Tapestry Architecture

Sandhya Narayan
Infoblox Inc.
[work in progress]

Introduction

Tapestry is a system which extracts the “network complexity” (NCI) of an enterprise by
examining the DNS requests made on that network. NCI can be viewed either hourly, weekly,
monthly, annual and any other period based on selection.

Figure 1 shows the Tapestry Ul with a graph of the “Network Complexity Indicator” over time, and
a dashboard showing some performance numbers.

[] '[9 nci.ilabs.inca.infoblox.com: 28080 /nci.html =
Tapestry: A Network Complexity Analyzer
(2] Em:l;:um’mts.9 280
NCI 7 updated 10.7.13 15:13:24 o

updated 10.7.13 15:13:24 o
Queries per Second 201
upoated 10.7.13 15:12:55

Zoom: 1d 5d 1m 3m 6m 1y 5y 10y

NCI

20131107 2013/11/07 201311707 2013/11/07 2013/11/07 2013/11/07 20131107 2013/11/07 20131107 2013/11/07 201311707
14:20 14:25 14:30 14:38 14:40 14:45 14:50 14:88 s 16:08 18:10

-

Figure 1

Tapestry SDN application

Tapestry data is collected by a SDN application which utilizes an OpenFlow switch as a DNS
data collector. In our example architecture, we use a Network White Box (NWB) that runs LINC
OpenFlow switch software as the OpenFlow switch. These NWBs (also called Tapestry
Collectors) are placed in-line to one or more DNS servers and tap DNS responses being sent to
DNS clients. The Tapestry Collectors send the collected data to the Tapestry system (Figure 2)
for analysis, which then provides instantaneous NCI values and a set of other indicators
computed over selectable duration. Tapestry software can be run on any COTS system running

Linux.

DS DMNE DMNE
Serveri Sarver2 Sarver3

Tapastry NC| UI

y Ta pestry\

v+ . | Tapesiny Loom
| Applicstion |4 Tapestry Web Server

! {

I Loom Control
: Plane with DP1

Tapestry NC| Calculator

1

T Data
ﬁ;ma = Tapestry Data Store

+ Programmable Dataja

Corporate network

Figure 2

Figure 2 shows the components of the Tapestry system listed below and their interconnections.
The next section provides more details about these components.

Tapestry NCI Calculator
Tapestry Web Server

Tapestry Network Complexity Ul
Tapestry Collectors

Tapestry Loom Application
Tapestry Application

Tapestry Data Store

Tapestry Data Aggregator
Loom Control Plane

Tapestry using DNS logs
Instead of using DNS data being collected by OpenFlow switches, Tapestry can make use of
DNS log data made available by InfoBlox DDI appliances to an FTP server. In this case, Infoblox

DDI appliances send DNS log data to the Tapestry FTP server, which sends it directly to the
Tapestry Data Aggregator where it is filtered and parsed, making it suitable to be used by
Tapestry for NCI analysis. Figure 3 shows the components of Tapestry for this type of

deployment.

MNCI LI
ve r N
- Tapestry Web Server
T + Tigesiry i
fipsarvar
— Tapestry NCI Calculator
Y 'y

Tapestry Data Store

Note: The rest of this document will focus on the Tapestry SDN application.

Figure 3

Tapestry Components

Figure 2 shows how Tapestry data collection is done using a distributed SDN application that
utilizes OpenFlow switches and control plane. Other Tapestry components aggregate the data,
store it, compute NCI and display it on different types of clients such as web clients, smartphone
clients and iPad clients. This section describes these components.

Tapestry NCI Calculator

The details of the NCI algorithm are discussed in http://www.flowforwarding.org/nci-article. In
summary, a network’s complexity can be judged from the interconnections in the network
between different end-points, their interactions and information exchanged. Positive DNS
responses serve as a simple but good indicator for interactions between end-points. The NCl is
a single number computed from pairs consisting of {DNS requesting client’s IP address, IP
address resolved by DNS}.

http://www.google.com/url?q=http%3A%2F%2Fwww.flowforwarding.org%2Fnci-article&sa=D&sntz=1&usg=AFQjCNHmdRf1XAEkWn3maXQfOyQ74qdETw

Tapestry Web Server

Tapestry Web server facilitates the users to view Network Complexity Index in real time or for
any chosen period. It is currently implemented using Yaws, a HTTP high perfomance 1.1
webserver written in Erlang, particularly well suited for dynamic-content web applications
(http://hyber.org/). YAWS supports the WebSocket Protocol, which enables two-way
communication between clients and web servers. Tapestry Web Server and client use
WebSockets for interaction with each other.

Tapestry NCI Ul

Tapestry NCI Ul allows the user to select the data for analysis by specifying the following: fields
of DNS data, range and type of DNS entries. The Tapestry NCI Ul is a web client that uses html,
css and javascript in a single page. It uses WebSockets to communicate with the server and
asks the Tapestry server for the following: a) start pushing fresh updates and b) select
time/duration of interest. The server sends NCI, end-points and query rate information for
display. The Tapestry NCI Ul displays these values putting NCI data on a graph. Figure 1 shows
an example screenshot of the Tapestry web client.

Tapestry Collectors

OpenFlow switches placed in-line on the path to DNS servers and serve as Tapestry Collectors.
They tap DNS responses and send them to Tapestry Data Aggregator. Let us consider an
example NWB with four network interfaces and running LINC OpenFlow switch software. Port 1
is connected to the DNS server and Port 2 is connected to the corporate network.

There are several ways to collect the DNS traffic:

1. Direct connection: In the simplest case, copy DNS response packets to Port 3 (not used
otherwise) and directly connect a cable from Port 3 to the Tapestry Data Aggregator.

2. Use of Packet-In: Send DNS response packets as Packet-in messages to the OpenFlow
controller, which sends it to the Tapestry Data Aggregator. The current implementation of
Tapestry available at http:/flowforwarding.github.io/tapestry/ uses this method. LINC is
configured via sys.config file to have two controllers: {tapestry_IP_address, 6633} and
{tapestry_|IP_address, 6634}, where tapestry IP_address is the IP address of the system
running Tapestry. The first controller sends flow-mod messages to the switch and the
second controller handles Packet-In messages.

3. Use of Packet-in with in-band control: Same as (2) but make use of “In-band” controller.

These options are discussed below:

Direct Connection

In the figure below, Port 3 of the switch is the “tap” port and is connected directly to the Tapestry
Data Aggregator. This configuration is the simplest to implement, but requires new wiring to
connect the “tap” port to the Aggregator.

http://www.google.com/url?q=http%3A%2F%2Fhyber.org%2F&sa=D&sntz=1&usg=AFQjCNE_8Cdohqu5bwi4qcJekr3mZc7ITQ
http://www.google.com/url?q=http%3A%2F%2Fflowforwarding.github.io%2Ftapestry%2F&sa=D&sntz=1&usg=AFQjCNECBrfN6ZsfuweTzGXcQL0HD8v0kA

Tapestry Collector
MWE running LING
L1 [

Tapestry
Aggregator

Flow entries to be set up in the OpenFlow switch:
e Higher priority: Forward UDP traffic from port 2 to port 1 and port 3 (tap DNS responses).
e Lower priority: Forward traffic from port 2 to port 1 (forward the rest of the traffic)
e Lower priority: Forward traffic from port 1 to port 2 (forward all the traffic)

Use of Packet-in

This method uses “packet-in on action” feature of OpenFlow. A switch sends a packet-in
message to the controller when there is a match with a flow entry for an incoming packet and the
action-output port for the matched flow-entry is set as “controller’. The switch encapsulates the
incoming packet in the packet-in message. The controller decapsulates the packet-in message
and sends the data (the incoming UDP packet) to the Tapestry Data Aggregator.

Flow entries for Packet-In:
e Higher priority: Forward UDP traffic from port 2 to port 1 and controller (tap DNS
responses).
Lower priority: Forward traffic from port 2 to port 1 (forward the rest of the traffic)
Lower priority: Forward traffic from port 1 to port 2 (forward all the traffic)

The advantage of this method is that a packet-in message encapsulates the “matched” packet
and so the entire packet can be captured at the Aggregator. It also has the obvious advantage of
not needing any extra cabling to connect the tap port to the Aggregator. It also has the advantage
of using TCP to send the “tapped” packet, because of the use of OpenFlow to collect “tapped”
packets.

Tapestry Collector
NWHB running LINC
1] | 3

Tapesiry M
Aggregator Corporat DNS

Server

Packet-In message with In-Band Controller

In this method the control channel is in-band and not connected to a different port on the switch.
Otherwise the method is the same as the use of packet-in.

apest
NE

ry Collector

~

Tapestry
Aggregator

Tapestry Loom Application

Tapestry Loom application prepares hand-coded flow entries for all the LINC OpenFlow switches
and uses the Loom Control Plane to send them to the switches.

Tapestry Application

This is the main application which starts the other components of the Tapestry system. The
current design assumes the use of packet-in messages to collect DNS responses. To capture
the DNS responses this application starts a secondary OpenFlow controller whose only purpose
is to capture packet-in messages, decapsulate them and perform DPI to identify the pairs of the
form: {DNS requesting client’s IP address, IP address resolved by DNS}.

Tapestry Data Aggregator

Tapestry Data Aggregator subscribes to the Secondary OpenFlow controller started by the
Tapestry application and gathers the pre-processed DNS response pairs and stores it in the
Tapestry Data Store.

Tapestry Data Store

The Tapestry Data Store stores the data collected and aggregated by the Tapestry Data
Aggregator. The DNS response pairs {V1, V2} are stored as directed edges in a graph database
where V1 and V2 are vertices. Over time as new edges are formed, the graph database
captures a view of all the dynamic interconnections between systems. This serves as an input to
the NCI Calculator.

Tapestry Interactions

The sequence diagrams below shows the interactions between various components in the
Tapestry system. The setup sequence shows interactions between the SDN components of
Tapestry as the components are set up for running Tapestry. The second diagram shows the
interactions that occur as DNS requests and responses are forwarded by the DPE.

Setup Loom and LINC for Tapesty

Operator tap_loom DPE1 loom_ofdp_recv loom_ofdp

FPlace DPE1 between
DMNSServer! & Corporate NW

configure it
[1] start >
2] start N
[3] start >
[4] start >
[9] ofp_hello >
< [E] hello
[7] features _request >
< [8] ofp_features request
[9] ofp_features reply'b
< [10] features _reply
DPID from features_replyl—‘
[11] send flow-mods >

[12] flow-mods

—_—

Place switch (DPE1) between DNSServer1 and the corporate network. Configure swtich
to connect to a master controller at {MasterlP, MasterPort}, and a slave controller ar
{SlavelP, SlavePort}. Start the switch.

Start tap_loom application, which starts the master controller.

tap_loom starts the sender (loom_ofdp)

tap_loom starts the receiver (loom_ofdp_recv)

Switch connects to the controller, and sends hello message.

Controller (tap_loom) receives hello message, and protocol version of the switch.
Controller (tap_loom) sends features_request to loom_ofdp to get switch features.
loom_ofdp sends the actual OpenFlow message to the switch.

Switch sends features_reply.

O loom_ofdp_recv sends features_reply to tap_loom. tap_loom finds out the DPID from
features_reply and uses it to identify all interactions and state related to the that switch.

‘©9°.\‘F-”.0":'>f-*°!\3

11. tap_loom hand-codes the flow-mod messages as described in the Tapestry Collector
section and sends them to the sender loom_ofdp.
12. loom_ofdp sends the OpenFlow messages to the switch.

Note: The sequence described above is close but not exactly the same as the actual
implementation.

Tapestry_application

Tapestry loom DNSServer1 Corporate NW DPE1 T_loom_ofdp_recv Loom_DPI T_Aggregator T_Datastore T_NCI T_Webserver browser

1] start

[2] start .

[3] start

4] start, listen on 6634)

[s]start
¢ [6] subscribe to gacket in
[7] DNS request
[8] DNS request
[9] DNS response
[10] DNS response
[11] packet-in
decapsulate Packet-in
[12] UDP packet
Perform DPI
[13] Parsed positive
DNS response
[14] store data
[15] Interacting pair
of endpoints
compute NCI
[16] NCI
prepare javascript

17] NCI U1 »

Tapestry starts loom as a slave controller

Tapestry starts Tapestry Aggregator

Tapestry starts Tapestry Webserver

loom starts receiver T_loom_ofdp_recv to listen on port SlavePort
Tapestry Aggregator starts Tapestry Datastore

Tapestry aggregator subscribes to

DNS request made by some client arrives on Port2 of DPE1
DNS request is forwarded to Port1 of DPE1

9. DNS response arrives at Port2 of DPE1

10. DNS response is forwarded to Port1

11. Packet-in Openflow message is sent to the controller

12. Packet-in is decapsulated to get UDP packet (DNS response)
13. DNS response is parsed to get endpoints of positive responses
14. {DNS requestor IP, resolved IP} are stored in Datastore

15. Set of endpoint pairs are selected and NCl is calculated

16. NCl is sent to Tapestry Webserver

17. Browser client is updated with changing NCI value

© NSOk wN =

Tapestry Requirements

Datapath
e Programmable Ethernet Datapath supporting OpenFlow 1.3
e Depends on the environment of deployment.

Some example hardware requirements:
e Low cost low power NWB
o Intel Atom N450 1.66GHz based desktop platform with 4GbE:
http://www.portwell.com/products/detail.asp? CUSTCHAR1=CAD-0205-06-08
e Medium cost medium power NWB
e Soft switches on any x86 server

Loom Control Plane

e Depends on the environment of deployment.
e x86 running Linux or Windows

Tapestry Application
e Depends on the environment of deployment.
e x86 running Linux or Windows

Glossary

Network White Box (NWB): An X86 based system with at least 3 network interfaces, preferably
with more cores than interfaces.

LINC: A software OpenFlow switch supporting OpenFlow 1.2 and 1.3.1 specifications written in
Erlang.

Loom: A distributed controller platform for SDN supporting OpenFlow 1.0, 1.2 and 1.3
specifications.

http://www.google.com/url?q=http%3A%2F%2Fwww.portwell.com%2Fproducts%2Fdetail.asp%3FCUSTCHAR1%3DCAD-0205-06-08&sa=D&sntz=1&usg=AFQjCNEHjX7XaljpVQDt1-LcFCQml5BKZQ

