DESIGN PATTERNS: COMPOSITE

Structural Patterns

Design Pattern Description

Partitioning design pattern: compose objects into tree structure to represent part-whole hierarchies
-> treat compositions of objects as single instance.

«interfacen s
Component Composute
+operalion() children
+add(in ¢ : Component) Type: Structural
+remove(in ¢ : Component) What it is
+getChild(in i : int e
g () Compose objects into tree structures to
4& represent part-whole hierarchies. Lets
| clients treat individual objects and
compositions of objects uniformly.
Component
Leaf +operation()
+operation() +add(in ¢ : Component)
+remove(in ¢ : Component)
+getChild(in i : int)

=, Association

=> Inheritance
_____ Realization /
D Implementation
—————— > Dependency
<:>— Aggregation
’— Composition

When to use?

When using multiple objects in the same way (needed nearly identical code to handle them) and
clients are wanted to ignore the difference between compositions of objects and individual objects.

Class Diagram Object Collaboration

Component ;
Client — fhf”’e" @ cow_}%
et :Component

operation|i

foreach child in children :

(6"’1905! te2

child .operation(};
\:Commnent
Leaf Composite ¢ Rz
St i leaf3 leafs
:Component leafq :Component
operation() operation(j- - | - - - labortion :Component

2. Design Pattern Example

mrrn

Composite pattern example.

mrrn

from abc import ABC, abstractmethod

NOT IMPLEMENTED = "You should implement this."

class Graphic (ABC) :
@abstractmethod
def print(self):
raise NotImplementedError (NOT IMPLEMENTED)

class CompositeGraphic (Graphic) :
def init (self):
self.graphics = []

def print(self):
for graphic in self.graphics:

graphic.print ()

def add(self, graphic):
self.graphics.append (graphic)

def remove (self, graphic):
self.graphics.remove (graphic)

class Ellipse (Graphic):
def init (self, name):

self.name = name

def print (self):

print("Ellipse:", self.name)

ellipsel = Ellipse ("

"

ellipse2 = Ellipse

"

ellipse3 = Ellipse

Sw NN

(

(

(
ellipsed4 = Ellipse ("
graphic = CompositeGraphic ()
graphicl = CompositeGraphic ()
graphic2 = CompositeGraphic ()
graphicl.add(ellipsel)
graphicl.add(ellipse2)
graphicl.add(ellipse3)

graphic2.add(ellipsed)

graphic.add(graphicl)
graphic.add(graphic?2)

graphic.print ()

Existing Example in FEM-MAT-00

Not exactly, closest similitude in Cost and Constraints classes (actually in CC superclass); but they
contain ShapeFunctions which are NOT CHILDREN of CC.

Design Proposal in FEM-MAT-00

Composite design pattern can be used in Mesh_Unfitted superclass, since an instance of it can be
an individual mesh or a composition or multiple meshes (when the resulting mesh embraces the
domain limits, this can be understood as a composition of internal and boundary mesh/es).

MESH

+create
+clone
MESH_UNFITTED MESH_GID
+ computeMesh + simplify
2D 3D Interior Boundary
| i | i
Composite_Mesh (>
MESH
+creafe
+clone
MESH_UNFITTED MESH_GID
+ computeMesh + simplify
2D D Interior Boundary Composite_Mesh

T

T

