
Design patterns. Behavioural software design pattern

Strategy pattern

1. Design pattern description

The strategy pattern is a behavioural software design pattern that enables selecting

an algorithm at runtime. Instead of implementing a single algorithm directly, code receives

run-time instructions as to which in a family of algorithms to use.

Problems that the strategy pattern solves

 An inflexible way is to implement (hard-wire) an algorithm directly within the class

(Context) that requires (uses) the algorithm. Conditional statements (switch(…)) are

needed to switch between different algorithms.

 This commits (couples) the class to particular algorithms at compile-time and makes it

impossible to change an algorithm later independently from (without having to

change) the class. It makes the class more complex, especially if multiple algorithms

are needed, and stops the class from being reusable if other algorithms are required.

"Hard-wiring all such algorithms into the classes that require them isn't desirable for

several reasons:" "Algorithms are often extended, optimized, and replaced during

development and reuse."

 Strategy lets the algorithm vary independently from clients that use it. Deferring the

decision about which algorithm to use until runtime allows the calling code to be more

flexible and reusable.

For instance, a class that performs validation on incoming data may use the strategy pattern to

select a validation algorithm depending on the type of data, the source of the data, user

choice, or other discriminating factors. These factors are not known until run-time and may

require radically different validation to be performed. The validation algorithms (strategies),

encapsulated separately from the validating object, may be used by other validating objects in

different areas of the system (or even different systems) without code duplication.

2. Design pattern example

public class StrategyPatternWiki

{

 public static void Main(String[] args)

 {

 // Prepare strategies

 IBillingStrategy normalStrategy = new NormalStrategy();

 IBillingStrategy happyHourStrategy = new HappyHourStrategy();

 Customer firstCustomer = new Customer(normalStrategy);

 // Normal billing

 firstCustomer.Add(1.0, 1);

 // Start Happy Hour

 firstCustomer.Strategy = happyHourStrategy;

 firstCustomer.Add(1.0, 2);

 // New Customer

 Customer secondCustomer = new Customer(happyHourStrategy);

 secondCustomer.Add(0.8, 1);

 // The Customer pays

 firstCustomer.PrintBill();

 // End Happy Hour

 secondCustomer.Strategy = normalStrategy;

 secondCustomer.Add(1.3, 2);

 secondCustomer.Add(2.5, 1);

 secondCustomer.PrintBill();

 }

}

class Customer

{

 private IList<double> drinks;

 // Get/Set Strategy

 public IBillingStrategy Strategy { get; set; }

 public Customer(IBillingStrategy strategy)

 {

 this.drinks = new List<double>();

 this.Strategy = strategy;

 }

 public void Add(double price, int quantity)

 {

 drinks.Add(Strategy.GetActPrice(price * quantity));

 }

 // Payment of bill

 public void PrintBill()

 {

 double sum = 0;

 foreach (double i in drinks)

 {

 sum += i;

 }

 Console.WriteLine("Total due: " + sum);

 drinks.Clear();

 }

}

interface IBillingStrategy

{

 double GetActPrice(double rawPrice);

}

// Normal billing strategy (unchanged price)

class NormalStrategy : IBillingStrategy

{

 public double GetActPrice(double rawPrice)

 {

 return rawPrice;

 }

}

// Strategy for Happy hour (50% discount)

class HappyHourStrategy : IBillingStrategy

{

 public double GetActPrice(double rawPrice)

 {

 return rawPrice * 0.5;

 }

}

3. Existing pattern in FEM-MAT-OO?

Some parts of the code such as the couples:

-Sh. Func → Filters

-Optimizer Constrained → Opt. Unconstrained

Have to some extent the general idea of the strategy pattern. However, a pure redefinition on

the fly of the filter or opt. Unconstrained in the code would not work as initialization of the

objects is needed.

Current FEM-MAT-OO skeleton is not thought as a run-time variant code. This is in part due to

the fact that the initial settings define the tools and algorithms that are used in an optimization

run.

4. Design proposal in FEM-MAT-OO

Current master

Proposal

