Skip to content

Commit

Permalink
adding diagonalization conventions
Browse files Browse the repository at this point in the history
  • Loading branch information
Expander authored and Expander committed Feb 28, 2014
1 parent a6496a0 commit 616f928
Showing 1 changed file with 58 additions and 0 deletions.
58 changes: 58 additions & 0 deletions doc/paper.tex
Expand Up @@ -37,6 +37,7 @@
\newcommand{\unit}[1]{\,\text{#1}} % units
\newcommand{\userinput}{\text{<input>}}
\newcommand{\pole}{\text{pole}}
\newcommand{\Lagr}{\mathcal{L}}
\DeclareMathOperator{\sign}{sign}
\DeclareMathOperator{\re}{Re}
\DeclareMathOperator{\im}{Im}
Expand Down Expand Up @@ -875,6 +876,63 @@ \subsection{Tree-level spectrum}
\code{zheev}, \code{dsyev} for matrices with more than four rows and
columns.
The mass matrix $M^2$ for real scalar fiels $\phi_i$ is diagonalized
with an orthogonal matrix $O$ via
%
\begin{align}
\Lagr_{m,\text{real scalar}}
&= - \frac{1}{2} \phi^T M^2 \phi
= - \frac{1}{2} (\phi^m)^T M^2_D \phi^m, \\
\qquad M^2 &= (M^2)^T ,
\qquad \phi^m = O \phi ,
\qquad M^2_D = O M^2 O^T ,
\qquad O^T O = 1 ,
\end{align}
%
where $M^2_D$ is diagonal and $\phi^m_i$ are the mass eigenstates. In
case of complex scalar fields $\phi_i$ we use
%
\begin{align}
\Lagr_{m,\text{complex scalar}}
&= - \phi^\dagger M^2 \phi
= - (\phi^m)^\dagger M^2_D \phi^m, \\
\qquad M^2 &= (M^2)^\dagger ,
\qquad \phi^m = U \phi ,
\qquad M^2_D = U M^2 U^\dagger ,
\qquad U^\dagger U = 1 .
\end{align}
%
A symmetric mass matrix $Y$ for Weyl spinors $\psi_i$ is diagonalized
as
%
\begin{align}
\Lagr_{m,\text{fermion}}^\text{symm.}
&= - \frac{1}{2} \psi^T Y \psi + \text{h.c.}
= - \frac{1}{2} \chi^T Y_D \chi + \text{h.c.}, \\
\qquad Y &= Y^T ,
\qquad Y_D = Z Y Z^\dagger ,
\qquad \chi = Z \psi ,
\qquad Z^\dagger Z = 1 ,
\end{align}
%
where $Y_D$ is diagonal and $\chi_i$ are the mass eigenstates. The
phases of $Z$ are chosen such that all mass eigenvalues are positive.
In case of a non-symmetric mass matrix $X$ for Weyl spinors $\psi_i$
we use
%
\begin{align}
\Lagr_{m,\text{fermion}}^\text{svd}
&= - (\psi^-)^T X \psi^+ + \text{h.c.}
= - (\chi^-)^T X_D \chi^+ + \text{h.c.}, \\
\qquad \chi^+ &= V \psi^+ ,
\qquad \chi^- = U \psi^- ,
\qquad X_D = U^* X V^{-1} ,
\qquad U^\dagger U = 1 = V^\dagger V ,
\end{align}
%
where we're again chosing the phases of $U$ and $V$ such that all mass
eigenvalues are positive.
\subsection{Two-scale fixed point iteration}
The default two-scale RG solver uses above beta functions and boundary
conditions to find the full set of $\overline{DR}$ masses in the model
Expand Down

0 comments on commit 616f928

Please sign in to comment.