Skip to content
Permalink
Branch: master
Find file Copy path
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
166 lines (155 sloc) 5.05 KB
import numpy as np
from scipy import stats
import scipy.io as sio
import os
import torch
from torch import nn
from dataloader import Data_Loader
import util
import torch.utils.data
from torchfoldext import FoldExt
import sys
import json
import partnet as partnet_model
with open('./part_color_mapping.json', 'r') as f:
color = json.load(f)
for c in color:
c[0] = int(c[0]*255)
c[1] = int(c[1]*255)
c[2] = int(c[2]*255)
def writeply(savedir, data, label):
path = os.path.dirname(savedir)
if not os.path.exists(path):
os.makedirs(path)
if data.size(0) == 0:
n_vertex = 0
else:
n_vertex = data.size(1)
with open(savedir, 'w') as f:
f.write('ply\n')
f.write('format ascii 1.0\n')
f.write('comment 111231\n')
f.write('element vertex %d\n' % n_vertex)
f.write('property float x\n')
f.write('property float y\n')
f.write('property float z\n')
f.write('property float nx\n')
f.write('property float ny\n')
f.write('property float nz\n')
f.write('property uchar red\n')
f.write('property uchar green\n')
f.write('property uchar blue\n')
f.write('property uchar label\n')
f.write('end_header\n')
for j in range(n_vertex):
f.write('%g %g %g %g %g %g %d %d %d %d\n' % (*data[0, j], *color[label[j]], label[j]))
def normalize_shape(shape):
shape_min, _ = torch.min(shape[:,:,:3], 1)
shape_max, _ = torch.max(shape[:,:,:3], 1)
x_length = shape_max[0, 0] - shape_min[0, 0]
y_length = shape_max[0, 1] - shape_min[0, 1]
z_length = shape_max[0, 2] - shape_min[0, 2]
length = shape_max - shape_min
max_length = torch.max(length)
scale = 1/max_length
center = shape_min + length/2
print(center[0, 0],center[0, 1],center[0, 2], scale)
for i in range(2048):
shape[0, i, 0] = (shape[0, i, 0] - center[0, 0])* scale
shape[0, i, 1] = (shape[0, i, 1] - center[0, 1])* scale
shape[0, i, 2] = (shape[0, i, 2] - center[0, 2])* scale
return shape
def decode_structure(model, feature, points_f, shape):
"""
segment shape
"""
global m
n_points = shape.size(1)
loc_f = model.pcEncoder(shape)
if feature is None:
feature = loc_f
f_c1 = torch.cat([feature, loc_f], 1)
label_prob = model.nodeClassifier(f_c1)
_, label = torch.max(label_prob, 1)
label = label.item()
if label == 1 or label == 3: # ADJ
left, right = model.adjDecoder(f_c1)
f_max, _ = torch.max(points_f, 2)
f_c2 = torch.cat([f_max, f_c1], 1)
point_label_prob, _ = model.decoder.loc_points_predictor(points_f, f_c2)
point_label_prob = point_label_prob.cpu()
_, point_label=torch.max(point_label_prob, 1)
left_list=[]
right_list=[]
for i in range(n_points):
if point_label[0, i].item() == 0:
left_list.append(i)
else:
right_list.append(i)
left_idx=torch.LongTensor(left_list).cuda()
right_idx=torch.LongTensor(right_list).cuda()
if left_idx.size(0) > 20 and right_idx.size(0) > 20:
l_pc=torch.index_select(shape, 1, left_idx)
l_feature=torch.index_select(points_f, 2, left_idx)
r_pc=torch.index_select(shape, 1, right_idx)
r_feature=torch.index_select(points_f, 2, right_idx)
l_labeling = decode_structure(model, left, l_feature, l_pc)
r_labeling = decode_structure(model, right, r_feature, r_pc)
prediction = torch.LongTensor(n_points).zero_()
for i, j in enumerate(left_idx):
prediction[j.item()]=l_labeling[i]
for i, j in enumerate(right_idx):
prediction[j.item()]=r_labeling[i]
return prediction
else:
prediction = torch.LongTensor(n_points).fill_(m)
m += 1
return prediction
elif label == 2:
f_max, _ = torch.max(points_f, 2)
f_c2 = torch.cat([f_max, f_c1], 1)
point_label_prob, _ = model.decoder.loc_points_predictor_multi(points_f, f_c2)
point_label_prob = point_label_prob.cpu()
_, point_label = torch.max(point_label_prob, 1)
prediction = torch.LongTensor(n_points)
for i in range(point_label.size(1)):
prediction[i] = m+point_label[0, i].item()
mx = torch.max(point_label).item()
m += mx + 1
return prediction
else:
prediction=torch.LongTensor(n_points).fill_(m)
m += 1
return prediction
m = 0
def main():
config = util.get_args()
config.cuda = not config.no_cuda
torch.cuda.set_device(config.gpu)
if config.cuda and torch.cuda.is_available():
print("Using CUDA on GPU ", config.gpu)
else:
print("Not using CUDA.")
net = partnet_model.PARTNET(config)
net.load_state_dict(torch.load(config.save_path + '/partnet_final.pkl', map_location=lambda storage, loc: storage.cuda(config.gpu)))
if config.cuda:
net.cuda()
net.eval()
if not os.path.exists(config.output_path + 'segmented'):
os.makedirs(config.output_path + 'segmented')
print("Loading data ...... ", end='\n', flush=True)
shape = torch.from_numpy(loadmat(config.data_path + 'demo.mat')['pc']).float()
##for your own new shape
##shape = normalize_shape(shape)
with torch.no_grad():
shape = shape.cuda()
points_feature = net.pointnet(shape)
root_feature = net.pcEncoder(shape)
global m
m = 0
label = decode_structure(net, root_feature, points_feature, shape)
#segmented results
writeply(config.output_path + 'segmented/demo.ply', shape, label)
print('Successfully output result!')
if __name__ == '__main__':
main()
You can’t perform that action at this time.