
Design patterns. Creational software design pattern

Singleton pattern

1. Design pattern description

The singleton design pattern is one of the twenty-three well-known "Gang of Four" design

patterns.

The singleton design pattern solves problems like:

 How can it be ensured that a class has only one instance?

 How can the sole instance of a class be accessed easily?

 How can a class control its instantiation?

 How can the number of instances of a class be restricted?

The singleton design pattern describes how to solve such problems:

 Hide the constructor of the class.

 Define a public static operation (getInstance()) that returns the sole instance of the

class.

The key idea in this pattern is to make the class itself responsible for controlling its

instantiation(that it is instantiated only once). The hidden constructor (declared private)

ensures that the class can never be instantiated from outside the class.

The public static operation can be accessed easily by using the class name and operation name

(Singleton.getInstance()).

Singleton should be considered only if all three of the following criteria are satisfied:

 Ownership of the single instance cannot be reasonably assigned

 Lazy initialization is desirable

 Global access is not otherwise provided for

Common uses

 The abstract factory, builder, and prototype patterns can use singletons in their

implementation.

 Facade objects are often singletons because only one facade object is required.

 State objects (https://en.wikipedia.org/wiki/State_pattern) are often singletons.

https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Abstract_factory_pattern
https://en.wikipedia.org/wiki/State_pattern

 Singletons are often preferred to global variables because:

 They do not pollute the global namespace (or, in languages with namespaces,

their containing namespace) with unnecessary variables.

 They permit lazy allocation and initialization, whereas global variables in many

languages will always consume resources.

2. Design pattern example

OUTPUT

BookBorrower1 asked to borrow the book
BookBorrower1 Author and Title:
Design Patterns by Gamma, Helm, Johnson, and Vlissides

BookBorrower2 asked to borrow the book
BookBorrower2 Author and Title:
I don't have the book

BookBorrower1 returned the book

BookBorrower2 asked to borrow the book
BookBorrower2 Author and Title:
Design Patterns by Gamma, Helm, Johnson, and Vlissides

CODE

class BookSingleton {
 private $author = 'Gamma, Helm, Johnson, and Vlissides';
 private $title = 'Design Patterns';
 private static $book = NULL;
 private static $isLoanedOut = FALSE;

 private function __construct() {
 }

 static function borrowBook() {
 if (FALSE == self::$isLoanedOut) {
 if (NULL == self::$book) {
 self::$book = new BookSingleton();
 }
 self::$isLoanedOut = TRUE;
 return self::$book;
 } else {
 return NULL;
 }
 }

 function returnBook(BookSingleton $bookReturned) {
 self::$isLoanedOut = FALSE;
 }

 function getAuthor() {return $this->author;}

 function getTitle() {return $this->title;}

 function getAuthorAndTitle() {
 return $this->getTitle() . ' by ' . $this->getAuthor();
 }
 }

class BookBorrower {
 private $borrowedBook;
 private $haveBook = FALSE;

 function __construct() {
 }

 function getAuthorAndTitle() {
 if (TRUE == $this->haveBook) {
 return $this->borrowedBook->getAuthorAndTitle();
 } else {
 return "I don't have the book";
 }
 }

 function borrowBook() {
 $this->borrowedBook = BookSingleton::borrowBook();
 if ($this->borrowedBook == NULL) {
 $this->haveBook = FALSE;
 } else {
 $this->haveBook = TRUE;
 }
 }

 function returnBook() {
 $this->borrowedBook->returnBook($this->borrowedBook);
 }
 }

/**
 * Initialization
 */

 writeln('BEGIN TESTING SINGLETON PATTERN');
 writeln('');

 $bookBorrower1 = new BookBorrower();
 $bookBorrower2 = new BookBorrower();

 $bookBorrower1->borrowBook();
 writeln('BookBorrower1 asked to borrow the book');
 writeln('BookBorrower1 Author and Title: ');
 writeln($bookBorrower1->getAuthorAndTitle());
 writeln('');

 $bookBorrower2->borrowBook();
 writeln('BookBorrower2 asked to borrow the book');
 writeln('BookBorrower2 Author and Title: ');
 writeln($bookBorrower2->getAuthorAndTitle());
 writeln('');

 $bookBorrower1->returnBook();
 writeln('BookBorrower1 returned the book');
 writeln('');

 $bookBorrower2->borrowBook();
 writeln('BookBorrower2 Author and Title: ');
 writeln($bookBorrower1->getAuthorAndTitle());
 writeln('');

 writeln('END TESTING SINGLETON PATTERN');

3. Existing pattern in FEM-MAT-OO?

Not implemented.

4. Design proposal in FEM-MAT-OO

Singleton implementation for FEM-MAT-OO factories:

