BEFORE
Defintion, 16
PMIX_EVENT_HDLR_FIRST
Defintion, 15
PMIX_EVENT_HDLR_FIRST_IN_CATEGORY
Defintion, 15
PMIX_EVENT_HDLR_LAST
Defintion, 15
PMIX_EVENT_HDLR_LAST_IN_CATEGORY
Defintion, 15
PMIX_EVENT_HDLR_NAME
Defintion, 15
PMIX_EVENT_HDLR_PREPEND
Defintion, 16
PMIX_EVENT_JOB_LEVEL
Defintion, 15
PMIX_EVENT_NO_TERMINATION
Defintion, 16
PMIX_EVENT_NON_DEFAULT
Defintion, 16
pmix_event_notification_cbfunc_fn_t, 85
Defintion, 85
PMIX_EVENT_RETURN_OBIJECT
Defintion, 16
PMIX_EVENT_SILENT_TERMINATION
Defintion, 16
PMIX_EVENT_TERMINATE_JOB
Defintion, 16
PMIX_EVENT_TERMINATE_NODE
Defintion, 16
PMIX_EVENT_TERMINATE_PROC
Defintion, 16
PMIX_EVENT_TERMINATE_SESSION
Defintion, 16
PMIX_EVENT_WANT_TERMINATION
Defintion, 16
pmix_evhdlr_reg_cbfunc_t, 88
Defintion, 88

PMIx Standard — Version 2.0 (draft) — November 2017

PMIx_Fence, 58, 59, 106, 107

Defintion, 57
PMIx_Fence_nb, 106, 107
Defintion, 58

PMIx_Finalize, 14, 23, 47, 48, 104, 105

Defintion, 47
PMIX_FWD_STDERR, 121
Defintion, 17
PMIX_FWD_STDIN, 121
Defintion, 17
PMIX_FWD_STDOUT, 121
Defintion, 17
PMIX_GDS_MODULE
Defintion, 10
PMIx_generate_ppn
Defintion, 95
PMIx_generate_regex
Defintion, 95

PMIx_Get, 14, 47, 54, 55, 58

Defintion, 53
PMIx_Get_nb, 58
Defintion, 54
PMIx_Get_version
Defintion, 46
PMIX_GLOBAL, 29
PMIX_GLOBAL_RANK
Defintion, 11
PMIX_GRPID, 121
Defintion, 9
PMIx_Heartbeat
Defintion, 80
PMIX_HOST
Defintion, 17
PMIX_HOSTFILE
Defintion, 17
PMIX_HOSTNAME
Defintion, 12

PMIX_HWLOC_SHMEM_ADDR

Defintion, 13

PMIX_HWLOC_SHMEM_FILE

Defintion, 13

PMIX_HWLOC_SHMEM_SIZE

Defintion, 13

PMIX_HWLOC_XML_V1
Defintion, 13
PMIX_HWLOC_XML_V2
Defintion, 13
PMIX_IMMEDIATE
Defintion, 14
PMIX_INDEX_ARGV
Defintion, 18
pmix_info_array, 35
Defintion, 35
pmix_info_cbfunc_t, 41, 75, 77, 79, 80, 119,
122
Defintion, 41, 75
pmix_info_directives_t, 30
Defintion, 30
pmix_info_t, 30, 35, 47, 48, 50, 60, 62, 76,
79, 80, 109, 115, 121
Defintion, 35
PMIx_Init, 17, 45, 47, 68
Defintion, 46
PMIx_Initialized
Defintion, 45
PMIX_INTERNAL, 29
PMIX_JOB_CONTINUOUS
Defintion, 18
PMIx_Job_control_nb
Defintion, 78
PMIX_JOB_CTRL_CANCEL
Defintion, 21
PMIX_JOB_CTRL_CHECKPOINT
Defintion, 21
PMIX_JOB_CTRL_CHECKPOINT_EVENT
Defintion, 21
PMIX_JOB_CTRL_CHECKPOINT_METHOD
Defintion, 22
PMIX_JOB_CTRL_CHECKPOINT_SIGNAL
Defintion, 21
PMIX_JOB_CTRL_CHECKPOINT_TIMEOUT
Defintion, 21
PMIX_JOB_CTRL_ID
Defintion, 21
PMIX_JOB_CTRL_KILL
Defintion, 21

PMIX_JOB_CTRL_PAUSE
Defintion, 21

PMIX_JOB_CTRL_PREEMPTIBLE

Defintion, 22
PMIX_JOB_CTRL_PROVISION
Defintion, 22

PMIX_JOB_CTRL_PROVISION_IMAGE

Defintion, 22
PMIX_JOB_CTRL_RESTART
Defintion, 21
PMIX_JOB_CTRL_RESUME
Defintion, 21
PMIX_JOB_CTRL_SIGNAL
Defintion, 22
PMIX_JOB_CTRL_TERMINATE
Defintion, 22
PMIX_JOB_NUM_APPS
Defintion, 12
PMIX_JOB_RECOVERABLE
Defintion, 18
PMIX_JOB_SIZE
Defintion, 12
PMIX_JOB_TERM_STATUS
Defintion, 14
PMIX_JOBID
Defintion, 11
PMIX_LOCAL, 29
PMIX_LOCAL_CPUSETS
Defintion, 12
PMIX_LOCAL_PEERS
Defintion, 12
PMIX_LOCAL_PROCS
Defintion, 12
PMIX_LOCAL_RANK
Defintion, 11
PMIX_LOCAL_SIZE
Defintion, 12
PMIX_LOCAL_TOPO
Defintion, 13
PMIX_LOCALITY
Defintion, 12
PMIX_LOCALITY_STRING
Defintion, 13

INDEX

131

PMIX_LOCALLDR
Defintion, 11
PMIX_LOG_EMAIL
Defintion, 19
PMIX_LOG_EMAIL_ADDR
Defintion, 19
PMIX_LOG_EMAIL_MSG
Defintion, 20
PMIX_LOG_EMAIL_SUBIJECT
Defintion, 19
PMIX_LOG_MSG
Defintion, 19
PMIx_Log_nb
Defintion, 82
PMIX_LOG_STDERR
Defintion, 19
PMIX_LOG_STDOUT
Defintion, 19
PMIX_LOG_SYSLOG
Defintion, 19
PMIx_Lookup, 59, 62, 63
Defintion, 61
pmix_lookup_cbfunc_t, 40, 110
Defintion, 40
PMIx_Lookup_nb
Defintion, 62
PMIX_MAP_BLOB
Defintion, 15
PMIX_MAPBY
Defintion, 17
PMIX_MAPPER
Defintion, 17
PMIX_MAX_KEYLEN, 7
PMIX_MAX_NSLEN, 7
PMIX_MAX_PROCS
Defintion, 12
PMIX_MAX_RESTARTS
Defintion, 18

PMIX_MERGE_STDERR_STDOUT

Defintion, 18

PMIX_MODEL_LIBRARY_NAME

Defintion, 9

PMIX_MODEL_LIBRARY_VERSION

132 PMIx Standard — Version 2.0 (draft) — November 2017

Defintion, 9
pmix_modex_cbfunc_t, 39, 107, 108

Defintion, 39
pmix_modex_data_t, 38

Defintion, 38
PMIX_MONITOR_APP_CONTROL

Defintion, 22
PMIX_MONITOR_CANCEL

Defintion, 22
PMIX_MONITOR_FILE, 80

Defintion, 22
PMIX_MONITOR_FILE_ACCESS

Defintion, 22
PMIX_MONITOR_FILE_CHECK_TIME

Defintion, 22
PMIX_MONITOR_FILE_DROPS

Defintion, 22
PMIX_MONITOR_FILE_MODIFY

Defintion, 22
PMIX_MONITOR_FILE_SIZE

Defintion, 22
PMIX_MONITOR_HEARTBEAT

Defintion, 22
PMIX_MONITOR_HEARTBEAT_DROPS

Defintion, 22
PMIX_MONITOR_HEARTBEAT_TIME

Defintion, 22
PMIX_MONITOR_ID

Defintion, 22
PMIX_NET_TOPO

Defintion, 13
PMIX_NO_OVERSUBSCRIBE

Defintion, 18
PMIX_NO_PROCS_ON_HEAD

Defintion, 18
PMIX_NODE_LIST

Defintion, 12, 13
PMIX_NODE_MAP

Defintion, 15
PMIX_NODE_RANK

Defintion, 11
PMIX_NODE_SIZE

Defintion, 12

PMIX_NODEID
Defintion, 12
PMIX_NON_PMI, 68
Defintion, 17
pmix_notification_fn_t, 86
Defintion, 86
PMIX_NOTIFY_COMPLETION, 69
Defintion, 14
PMIx_Notify_event
Defintion, 84
PMIX_NPROC_OFFSET
Defintion, 11
PMIX_NSDIR
Defintion, 11
PMIX_NSPACE
Defintion, 11
PMIX_NUM_NODES
Defintion, 12
pmix_op_cbfunc_t, 40, 61, 64, 71, 73, 82,
96-99, 102, 104-106, 109, 111,
113-117, 122—-124
Defintion, 40
PMIX_OPTIONAL
Defintion, 14
PMIX_OUTPUT_TO_FILE
Defintion, 18
PMIX_PARENT_ID
Defintion, 12
pmix_pdata_t, 36, 62
Defintion, 36
PMIX_PERSISTENCE
Defintion, 14
pmix_persistence_t, 30
Defintion, 30
PMIX_PERSONALITY
Defintion, 17
PMIX_PPR
Defintion, 17
PMIX_PREFIX
Defintion, 17
PMIX_PRELOAD_BIN
Defintion, 17
PMIX_PRELOAD_FILES

Defintion, 17
PMIX_PROC_BLOB

Defintion, 15
PMIX_PROC_DATA

Defintion, 15
PMIX_PROC_FREE, 74
pmix_proc_info_t, 33

Defintion, 33
PMIX_PROC_MAP

Defintion, 15
PMIX_PROC_PID

Defintion, 11
PMIX_PROC_STATE_ABORTED, 23
PMIX_PROC_STATE_ABORTED_BY_SIG,

23
PMIX_PROC_STATE_CALLED_ABORT,

23
PMIX_PROC_STATE_CANNOT_RESTART,

24
PMIX_PROC_STATE_COMM_FAILED,

23
PMIX_PROC_STATE_CONNECTED, 23
PMIX_PROC_STATE_ERROR, 23
PMIX_PROC_STATE_FAILED_TO_LAUNCH,

24
PMIX_PROC_STATE_FAILED_TO_START,

23
PMIX_PROC_STATE_KILLED_BY_CMD,

23
PMIX_PROC_STATE_LAUNCH_UNDERWAY,

23
PMIX_PROC_STATE_MIGRATING, 23
PMIX_PROC_STATE_PREPPED, 23
PMIX_PROC_STATE_RESTART, 23
PMIX_PROC_STATE_RUNNING, 23
PMIX_PROC_STATE_STATUS

Defintion, 14
pmix_proc_state_t, 23

Defintion, 23
PMIX_PROC_STATE_TERM_NON_ZERO,

24
PMIX_PROC_STATE_TERM_WO_SYNC,

23

INDEX 133

PMIX_PROC_STATE_TERMINATE, 23
PMIX_PROC_STATE_TERMINATED, 23
PMIX_PROC_STATE_UNDEEF, 23
PMIX_PROC_STATE_UNTERMINATED,
23
pmix_proc_t, 32, 47-49, 54, 57-59, 66,
98-100, 104-114, 117, 119-124
Defintion, 32
PMIX_PROC_URI
Defintion, 12
PMIX_PROCDIR
Defintion, 11
PMIx_Process_monitor_nb, 81
Defintion, 79
PMIX_PROCID
Defintion, 11
PMIX_PROGRAMMING_MODEL
Defintion, 9
PMIx_Publish, 60, 61
Defintion, 59
PMIx_Publish_nb, 61
Defintion, 60
PMIx_Put, 53-56
Defintion, 52
PMIX_QUERY_ALLOC_STATUS
Defintion, 19
PMIX_QUERY_AUTHORIZATIONS
Defintion, 19
PMIX_QUERY_DEBUG_SUPPORT
Defintion, 19
PMIx_Query_info_nb
Defintion, 75
PMIX_QUERY_JOB_STATUS
Defintion, 18
PMIX_QUERY_LOCAL_ONLY
Defintion, 19
PMIX_QUERY_LOCAL_PROC_TABLE
Defintion, 19
PMIX_QUERY_MEMORY_USAGE
Defintion, 19
PMIX_QUERY_NAMESPACES
Defintion, 18
PMIX_QUERY_PROC_TABLE

PMIx Standard — Version 2.0 (draft) — November 2017

Defintion, 19
PMIX_QUERY_QUEUE_LIST

Defintion, 18
PMIX_QUERY_QUEUE_STATUS

Defintion, 19
PMIX_QUERY_REPORT_AVG

Defintion, 19
PMIX_QUERY_REPORT_MINMAX

Defintion, 19
PMIX_QUERY_SPAWN_SUPPORT

Defintion, 19
pmix_query_t, 37, 119

Defintion, 37
PMIX_RANGE

Defintion, 14
PMIX_RANK

Defintion, 11
PMIX_RANK_LOCAL_NODE, 7
pmix_rank_t, 7

Defintion, 7
PMIX_RANK_UNDEEF, 7
PMIX_RANK_WILDCARD, 7
PMIX_RANKBY

Defintion, 17
PMIx_Register_event_handler

Defintion, 83
PMIX_REGISTER_NODATA

Defintion, 8, 15
pmix_release_cbfunc_t, 38

Defintion, 38
PMIX_REMOTE, 29
PMIX_REPORT_BINDINGS

Defintion, 18
PMIX_REQUESTOR_IS_CLIENT

Defintion, 9
PMIX_REQUESTOR_IS_TOOL

Defintion, 9
PMIx_Resolve nodes

Defintion, 74
PMIx_Resolve_peers

Defintion, 73
PMIX_RM_NAME

Defintion, 20

PMIX_RM_VERSION
Defintion, 20
pmix_scope_t, 28, 53
Defintion, 28
PMIX_SEND_HEARTBEAT
Defintion, 22
pmix_server_abort_fn_t
Defintion, 105
pmix_server_alloc_fn_t
Defintion, 122
pmix_server_client_connected_fn_t
Defintion, 104
pmix_server_client_finalized_fn_t
Defintion, 104
pmix_server_connect_fn_t
Defintion, 112
PMIx_server_deregister_client
Defintion, 99
pmix_server_deregister_events_fn_t
Defintion, 115
PMIx_server_deregister_nspace, 99
Defintion, 97
pmix_server_disconnect_fn_t
Defintion, 113
pmix_server_dmodex_req_fn_t
Defintion, 107
PMIx_server_dmodex_request
Defintion, 100
PMIX_SERVER_ENABLE_MONITORING
Defintion, 8
pmix_server_fencenb_fn_t, 107
Defintion, 106
PMIx_server_finalize
Defintion, 50
PMIX_SERVER_HOSTNAME
Defintion, 8
PMIx_server_init, 45, 102, 103
Defintion, 50
pmix_server_job_control_fn_t
Defintion, 123
pmix_server_listener_fn_t
Defintion, 118
pmix_server_log_fn_t

Defintion, 121
pmix_server_lookup_fn_t
Defintion, 109
pmix_server_module_t, 50, 102
Defintion, 103
pmix_server_monitor_fn_t
Defintion, 123
pmix_server_notify_event_fn_t
Defintion, 116
PMIX_SERVER_NSPACE
Defintion, 8
PMIX_SERVER_PIDINFO
Defintion, 8
pmix_server_publish_fn_t
Defintion, 108
pmix_server_query_fn_t
Defintion, 118
PMIX_SERVER_RANK
Defintion, 8
PMIx_server_register_client
Defintion, 98
pmix_server_register_events_fn_t
Defintion, 114
PMIx_server_register_nspace
Defintion, 96
PMIX_SERVER_REMOTE_CONNECTIONS
Defintion, 8
PMIx_server_setup_application
Defintion, 101
PMIx_server_setup_fork
Defintion, 99
PMIx_server_setup_local_support
Defintion, 102
pmix_server_spawn_fn_t
Defintion, 111
PMIX_SERVER_SYSTEM_SUPPORT
Defintion, 8
PMIX_SERVER_TMPDIR
Defintion, 8
pmix_server_tool_connection_fn_t
Defintion, 120
PMIX_SERVER_TOOL_SUPPORT
Defintion, 8

INDEX 135

pmix_server_unpublish_fn_t
Defintion, 110
PMIX_SERVER_URI
Defintion, 8
PMIX_SESSION_ID
Defintion, 12
PMIX_SET_ENVAR
Defintion, 20
PMIX_SET_SESSION_CWD
Defintion, 18
pmix_setup_application_cbfunc_t, 101
Defintion, 101
PMIX_SINGLE_LISTENER
Defintion, 9
PMIX_SOCKET_MODE
Defintion, 9
PMIx_Spawn, 10, 69
Defintion, 67
pmix_spawn_cbfunc_t, 39, 69, 112
Defintion, 39
PMIx_Spawn_nb
Defintion, 69
PMIX_SPAWNED
Defintion, 10
pmix_status_t, 24, 115-117, 120
Defintion, 24
PMIX_STDIN_TGT
Defintion, 17
PMIx_Store_internal
Defintion, 55
PMIX_SYSTEM_TMPDIR
Defintion, 8
PMIX_TAG_OUTPUT
Defintion, 18
PMIX_TCP_DISABLE_IPV4
Defintion, 10
PMIX_TCP_DISABLE_IPV6
Defintion, 10
PMIX_TCP_IF_EXCLUDE
Defintion, 10
PMIX_TCP_IF_INCLUDE
Defintion, 10
PMIX_TCP_IPV4_PORT

PMIx Standard — Version 2.0 (draft) — November 2017

Defintion, 10
PMIX_TCP_IPV6_PORT

Defintion, 10
PMIX_TCP_REPORT_URI

Defintion, 10
PMIX_TCP_URI

Defintion, 10
PMIX_TDIR_RMCLEAN

Defintion, 11
PMIX_THREADING_MODEL

Defintion, 9
PMIX_TIME_REMAINING

Defintion, 19
PMIX_TIMEOUT, 54, 58, 68

Defintion, 14
PMIX_TIMESTAMP_OUTPUT

Defintion, 18
PMIX_TMPDIR

Defintion, 11
pmix_tool_connection_cbfunc_t, 120

Defintion, 119
PMIX_TOOL_DO_NOT_CONNECT

Defintion, 9
PMIx_tool_finalize

Defintion, 49
PMIx_tool_init, 45, 49

Defintion, 48
PMIX_TOOL_NSPACE

Defintion, 8
PMIX_TOOL_RANK

Defintion, 8
PMIX_TOPOLOGY

Defintion, 13
PMIX_TOPOLOGY_SIGNATURE

Defintion, 13
PMIX_UNIV_SIZE

Defintion, 12
PMIx_Unpublish, 64, 65

Defintion, 63
PMIx_Unpublish_nb

Defintion, 64
PMIX_UNSET_ENVAR

Defintion, 20

PMIX_USERID, 121 Defintion, 34

Defintion, 9 PMIX_VERSION_INFO
PMIX_USOCK_DISABLE Defintion, 9

Defintion, 9 PMIX_ WAIT
pmix_value_cbfunc_t, 41 Defintion, 14

Defintion, 41 PMIX_ WDIR
pmix_value_t, 34, 52, 53 Defintion, 17

INDEX 137

	1 Introduction
	1.1 Charter
	1.2 PMIx Standard Overview
	1.2.1 Who should use the standard?
	1.2.2 What is defined in the standard?
	1.2.3 What is not defined in the standard?

	1.3 PMIx Architecture Overview
	1.3.1 The PMIx Reference Implementation
	1.3.2 The PMIx Reference Server

	1.4 Organization of this document

	2 PMIx Terms and Conventions
	2.1 Notional Conventions
	2.2 Semantics
	2.3 Naming Conventions
	2.4 Procedure Conventions

	3 Data Structures and Types
	3.1 Constants
	3.1.1 Reserved attributes
	3.1.2 Process state Definitions
	3.1.3 Error Constants

	3.2 Data Types
	3.2.1 Packing Types
	3.2.2 pmix_scope_t
	3.2.3 pmix_data_range_t
	3.2.4 pmix_persistence_t
	3.2.5 pmix_info_directives_t
	3.2.6 pmix_alloc_directive_t

	3.3 Data Packing/Unpacking
	3.3.1 Byte Object

	3.4 Data Structures
	3.4.1 Process Structure
	3.4.2 Process Info Structure
	3.4.3 Data Array Structure
	3.4.4 Value Structure
	3.4.5 Info and Info Array Structures
	3.4.6 Lookup Return Structure
	3.4.7 App Structure
	3.4.8 Query Structure
	3.4.9 Modex Structure

	3.5 Callback Functions
	3.5.1 Release Callback Function
	3.5.2 Modex Callback Function
	3.5.3 Spawn Callback Function
	3.5.4 Op Callback Function
	3.5.5 Lookup Callback Function
	3.5.6 Value Callback Function
	3.5.7 Info Function

	3.6 Other Support Functions
	3.6.1 Unsorted Function
	3.6.2 Key/Value Pair Management

	4 Initialization and Finalization
	4.1 Query
	4.1.1 PMIx_Initialized
	4.1.2 PMIx_Get_version

	4.2 Client
	4.2.1 PMIx_Init
	4.2.2 PMIx_Finalize

	4.3 Tool
	4.3.1 PMIx_tool_init
	4.3.2 PMIx_tool_finalize

	4.4 Server
	4.4.1 PMIx_server_init
	4.4.2 PMIx_server_finalize

	5 Key/Value Management
	5.1 Setting and Accessing Key/Value Pairs
	5.1.1 PMIx_Put
	5.1.2 PMIx_Get
	5.1.3 PMIx_Get_nb
	5.1.4 PMIx_Store_internal

	5.2 Exchanging Key/Value Pairs
	5.2.1 PMIx_Commit
	5.2.2 PMIx_Fence
	5.2.3 PMIx_Fence_nb

	5.3 Publish and Lookup Data
	5.3.1 PMIx_Publish
	5.3.2 PMIx_Publish_nb
	5.3.3 PMIx_Lookup
	5.3.4 PMIx_Lookup_nb
	5.3.5 PMIx_Unpublish
	5.3.6 PMIx_Unpublish_nb

	6 Process Management
	6.1 Abort
	6.1.1 PMIx_Abort

	6.2 Process Creation
	6.2.1 PMIx_Spawn
	6.2.2 PMIx_Spawn_nb

	6.3 Connecting and Disconnecting Processes
	6.3.1 PMIx_Connect
	6.3.2 PMIx_Connect_nb
	6.3.3 PMIx_Disconnect
	6.3.4 PMIx_Disconnect_nb

	6.4 Query
	6.4.1 PMIx_Resolve_peers
	6.4.2 PMIx_Resolve_nodes
	6.4.3 PMIx_Query_info_nb

	7 Job Allocation Management
	7.1 Allocation Requests
	7.1.1 PMIx_Allocation_request_nb
	7.1.2 PMIx_Job_control_nb

	7.2 Process and Job Monitoring
	7.2.1 PMIx_Process_monitor_nb
	7.2.2 PMIx_Heartbeat

	8 Event Notification
	8.1 Logging
	8.1.1 PMIx_Log_nb

	8.2 Notification and Management
	8.2.1 PMIx_Register_event_handler
	8.2.2 PMIx_Deregister_event_handler
	8.2.3 PMIx_Notify_event
	8.2.4 Event Notification Callback Function
	8.2.5 Notification Callback Function
	8.2.6 Event Handler Registration Function

	9 Data Packing and Unpacking
	9.1 General Routines
	9.1.1 PMIx_Data_pack
	9.1.2 PMIx_Data_unpack
	9.1.3 PMIx_Data_copy
	9.1.4 PMIx_Data_print
	9.1.5 PMIx_Data_copy_payload

	10 Server Specific Interfaces
	10.0.1 PMIx_generate_regex
	10.0.2 PMIx_generate_ppn
	10.0.3 PMIx_server_register_nspace
	10.0.4 PMIx_server_deregister_nspace
	10.0.5 PMIx_server_register_client
	10.0.6 PMIx_server_deregister_client
	10.0.7 PMIx_server_setup_fork
	10.0.8 PMIx_server_dmodex_request
	10.0.9 PMIx_server_setup_application
	10.0.10 PMIx_server_setup_local_support

	10.1 Server Function Pointers
	10.1.1 pmix_server_module_t Module
	10.1.2 pmix_server_client_connected_fn_t
	10.1.3 pmix_server_client_finalized_fn_t
	10.1.4 pmix_server_abort_fn_t
	10.1.5 pmix_server_fencenb_fn_t
	10.1.6 pmix_server_dmodex_req_fn_t
	10.1.7 pmix_server_publish_fn_t
	10.1.8 pmix_server_lookup_fn_t
	10.1.9 pmix_server_unpublish_fn_t
	10.1.10 pmix_server_spawn_fn_t
	10.1.11 pmix_server_connect_fn_t
	10.1.12 pmix_server_disconnect_fn_t
	10.1.13 pmix_server_register_events_fn_t
	10.1.14 pmix_server_deregister_events_fn_t
	10.1.15 pmix_server_notify_event_fn_t
	10.1.16 pmix_connection_cbfunc_t
	10.1.17 pmix_server_listener_fn_t
	10.1.18 pmix_server_query_fn_t
	10.1.19 pmix_tool_connection_cbfunc_t
	10.1.20 pmix_server_tool_connection_fn_t
	10.1.21 pmix_server_log_fn_t
	10.1.22 pmix_server_alloc_fn_t
	10.1.23 pmix_server_job_control_fn_t
	10.1.24 pmix_server_monitor_fn_t

	A Document Revision History
	A.1 Version 2.0: Date TBD
	A.2 Version 1.0: ad hoc release

	B Acknowledgements
	B.1 Version 2.0
	B.2 Version 1.0

	Bibliography
	Index

