DESIGN PATTERNS: NULL OBJECT

Behavioral Pattern

Design Pattern Description

Designed to act as a default value of an object

o Intent: Provide a suitable default do nothing behavior.

o Problem: to treat transparently the absence of an object (the presence of a null reference)> do nothing or use
some default value.

Sometimes a class that requires a collaborator does not need the collaborator to do anything. However, the class wishes
to treat a collaborator that does nothing the same way it treats one that actually provides behavior.

The key to the Null Object pattern is an abstract class that defines the interface for all objects of this type. The Null Object
is implemented as a subclass of this abstract class.

A Null Object knows what needs to be done without interacting with any other object.

- Itis immutable.

- (Can be a particular ConcreteStrategy = do nothing / ignore all

- (Can be a particular State pattern

- (an allow visitors to safely visit a hierarchy and handle the null situation. (visitor = client??)

- The null behavior is not designed to be mixed into an object that needs some do nothing behavior. Itis designed
for a class which delegates to a collaborator all of the behavior that may or may not be do nothing behavior.

AbstractObject
Uses
Client |occeaeeaaaaaaan e
+request()
I I
RealObject NullObject
------ do nothing
1
+request() +request()

Client - requires a collaborator.

AbstractObject - declares the interface for Client's collaborator implements default behavior for the interface
common to all classes, as appropriate

RealObject - defines a concrete subclass of AbstractObject whose instances provide useful behavior that Client
expects

NullObject - provides an interface identical to AbstractObject's so that a null object can be substituted for a real
object implements its interface to do nothing.

- What exactly it means to do nothing depends on what sort of behavior Client is expecting

- When there is more than one way to do nothing, more than one NullObject class may be required.

Design Pattern Example

Encapsulate the absence of an object by providing a substitutable
alternative that offers suitable default do nothing behavior.

import abc

class AbstractObject(metaclass=abc.ABCMeta):
@abc.abstractmethod
def request(self):
pass

class RealObject(AbstractObject):
def request(self):

Useful behavior.

pass

class NullObject(AbstractObject):
def request(self):
pass

Existing Example in FEM-MAT-00

Introduced recently in a Mesh_Unfitted concrete strategy: MeshPlotter Interior 3D:

Mesh_Unfitted must define a Plotter strategy = plotters must implement method plot:
MeshPlotter Interior 3D resultsa Null Object.

Note: class renamed to MeshPlotter_Null.

Design Proposal in FEM-MAT-0O0O

e Useful for Test Driven Development = in RED stage: compile the code without passing the tests.

e For strategies that must be implemented but are not going to be used.

