
1 / 6

Reckoner Gitops
Functionality Design Doc
TABLE OF CONTENTS

Overview

Context

Goals

Non-Goals

Technical Architecture

Known Unknowns

MVP Milestone

Overview
Reckoner historically has functioned as a wrapper around helm to centralize all installed

releases in a cluster and the custom values passed to each chart in a convenient "course"

file. It is the Infrastructure as Code for our helm installations. Over time it has become clear

that there are some issues with the predictability of changes that helm will make. A lot of

this is fixed with the implementation of reckoner diff but the output there can

sometimes be difficult to parse as a human that needs to review these changes.

Enter GitOps. GitOps isn't necessarily a silver bullet, but it does include a lot more safety

when it is implemented well. One implementation strategy is to have all Kubernetes

resources stored in git in their flat yaml manifest format such that any PR to these

resources will make it very clear what will change once they are applied. This is the

strategy that we would like to implement, and Reckoner will be the tool to convert helm

charts to flat yaml files suitable for this workflow.

Context
Currently we support running reckoner template which is a not-so-fancy wrapper

around helm template . This gets us part of the way there as it will output the generated

2 / 6

yaml manifests, but we want to support specific GitOps tools, like ArgoCD and potentially

Flux 2 by also outputting CRD resources that those tools make use of. The other issue with

reckoner template is that, given a single chart it will output all the resources as one

large string of yaml to standard out and not into separate files, ideally one yaml file per

resource that will get created. Not only will our solution need to output to files, but the files

will need to be in an opinionated directory structure relative to the location of the course

file.

Goals
ArgoCD is the first and foremost implementation we should focus on. FluxCD will not

covered by this design doc.

The output of yaml should have 1 resource per yaml file that have a comment at the top

signifying that they were auto-generated by reckoner and should not be edited.

The first implementation to be completed should be argocd . So, when the ArgoCD

milestone is complete, a command should look like this: reckoner template --

gitops argocd course.yml with optional flags for the destination directory. The

default destination directory should be ./manifests .

We need to have a solution for secret data that gets passed into helm charts that

should not be stored in git. We must assume that with whatever implementation we use

in the code, that the secrets will be accessible from the cluster where ArgoCD is

running. First implementation should be with Hashicorp vault .

Helm hooks should get converted to ArgoCD hooks (in the Argo implementation).

Non-Goals
We should not attempt to achieve our GitOps model by still deploying helm charts as

helm charts. This means there will not be any releases to look at in a cluster when

running helm ls when using this new model. All relevant helm chart version

information will still be visible in the annotations/labels of the resources. It will likely be

easiest to view these things in the argocd frontend UI going forward.

Similar to the above point, we will not support ArgoCD or Flux Helm release types. We

will only support the release pattern of flat yaml manifests as it is the easiest way to see

all changes in a git PR.

We should not attempt to generate yaml based on any system other than helm .

Reckoner is still a helm tool at its heart. That may change in the future, but for this

particular project, we should only focus on generating yaml files based on helm charts.

We will not strip generated resource annotations/labels that are unique to helm, this

will allow a user to go back to helm without deleting all the resources first (helm should

3 / 6

adopt the resources with the proper labels/annotations).

Technical Architecture
The command structure should be: reckoner template --gitops argocd for the

initial support of ArgoCD.

The following helm flags should be assumed when doing the helm template part of

generating the yaml manifests:

Bash

1 --skip-tests

2 --include-crds

Originally we thought we would also include the flag --no-hooks but if the GitOps

tool has a feature analogous to helm hooks (ArgoCD has Hooks too), we should

generate and convert to the implementation's style.

Namespace creation: if the GitOps tool supports namespace creation somehow, use

that. Otherwise we may need to generate a namespace resource. ArgoCD has a way to

create namespaces via its Application resource.

There will need to be a new gitops package in the pkg directory that starts with a

generic interface . This interface should have a receiver function that needs to be

satisfied for generating the implementation-specific CRDs needed. For example, in the

ArgoCD implementation, there will be a struct that correlates to the ArgoCD

Application CRD. That struct should satisfy this interface by implementing the

Generate() function.

EXAMPLE:

Go

1 type GitopsCRD interface {

2 Generate() ([]byte, error) // Generate CRD yaml, e.g. ArgoCD

Application

3 HandleHooks() ([]byte, error) // Generate yaml for the

implementations method of handling helm hooks, e.g. ArgoCD Hooks

4 }

Within the same gitops package we will need to define the files output and directory

structure to house the output. The base directory can and should be defined by a flag

4 / 6

to the gitops command that also has a default to satisfy our internal needs (default:

./manifests). It can look something like this (there may be more parameters, this is a

rough guess):

Go

1 type Output struct {

2 Implementation GitopsCRD

3 BaseDir string

4 }

There should be helper function(s) in the gitops package that dangle off the

Output struct which call the concrete implementation function Generate() .

Something like:

Go

1 func (o Output) Generate() (error) {

2 //Psuedo code

3 err := makeTheDirectoryStructure(o.BaseDir)

4 if err != nil {

5 return nil, err

6 }

7 renderedCRDBytes, err := o.Implementation.Generate()

8 if err != nil {

9 return nil, err

10 }

11 // Psuedo code to generate yaml manifests which

12 generateYamlManifests() // This spot will call helm template

and maybe do something unique with the templated values if

necessary. Also create the specific tool CRD object yaml (e.g.

Argo Application resource).

13 }

Deletions:

There should be a function in the gitops package that scans for already existing

generated files and removes them all when re-generating

Add a comment at the top of all generated files (something like # Generated

from Reckoner, do not manually edit) and the function in the code

should use this comment as a way to find the files to remove.

5 / 6

We want to allow people to add files to the directory structure we set up without

removing them. As long as they don't put the exact same comment at the top of

the file, this should work fine.

On the topic of splitting yaml and commenting at the top: As mentioned in the goals

section, we should be splitting up the helm template output such that there is one

resource yaml manifest per file. The splitting up into files should be fairly simple to do

with a loop over the yaml decode. Here is an example that loops over all yaml

manifests in helm template output from pluto. The trickier part will be adding the

comment at the top (maybe it won't be but there is not technical suggestion on how to

accomplish that currently).

Known Unknowns
Secrets

A lot of helm charts follow the pattern of existingSecretName and then you just

enter the secret and assume it's in the namespace. We should not care about

creating the Secret objects, but allow users to drop flat yaml into the manifests

directory structure that is NOT generated by reckoner and have it survive

regeneration. This way people can handle secrets the way they want in git.

Secrets that are generated by a helm chart need some special work because most

of the time these should not be passed into git as-is and there should be a plugin

involved. This is related to the below bullet point.

Is the answer that we output a warning message if something looks like secret

data and not solved via argo plugin?

If secret data is passed in via values, this should only need to be documented

because the value data should be in the pattern of the chosen plugin. For example

if we pass secret data into a chart via value and we are using the vault plugin, the

value passed in can simply be in the pattern

<path:vault/path#vault_secret_key#optional_secret_version> . If this is

done, there is nothing we need to do in the code.

Helm hooks when not using ArgoCD

ArgoCD has the concept of hooks that we can convert helm hooks to (we think),

but that is unknown when we add another implementation like FluxCD

Reckoner specific metadata on generated yaml manifests

We should explore how difficult it would be to add reckoner labels/annotations to

the resources that we put in the cluster. These would live alongside the

annotations/labels that helm adds.

Handling charts that use the Capabilities functionality of helm templating. We

need to figure out how to reliably pass in the API versions that exist in a cluster, or let

the user configure that. Related to this Issue.

https://github.com/FairwindsOps/pluto/blob/master/pkg/api/versions.go#L159-L174
https://github.com/FairwindsOps/reckoner/issues/486

6 / 6

Handling list items in a helm chart. While rare, it's possible that a helm chart can contain

kind: List items. Example from archived prometheus-operator chart.

MVP Milestone
 At the end of this we should have a reckoner template --gitops argocd command

that has the ability to create yaml manifests as well as ArgoCD Application yaml suitable

for deployment via gitops + ArgoCD.

