
Design patterns. Behavioural software design pattern

Command pattern

1. Design pattern description

The intent of the Command design pattern is to:

"Encapsulate a request as an object, thereby letting you parameterize clients with different

requests, queue or log requests, and support undoable opera­tions." [GoF]

A request is an operation that one object performs on another. From a more general point of

view, a request is an arbitrary action to perform.

Problems that the command pattern solves

 Avoid the implementation of (hard-wire) a request (receiver1.action1()) directly
within the class (Invoker) that invokes the request.

 Commiting (or coupling) the invoker of a request to a particular request at compile-

time and making it impossible to specify a request at run-time.

"When you specify a particular operation, you commit to one way of satisfying a

request. By avoiding hard-coded requests, you make it easier to change the way a

request gets satisfied both at compile-time and run-time." [GoF, p24]

Key Relationships

Strategy - Command

Strategy provides a way to configure an object with an algorithm at run-time instead of

committing to an algorithm at compile-time.

Command provides a way to configure an object with a request at run-time instead of

committing to a request at compile-time.

2. Design pattern example

class Switch(object):

 """The INVOKER class"""

 def __init__(self):

 self._history = deque()

 @property

 def history(self):

 return self._history

 def execute(self, command):

 self._history.appendleft(command)

 command.execute()

class Command(object):

 """The COMMAND interface"""

 def __init__(self, obj):

 self._obj = obj

 def execute(self):

 raise NotImplementedError

class TurnOnCommand(Command):

 """The COMMAND for turning on the light"""

 def execute(self):

 self._obj.turn_on()

class TurnOffCommand(Command):

 """The COMMAND for turning off the light"""

 def execute(self):

 self._obj.turn_off()

class Light(object):

 """The RECEIVER class"""

 def turn_on(self):

 print("The light is on")

 def turn_off(self):

 print("The light is off")

class LightSwitchClient(object):

 """The CLIENT class"""

 def __init__(self):

 self._lamp = Light()

 self._switch = Switch()

 @property

 def switch(self):

 return self._switch

 def press(self, cmd):

 cmd = cmd.strip().upper()

 if cmd == "ON":

 self._switch.execute(TurnOnCommand(self._lamp))

 elif cmd == "OFF":

 self._switch.execute(TurnOffCommand(self._lamp))

 else:

 print("Argument 'ON' or 'OFF' is required.")

Execute if this file is run as a script and not imported as a module

if __name__ == "__main__":

 light_switch = LightSwitchClient()

 print("Switch ON test.")

 light_switch.press("ON")

 print("Switch OFF test.")

 light_switch.press("OFF")

 print("Invalid Command test.")

 light_switch.press("****")

 print("Command history:")

print(light_switch.switch.history)

3. Existing pattern in FEM-MAT-OO?

Currently not implemented.

4. Design proposal in FEM-MAT-OO

Optimizer and “finalize” processes calls. Currently hard wired to optimizer:

Current scheme:

Proposed:

Optimizer executes a list of commands, depending on which options are activated or not at the

beginning of the problem.

