Skip to content

Bugged fallback in grouped Convs #369

@SimonCoste

Description

@SimonCoste

Hi,

I defined a grouped convolution in Flux using C = Conv((1,1), 2=>2, groups=2). When I feed non-float arrays to this convolutional layer, eg with C(rand(10,10,2,1)), I first get a Slow fallback warning, and then an AssertionError: DimensionMismatch, see the stacktrace below.

This error should not be here, and is very misleading since it is by no means a DimensionMismatch problem - the dimensions are ok - but it is apparently linked to the datatypes : indeed, accordingly to the warning, the error disappears when I use C(rand(Float32, 10,10,2,1)).

Classical (non-grouped) convolutions do not display these kind of errors.

julia> C = Conv((1,1), 2=>2, groups=2)
Conv((1, 1), 1 => 2)  # 4 parameters

julia> C(rand(10,10,2,1))
┌ Warning: Slow fallback implementation invoked for conv!  You probably don't want this; check your datatypes.
│   yT = Float64
│   T1 = Float64
│   T2 = Float32
└ @ NNlib ~/.julia/packages/NNlib/P9BhZ/src/conv.jl:291
ERROR: AssertionError: DimensionMismatch("Data input channel count (2 vs. 2)")
Stacktrace:
  [1] check_dims(x::NTuple{5, Int64}, w::NTuple{5, Int64}, y::NTuple{5, Int64}, cdims::DenseConvDims{3, (1, 1, 1), 2, 2, 2, (1, 1, 1), (0, 0, 0, 0, 0, 0), (1, 1, 1), false})
    @ NNlib ~/.julia/packages/NNlib/P9BhZ/src/dim_helpers/DenseConvDims.jl:73
  [2] conv_direct!(y::Array{Float64, 5}, x::Array{Float64, 5}, w::Array{Float32, 5}, cdims::DenseConvDims{3, (1, 1, 1), 2, 2, 2, (1, 1, 1), (0, 0, 0, 0, 0, 0), (1, 1, 1), false}; alpha::Float64, beta::Bool)
    @ NNlib ~/.julia/packages/NNlib/P9BhZ/src/impl/conv_direct.jl:51
  [3] conv_direct!
    @ ~/.julia/packages/NNlib/P9BhZ/src/impl/conv_direct.jl:51 [inlined]
  [4] conv!(y::Array{Float64, 5}, in1::Array{Float64, 5}, in2::Array{Float32, 5}, cdims::DenseConvDims{3, (1, 1, 1), 2, 2, 2, (1, 1, 1), (0, 0, 0, 0, 0, 0), (1, 1, 1), false}; kwargs::Base.Iterators.Pairs{Union{}, Union{}, Tuple{}, NamedTuple{(), Tuple{}}})
    @ NNlib ~/.julia/packages/NNlib/P9BhZ/src/conv.jl:293
  [5] conv!(y::Array{Float64, 5}, in1::Array{Float64, 5}, in2::Array{Float32, 5}, cdims::DenseConvDims{3, (1, 1, 1), 2, 2, 2, (1, 1, 1), (0, 0, 0, 0, 0, 0), (1, 1, 1), false})
    @ NNlib ~/.julia/packages/NNlib/P9BhZ/src/conv.jl:291
  [6] conv!(y::Array{Float64, 4}, x::Array{Float64, 4}, w::Array{Float32, 4}, cdims::DenseConvDims{2, (1, 1), 2, 2, 2, (1, 1), (0, 0, 0, 0), (1, 1), false}; kwargs::Base.Iterators.Pairs{Union{}, Union{}, Tuple{}, NamedTuple{(), Tuple{}}})
    @ NNlib ~/.julia/packages/NNlib/P9BhZ/src/conv.jl:151
  [7] conv!
    @ ~/.julia/packages/NNlib/P9BhZ/src/conv.jl:151 [inlined]
  [8] conv(x::Array{Float64, 4}, w::Array{Float32, 4}, cdims::DenseConvDims{2, (1, 1), 2, 2, 2, (1, 1), (0, 0, 0, 0), (1, 1), false}; kwargs::Base.Iterators.Pairs{Union{}, Union{}, Tuple{}, NamedTuple{(), Tuple{}}})
    @ NNlib ~/.julia/packages/NNlib/P9BhZ/src/conv.jl:91
  [9] conv(x::Array{Float64, 4}, w::Array{Float32, 4}, cdims::DenseConvDims{2, (1, 1), 2, 2, 2, (1, 1), (0, 0, 0, 0), (1, 1), false})
    @ NNlib ~/.julia/packages/NNlib/P9BhZ/src/conv.jl:89
 [10] (::Conv{2, 4, typeof(identity), Array{Float32, 4}, Vector{Float32}})(x::Array{Float64, 4})
    @ Flux ~/.julia/packages/Flux/ZnXxS/src/layers/conv.jl:163
 [11] top-level scope
    @ REPL[5]:1
 [12] top-level scope
    @ ~/.julia/packages/CUDA/YpW0k/src/initialization.jl:52

See also the Julialang discussion.

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions