Design patterns. Behavioural software design pattern
Command pattern

1. Design pattern description
The intent of the Command design pattern is to:

"Encapsulate a request as an object, thereby letting you parameterize clients with different
requests, queue or log requests, and support undoable opera-tions." [GoF]

A request is an operation that one object performs on another. From a more general point of
view, a request is an arbitrary action to perform.

Problems that the command pattern solves

e Avoid the implementation of (hard-wire) a request (receiverl.actionl ()) directly
within the class (Invoker) that invokes the request.

e Commiting (or coupling) the invoker of a request to a particular request at compile-
time and making it impossible to specify a request at run-time.
"When you specify a particular operation, you commit to one way of satisfying a
request. By avoiding hard-coded requests, you make it easier to change the way a
request gets satisfied both at compile-time and run-time." [GoF, p24]

Key Relationships
Strategy - Command

Strategy provides a way to configure an object with an algorithm at run-time instead of
committing to an algorithm at compile-time.

Command provides a way to configure an object with a request at run-time instead of
committing to a request at compile-time.

i1y 1L 5 Tl
Cormmand | rvoker :Command 1 Receiver]

ket %ﬁm" :
4 exscute(]l |
S i
I

I 1
1 1
1 1
1 1
I action (] !
| .l el

I emecutel]

command . execute()
- .- recaiverl.actioni (};

Receiver Caormmarid]

action1i) exscute(]

Recelverl

Ivaker

action1()

receiveri.actioni(};

Lragram

2. Design pattern example

class Switch (object) :
"""The INVOKER class"""
def init (self):

self. history = deque()

@property
def history(self):

return self. history

def execute(self, command) :
self. history.appendleft (command)

command.execute ()

class Command (object) :
"""The COMMAND interface'"""
def init (self, obj):

self. obj = obj

def execute(self):

raise NotImplementedError

class TurnOnCommand (Command) :
"""The COMMAND for turning on the 1ight"""
def execute(self):

self. obj.turn on()

class TurnOffCommand (Command) :
"""The COMMAND for turning off the I1ight"""
def execute (self):

self. obj.turn off ()

class Light (object):
"""The RECEIVER class"""
def turn on(self):
print ("The light is on")

def turn off (self):
print ("The light is off")

class LightSwitchClient (object) :
"""The CLIENT class"""
def init (self):
self. lamp = Light ()
self. switch = Switch()

@property
def switch (self):

return self. switch

def press(self, cmd):
cmd = cmd.strip () .upper ()
if cmd == "ON":
self. switch.execute (TurnOnCommand (self. lamp))
elif cmd == "OFF":
self. switch.execute (TurnOffCommand (self. lamp))
else:

print ("Argument 'ON' or 'OFF' is required.")

Execute 1if this file is run as a script and not imported as a module
if name == " main ":

light switch = LightSwitchClient ()

print ("Switch ON test.")

light switch.press ("ON")

print ("Switch OFF test.")

light switch.press ("OFF")

print("Invalid Command test.")

light switch.press ("****")

print ("Command history:")

print (light switch.switch.history)

3. Existing pattern in FEM-MAT-00?
Currently not implemented.
4. Design proposal in FEM-MAT-00

Optimizer and “finalize” processes calls. Currently hard wired to optimizer:

Current scheme:

Optimizer

- obj postprocess print

-obj. monitoring.refresh -= updates monitor & plotting

-obj.writeToFile

Proposed:

Optimizer executes a list of commands, depending on which options are activated or not at the
beginning of the problem.

Optimizer

-obj.ListOfCommands.execute()

4
Command
/:7 - executel ‘_\Tj\
Extends Q \7\ Extends
Extends Extends
PrintCommand WriteCommand PlotCommand MoniterCommand
+ execute() -= postprocess. print + gxecute() -=WriteToFile() + execute() -= plot() + gxecute() -= monitoring.refresh|

