@

:[)(;;5.,\, ?«H‘uu«. olesw?J(M

Buldr ¢

Complex
Object

dcassembles,

rrtce
Builder
buildPartAl)
buiklPartsl)

Builder?

<casptess <castess
buidPartAl)
buikdPartsl)

@ :Dchs\m Ya“uw 2% &uhflc

from __future__ import print_function

from abc import ABCMeta, abstractmethod

class Car(object):

e a’l"f o’“ﬂof
felboan

buikter
Buident

buid,
Pana)

buid,
Parts)

=]

assemblen,

Productal

Producte)

assemblen,

def __init__ (self, wheels=4, seats=4, color="Black"):

self.wheels = wheels
self.seats = seats

self.color

color

def __str_ (self):

return "This is a {0} car with {1} wheels and {2} seats.”

self.color, self.wheels, self.seats

class CarBuilder (Builder):
def __init_ (self):

self.car = Car()

def set_wheels(self, value):
self.car.wheels = value

return self

def set_seats(self, value):
self.car.seats = value
return self

def set_color(self, value):
self.car.color = value
roturn self

dof get_result(self):
return self.car

class CarBuilderdirector(object):
estaticmethod
def construct():
return CarBuilder()

.set_wheels(8)
.set_seats(4)
.set_color("Red")
.get_result()

.format (

class Builder:

__metaclass__ = ABCMeta

eabstractmethod
def set_wheels(self, value):

pass

eabstractmethod
def set_seats(self, value):

pass

€abstractmethod
def set_color(self, value):

pass

@abstractmethod
def get_result(self):
pass

class CarBuilderDirector(object):

@staticmethod

def construct():

return CarBuilder()

print(car)

.set_wheels(8)
.set_seats(4)
.set_color("Red")

.get_result()

car = CarBuilderDirector.construct()

Director Builder ConcreteBuilder
builder : Buider
buildPart)) buldPart()
getResult() : Product

<< cruate >

@ Edsjr.’n%_ €xaw?le_ w Fem-maT-00 7

Nol' uv\% o‘\]((v .

@ .'Dcs'.sn ?o.\-luvx Ym‘w;a\\ wn FEM-MAT. 0D ,)

Bie [T o

Builder focuses on constructing a complex object step by step.
Abstract Factory emphasizes a family of product objects (either
simple or complex). Builder returns the product as a final step, but as
far as the Abstract Factory is concerned, the product gets returned
immediately.

Builder often builds a Composite.
—

Often, designs start out using Factory Method (less complicated,
more customizable, subclasses proliferate) and evolve toward
Abstract Factory, Prototype, or Builder (more flexible, more complex)
as the designer discovers where more flexibility is needed.

Sometimes creational patterns are complementary: Builder can use
one of the other patterns to implement which components get built.
Abstract Factory, Builder, and Prototype can use Singleton in their
implementations.

A factory is simply a wrapper function around a constructor (possibly one in
a different class). The key difference is that a factory method pattern requires
the entire object to be built in a single method call, with all the parameters
pass in on a single line. The final object will be returned.

A builder pattern, on the other hand, is in essence a wrapper object around
all the possible parameters you might want to pass into a constructor
invocation. This allows you to use setter methods to slowly build up your
parameter list. One additional method on a builder class is a build() method,
which simply passes the builder object into the desired constructor, and
returns the result.

T-' OF\’
Pollemn
Optinatuer
Fuilhn q-,}.'.“uu'
LY 1
Slecp aekes Slecp
Bt [Oplienen |——
Proj braked ; i“."l“ " Teo} Grajet

fudeon dp. phopller

Lot\ g .c\u‘)ﬁulalm
(VT wh k-ﬂa (3)

L\:L,(A,A ot
Ll s ol)

s Lolde x«foyl‘m“"‘ &)

