Openinapp / C) Signin
... Medillm Q search [A Write

Building a cron parser in Python

@ D Batten - Follow
. 9 minread - Oct 24,2023

91 Q N® 0

If you've ever worked with crontabs before, chances are you've been on
https://crontab.guru/ or similar to decipher someone else’s cron schedule
expression, or to verify the expression you've just written will be running
every day for the next 3 months as required, not every month for the next 3

years.

In this article we’ll first introduce cron, then we’ll explore what a cron
schedule expression is and what all the symbols and special characters
mean, and finally we’ll design a simple Python application to parse a cron

expression and return it human readable form.

What is cron and what is it used for?

cron is a Linux utility that allows tasks to be automatically run in the
background at predefined time intervals. A cron job or cron schedule is a set
of instructions that specifices when a particular task (or tasks) should be
run. A crontab (CRON TABIle) is a file which contains all the scheduled

cronjobs on the system.

Let’s take a look at an example cron job:

*/15 0 1,15 * 1-5 /usr/bin/find

In this instance, /usr/bin/find is the task and everything that comes before
it (/15 0 1,15 x» 1-5) defines when the task will be executed. The part of the
expression that defines when the task is executed is known as the cron

schedule expression (CSE).

Breaking down the cron schedule expression

As mentioned earlier, the CSE defines when the task will be executed. The

CSE looks very uninviting by itself, so let’s break it down.

The CSE is made up of 5 space separated components. These components
refer to the minute, hour, day of month, month, and day of week of the

schedule in order, see Figure 1.

/15/0|1,15||1-5

AR

minute hour day of month month day of week

Fig 1: components of a CSE

Now let’s break the expression down further to explore what the numbers

and special characters mean.

If a component is made up of a single number, as is the case for the hour
component in this example, then the task will be scheduled for the value of
the corresponding component. For example, if hour = 9then the task will
run in hour 9 (i.e. between 9am and 10am), if day of week = 3 then the task
will run on the 3rd day of the week (i.e. Wednesday). In this example, hour =
0, so we know our task will run in the Oth hour i.e. some time(s) between

midnight and lam.

Now for the special characters:

t———— B it e e +
| Char | Description | Example (assuming minute component) |
e Fm e o +
*	Any value	Every minute of the hour
	Value list separator	10,20: the 10th and 20th minute
-	Range of values	10-25: from 10 until 25 past hour
	Step values	*/5: every 5th minute
e e e +

Note that these special characters can be applied to any of the different time

components. Special care has to be taken to ensure that the value is valid for

the given component, for example a 10-20 value wouldn’t make sense for the
month component because there are only 12 valid options for month: the

numbers from 1-12.

We'’re now in a position to decipher the CSE from the example:

Fom e t—————— e +

| Component | Value | Description |
o o e +

| Minute | *x/15 | Every 15th minute |

Hour | © Hour © |

| |

| Day of month | 1,15 | The 1st and 15th days of the month |

| Month | * | Every month |

| Day of week 1-5 | Monday to Friday |
+

So in human readable form, the cron job in the example means:

Run /usr/bin/find at every 15th minute between 0:00 and 1:00 on the 1st and
the 15th of every month as long as it’s a weekday.

Writing a Python cron parser application

To help us improve our cron expression understanding going forward, let’s
write a Python application with a CLI that can take a cron expression,
expand the schedule expression and return a nice readable format for us to

understand. Interaction with the application should look like the following:

~$./cron-parser.py "x/15 0 1,15 *x 1-5 /usr/bin/find"

minute © 15 30 45

hour 0

day of month 1 15

month 12345678910 11 12
day of week 12345

command Jusr/bin/find

With the SOLID principles in mind, in particular single responsibility, we
start by thinking about the concerns of the application. Two main concerns
jump out straight away, one being the ability to parse the expression, and the
other being the ability to display the information in a table format. To ensure

our approach is maintainable, readable, testable, and extendable, we’ll use

an object orientated approach and encapsulate the responsibilities in

classes.

Let’s start by considering the parsing class. Where possible, I like to consider
classes as nouns rather than verbs. So for example, a CronExpression class
which implements something like an expand instance method, as opposed to
a CronExpressionExpander class. Here we have two different “flavours” of
cronExpression class. The first is the raw, unexpanded form. The second is
the expanded form. Given that both flavours are concretions of the same
cron expression abstraction and will share a lot of the same behaviour (such
as the minute , hour etc. properties) it makes sense to define the shared
behaviours in an abstract class and have both the raw and expanded
concretions inherit from the abstract class. Figure 2 shows the proposed

class hierarchy diagram.

AbstractCronExpression

+ minute
—————® + hour b EE—
+ day_of _month

+

RawCronExpression ExpandedCronExpression

+ expand(): ExpandedCronExpression

Fig 2: class hierarchy diagram for the AbstractCronExpression class and children.

The concretions can then be interacted with like so:

expression = "x/15 0 1,15 x 1-5 /usr/bin/find"
raw = RawCronExpression(expression)

raw.minute # returns "x/15"

expanded = ExpandedCronExpression(expression)
expanded.minute # returns [0, 15, 30, 45]

The public interface for both the raw and expanded cron expression
instances will be largely the same and will be defined in the parent class,
however the RawCronExpression class should implement an expand instance
method which will return an instance of the ExpandedCronExpression . This
design will allow for both the raw and expanded expressions to be passed
around the application, so e.g. modifying the output table to instead display
the unexpanded forms will be trivial. This helps us satisfy the Open/Closed

principle.

The ExpandedCronExpression is then tasked with expanding the time
components into list form. The logic for this expansion could live in a helper
function in a utils module which could be triggered from the constructor of
the ExpandedCronExpression class. I like to think of helper functions as
mercenaries; they don’t care about what the output of their work is used for,
only that they do their job when called upon and do it well (and that they get

paid, I guess that’s where the analogy breaks down).

The expanding of special characters would be best handled using regular
expressions so that the logic remains concise and compact. Given that the
logic needs to know what the expression is as well as what the available
options are (since e.g. a * for minute should return different values
compared to a » for hour), the helper function signature could look like the

following:

def expand_expression(

expression: str, options: Union[List[str], List[int]]
) => Union[List[str], List[int]]:

""Expand a cron schedule expression component."""

x for minute

expand_expression("*", list(range(60)) # should return [0, 1, ..., 59]

dash dinterval for day of week

expand_expression("1-5", list(range(l, 8)) # should return [1, 2, 3, 4, 5]
slash 1dinterval for day of month

expand_expression("x/2", list(range(l, 31)) # should return [1, 3, ..., 31]

N

To fill out the body of the function, we’ll go one-by-one through the special

characters.

The implementation for « is trivial:

if expression == "x'":
return options

For dash intervals we can use the regex r"~(\d{1,2})-(\d{1,2})$" which will
match a one or two digit number anchored at the start, followed by a dash,
followed by another one or two digit number anchored at the end. The

brackets allow us to extract the numbers via the match group:

dash_matches = re.search(r"A(\d{1,2})-(\d{1,2})$", expression)

if dash_matches:
mini, maxi = int(dash_matches.group(l)), int(dash_matches.group(2))
return list(range(mini, maxi + 1))

We can catch both a single one or two digit number and a value separator list
by using the regex r"s\d{1,2}(?:,\d{1,2})*$" . This will match a one or two
digit number anchored at the start of the expression, followed by an optional
amount of one or two digit numbers preceeded by a comma. So for example,
all of 1, 10, 1,10,20 will be matched. Note that we need to split the string by
"," to ensure we return a list of strings, and not a single string of comma

separated values.

comma_matches = re.findall(r"A\d{1,2}(?:,\d{1,2})*$", expression)
if comma_matches:
return comma_matches[0].split(",")

The slash interval is a little more tricky. We want to capture either a » or a
dash interval followed by a slash followed by one or two digits. This can be
done with the regex r"r(\x|\d{1,2}-\d{1,2})/(\d{1,2})s" . The tricky bit here
is that our options are now affected by whether it's a = or a dash interval. To
solve this we can call the expand_expression function from within the
function, passing the character preceeding the slash and the original options
to get the new options. We can then step through the new options using the
number after the slash. The comments in the snippet below show the
variable values as we step through the function for the example described in

the first line of the snippet.

expression = 1-5/2, options = [1, 2, 3, 4, 5, 6, 7]
interval_matches = re.search(r""(*|\d{1,2}-\d{1,2})/(\d{1,2})$", expression)
if dinterval_matches:
new_options = expand_expression(
interval_matches.group(l), # 1-5
options # [1, 2, 3, 4, 5, 6, 7]

new_options = [1, 2, 3, 4, 5]

interval = int(interval_matches.group(2))

dinterval = 2

return new_options[::interval] # [1, 3, 5]

It would be wise to cover some errors here as well, for example if an
unrecognised or invalid (e.g. 5-1) expression was passed. In this case it
would be best to raise some custom exceptions, one for unrecgonised and

one for invalid so that it can be caught further up the program and bubbled

4P 4
up to the client.

Now that all the components of the CSE can been expanded, all that’s left to
do is format the expanded values into a multi-line string table structure. A
simple class that accepts a list of tuples in the format (name of field, field
values) and implements a render method to return the multiline string

could look like the following:

def _generate_buffered_col(name: str, length: int) -> str:
return name + " " x (length - len(name))

class TableOutput:
def __init__(
self,
table_data: List[Tuple[str, Union[str, List[Any]]]l],
name_col_length: int = 14,

self.table_data = table_data
self.name_col_length = name_col_length

def render(self) -> str:
"""Render the data as a multi-line string."""
OUt = nn
for name, value in self.table_data:
if dsinstance(value, list):
value = " ", join([str(x) for x 1in value])

row = f'"{_generate_buffered_col(name, self.name_col_length)} {value}
out += row
return out.rstrip()

It accepts a name_col_length argument to adjust the width of the field name

column.

The final piece of the puzzle would be to implement a concrete method in
the AbstractCronExpression class which would convert the cron expression to
the required list of tuples format. Better yet, this could be done in a
dedicated class which could accept an instance of AbstractCronExpression
and return the list of tuples. This would better adhere to single responsibility
as one could argue that it’s not the responsibility of the

AbstractCronExpression class to output its own data into a specific format.

FOI'the Sake Of SIMpICIty though, 16ts Impletent a concrete method in the”

AbstractCronExpression class:

def to_table_format(self) -> List[Tuple[str, Union[str, List[Any]]]]:
"""Return the argument in a table format."""
return [
("minute", self.minute),
("hour", self.hour),
("day of month", self.dom),
("month", self.month),
("day of week", self.dow),
("command", self.command),

All the components of the application are now available to be linked together

and exposed through a public API:

def expand_cron_expression(cron_expression: str) -> str:
""MExpand and return a formatted cron expression."""
table_data = RawCronArgument(cron_expression).expand().to_table_format()
return TableOutput(table_data).render ()

< >

This could then be invoked by a command line interface which would

ultimately be responsible for displaying the output to the screen.

Of course, all classes and helper functions should be thoroughly unit tested.

It may also be helpful to have some integration tests to ensure that the end-
to-end flow is working as expected.

Written by D Batten Q Q

O Followers

More from D Batten

